Full text data of ACSS2
ACSS2
(ACAS2)
[Confidence: low (only semi-automatic identification from reviews)]
Acetyl-coenzyme A synthetase, cytoplasmic; 6.2.1.1 (Acetate--CoA ligase; Acetyl-CoA synthetase; ACS; AceCS; Acyl-CoA synthetase short-chain family member 2; Acyl-activating enzyme)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Acetyl-coenzyme A synthetase, cytoplasmic; 6.2.1.1 (Acetate--CoA ligase; Acetyl-CoA synthetase; ACS; AceCS; Acyl-CoA synthetase short-chain family member 2; Acyl-activating enzyme)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
Q9NR19
ID ACSA_HUMAN Reviewed; 701 AA.
AC Q9NR19; A6NE90; Q5QPH2; Q5QPH3; Q8N238; Q96EL0; Q9NQP7; Q9UJ15;
read moreDT 03-APR-2002, integrated into UniProtKB/Swiss-Prot.
DT 01-OCT-2000, sequence version 1.
DT 22-JAN-2014, entry version 115.
DE RecName: Full=Acetyl-coenzyme A synthetase, cytoplasmic;
DE EC=6.2.1.1;
DE AltName: Full=Acetate--CoA ligase;
DE AltName: Full=Acetyl-CoA synthetase;
DE Short=ACS;
DE Short=AceCS;
DE AltName: Full=Acyl-CoA synthetase short-chain family member 2;
DE AltName: Full=Acyl-activating enzyme;
GN Name=ACSS2; Synonyms=ACAS2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND CHARACTERIZATION.
RX PubMed=10843999; DOI=10.1074/jbc.M004160200;
RA Luong A., Hannah V.C., Brown M.S., Goldstein J.L.;
RT "Molecular characterization of human acetyl-CoA synthetase, an enzyme
RT regulated by sterol regulatory element-binding proteins.";
RL J. Biol. Chem. 275:26458-26466(2000).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RC TISSUE=Tongue;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=11780052; DOI=10.1038/414865a;
RA Deloukas P., Matthews L.H., Ashurst J.L., Burton J., Gilbert J.G.R.,
RA Jones M., Stavrides G., Almeida J.P., Babbage A.K., Bagguley C.L.,
RA Bailey J., Barlow K.F., Bates K.N., Beard L.M., Beare D.M.,
RA Beasley O.P., Bird C.P., Blakey S.E., Bridgeman A.M., Brown A.J.,
RA Buck D., Burrill W.D., Butler A.P., Carder C., Carter N.P.,
RA Chapman J.C., Clamp M., Clark G., Clark L.N., Clark S.Y., Clee C.M.,
RA Clegg S., Cobley V.E., Collier R.E., Connor R.E., Corby N.R.,
RA Coulson A., Coville G.J., Deadman R., Dhami P.D., Dunn M.,
RA Ellington A.G., Frankland J.A., Fraser A., French L., Garner P.,
RA Grafham D.V., Griffiths C., Griffiths M.N.D., Gwilliam R., Hall R.E.,
RA Hammond S., Harley J.L., Heath P.D., Ho S., Holden J.L., Howden P.J.,
RA Huckle E., Hunt A.R., Hunt S.E., Jekosch K., Johnson C.M., Johnson D.,
RA Kay M.P., Kimberley A.M., King A., Knights A., Laird G.K., Lawlor S.,
RA Lehvaeslaiho M.H., Leversha M.A., Lloyd C., Lloyd D.M., Lovell J.D.,
RA Marsh V.L., Martin S.L., McConnachie L.J., McLay K., McMurray A.A.,
RA Milne S.A., Mistry D., Moore M.J.F., Mullikin J.C., Nickerson T.,
RA Oliver K., Parker A., Patel R., Pearce T.A.V., Peck A.I.,
RA Phillimore B.J.C.T., Prathalingam S.R., Plumb R.W., Ramsay H.,
RA Rice C.M., Ross M.T., Scott C.E., Sehra H.K., Shownkeen R., Sims S.,
RA Skuce C.D., Smith M.L., Soderlund C., Steward C.A., Sulston J.E.,
RA Swann R.M., Sycamore N., Taylor R., Tee L., Thomas D.W., Thorpe A.,
RA Tracey A., Tromans A.C., Vaudin M., Wall M., Wallis J.M.,
RA Whitehead S.L., Whittaker P., Willey D.L., Williams L., Williams S.A.,
RA Wilming L., Wray P.W., Hubbard T., Durbin R.M., Bentley D.R., Beck S.,
RA Rogers J.;
RT "The DNA sequence and comparative analysis of human chromosome 20.";
RL Nature 414:865-871(2001).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [7]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-30 AND SER-267, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [9]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-418, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [10]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-267, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Activates acetate so that it can be used for lipid
CC synthesis or for energy generation.
CC -!- CATALYTIC ACTIVITY: ATP + acetate + CoA = AMP + diphosphate +
CC acetyl-CoA.
CC -!- SUBUNIT: Monomer.
CC -!- INTERACTION:
CC Q92900:UPF1; NbExp=1; IntAct=EBI-372879, EBI-373471;
CC -!- SUBCELLULAR LOCATION: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q9NR19-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q9NR19-2; Sequence=VSP_046376;
CC Note=No experimental confirmation available;
CC -!- SIMILARITY: Belongs to the ATP-dependent AMP-binding enzyme
CC family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF263614; AAF75064.1; -; mRNA.
DR EMBL; AK092281; BAC03849.1; -; mRNA.
DR EMBL; AL133324; CAI19311.1; -; Genomic_DNA.
DR EMBL; AL049709; CAI19311.1; JOINED; Genomic_DNA.
DR EMBL; AL133324; CAI19312.1; -; Genomic_DNA.
DR EMBL; AL049709; CAI19312.1; JOINED; Genomic_DNA.
DR EMBL; AL049709; CAI19725.1; -; Genomic_DNA.
DR EMBL; AL133324; CAI19725.1; JOINED; Genomic_DNA.
DR EMBL; AL049709; CAI19726.1; -; Genomic_DNA.
DR EMBL; AL133324; CAI19726.1; JOINED; Genomic_DNA.
DR EMBL; CH471077; EAW76248.1; -; Genomic_DNA.
DR EMBL; BC012172; AAH12172.1; -; mRNA.
DR RefSeq; NP_001070020.2; NM_001076552.2.
DR RefSeq; NP_061147.1; NM_018677.3.
DR UniGene; Hs.517034; -.
DR ProteinModelPortal; Q9NR19; -.
DR SMR; Q9NR19; 45-696.
DR IntAct; Q9NR19; 3.
DR STRING; 9606.ENSP00000353804; -.
DR DrugBank; DB00131; Adenosine monophosphate.
DR DrugBank; DB00171; Adenosine triphosphate.
DR PhosphoSite; Q9NR19; -.
DR DMDM; 20137525; -.
DR PaxDb; Q9NR19; -.
DR PRIDE; Q9NR19; -.
DR Ensembl; ENST00000253382; ENSP00000253382; ENSG00000131069.
DR Ensembl; ENST00000360596; ENSP00000353804; ENSG00000131069.
DR GeneID; 55902; -.
DR KEGG; hsa:55902; -.
DR UCSC; uc010gey.2; human.
DR CTD; 55902; -.
DR GeneCards; GC20P033459; -.
DR HGNC; HGNC:15814; ACSS2.
DR HPA; HPA004141; -.
DR MIM; 605832; gene.
DR neXtProt; NX_Q9NR19; -.
DR PharmGKB; PA24429; -.
DR eggNOG; COG0365; -.
DR HOGENOM; HOG000229981; -.
DR HOVERGEN; HBG014401; -.
DR KO; K01895; -.
DR OMA; WVMGRVD; -.
DR OrthoDB; EOG77T140; -.
DR BioCyc; MetaCyc:HS05484-MONOMER; -.
DR BRENDA; 6.2.1.1; 2681.
DR Reactome; REACT_111217; Metabolism.
DR GeneWiki; ACSS2; -.
DR GenomeRNAi; 55902; -.
DR NextBio; 61271; -.
DR PRO; PR:Q9NR19; -.
DR ArrayExpress; Q9NR19; -.
DR Bgee; Q9NR19; -.
DR CleanEx; HS_ACSS2; -.
DR Genevestigator; Q9NR19; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; IDA:HPA.
DR GO; GO:0003987; F:acetate-CoA ligase activity; IDA:UniProtKB.
DR GO; GO:0016208; F:AMP binding; IC:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0019413; P:acetate biosynthetic process; IEA:Ensembl.
DR GO; GO:0019427; P:acetyl-CoA biosynthetic process from acetate; IEA:InterPro.
DR GO; GO:0006069; P:ethanol oxidation; TAS:Reactome.
DR GO; GO:0008610; P:lipid biosynthetic process; IMP:UniProtKB.
DR GO; GO:0019542; P:propionate biosynthetic process; IEA:Ensembl.
DR GO; GO:0006805; P:xenobiotic metabolic process; TAS:Reactome.
DR InterPro; IPR011904; Ac_CoA_lig.
DR InterPro; IPR025110; AMP-bd_C.
DR InterPro; IPR020845; AMP-binding_CS.
DR InterPro; IPR000873; AMP-dep_Synth/Lig.
DR Pfam; PF00501; AMP-binding; 1.
DR Pfam; PF13193; AMP-binding_C; 1.
DR TIGRFAMs; TIGR02188; Ac_CoA_lig_AcsA; 1.
DR PROSITE; PS00455; AMP_BINDING; 1.
PE 1: Evidence at protein level;
KW Acetylation; Alternative splicing; ATP-binding; Complete proteome;
KW Cytoplasm; Ligase; Nucleotide-binding; Phosphoprotein;
KW Reference proteome.
FT CHAIN 1 701 Acetyl-coenzyme A synthetase,
FT cytoplasmic.
FT /FTId=PRO_0000208423.
FT MOD_RES 30 30 Phosphoserine.
FT MOD_RES 263 263 Phosphoserine (By similarity).
FT MOD_RES 267 267 Phosphoserine.
FT MOD_RES 418 418 N6-acetyllysine.
FT VAR_SEQ 277 277 V -> VQGKLKEKSKRVQP (in isoform 2).
FT /FTId=VSP_046376.
FT CONFLICT 79 79 F -> L (in Ref. 2; BAC03849).
FT CONFLICT 615 615 V -> F (in Ref. 5; AAH12172).
FT CONFLICT 680 680 M -> L (in Ref. 2; BAC03849).
SQ SEQUENCE 701 AA; 78580 MW; 833580B41B73A8B4 CRC64;
MGLPEERVRS GSGSRGQEEA GAGGRARSWS PPPEVSRSAH VPSLQRYREL HRRSVEEPRE
FWGDIAKEFY WKTPCPGPFL RYNFDVTKGK IFIEWMKGAT TNICYNVLDR NVHEKKLGDK
VAFYWEGNEP GETTQITYHQ LLVQVCQFSN VLRKQGIQKG DRVAIYMPMI PELVVAMLAC
ARIGALHSIV FAGFSSESLC ERILDSSCSL LITTDAFYRG EKLVNLKELA DEALQKCQEK
GFPVRCCIVV KHLGRAELGM GDSTSQSPPI KRSCPDVQIS WNQGIDLWWH ELMQEAGDEC
EPEWCDAEDP LFILYTSGST GKPKGVVHTV GGYMLYVATT FKYVFDFHAE DVFWCTADIG
WITGHSYVTY GPLANGATSV LFEGIPTYPD VNRLWSIVDK YKVTKFYTAP TAIRLLMKFG
DEPVTKHSRA SLQVLGTVGE PINPEAWLWY HRVVGAQRCP IVDTFWQTET GGHMLTPLPG
ATPMKPGSAT FPFFGVAPAI LNESGEELEG EAEGYLVFKQ PWPGIMRTVY GNHERFETTY
FKKFPGYYVT GDGCQRDQDG YYWITGRIDD MLNVSGHLLS TAEVESALVE HEAVAEAAVV
GHPHPVKGEC LYCFVTLCDG HTFSPKLTEE LKKQIREKIG PIATPDYIQN APGLPKTRSG
KIMRRVLRKI AQNDHDLGDM STVADPSVIS HLFSHRCLTI Q
//
ID ACSA_HUMAN Reviewed; 701 AA.
AC Q9NR19; A6NE90; Q5QPH2; Q5QPH3; Q8N238; Q96EL0; Q9NQP7; Q9UJ15;
read moreDT 03-APR-2002, integrated into UniProtKB/Swiss-Prot.
DT 01-OCT-2000, sequence version 1.
DT 22-JAN-2014, entry version 115.
DE RecName: Full=Acetyl-coenzyme A synthetase, cytoplasmic;
DE EC=6.2.1.1;
DE AltName: Full=Acetate--CoA ligase;
DE AltName: Full=Acetyl-CoA synthetase;
DE Short=ACS;
DE Short=AceCS;
DE AltName: Full=Acyl-CoA synthetase short-chain family member 2;
DE AltName: Full=Acyl-activating enzyme;
GN Name=ACSS2; Synonyms=ACAS2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND CHARACTERIZATION.
RX PubMed=10843999; DOI=10.1074/jbc.M004160200;
RA Luong A., Hannah V.C., Brown M.S., Goldstein J.L.;
RT "Molecular characterization of human acetyl-CoA synthetase, an enzyme
RT regulated by sterol regulatory element-binding proteins.";
RL J. Biol. Chem. 275:26458-26466(2000).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RC TISSUE=Tongue;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=11780052; DOI=10.1038/414865a;
RA Deloukas P., Matthews L.H., Ashurst J.L., Burton J., Gilbert J.G.R.,
RA Jones M., Stavrides G., Almeida J.P., Babbage A.K., Bagguley C.L.,
RA Bailey J., Barlow K.F., Bates K.N., Beard L.M., Beare D.M.,
RA Beasley O.P., Bird C.P., Blakey S.E., Bridgeman A.M., Brown A.J.,
RA Buck D., Burrill W.D., Butler A.P., Carder C., Carter N.P.,
RA Chapman J.C., Clamp M., Clark G., Clark L.N., Clark S.Y., Clee C.M.,
RA Clegg S., Cobley V.E., Collier R.E., Connor R.E., Corby N.R.,
RA Coulson A., Coville G.J., Deadman R., Dhami P.D., Dunn M.,
RA Ellington A.G., Frankland J.A., Fraser A., French L., Garner P.,
RA Grafham D.V., Griffiths C., Griffiths M.N.D., Gwilliam R., Hall R.E.,
RA Hammond S., Harley J.L., Heath P.D., Ho S., Holden J.L., Howden P.J.,
RA Huckle E., Hunt A.R., Hunt S.E., Jekosch K., Johnson C.M., Johnson D.,
RA Kay M.P., Kimberley A.M., King A., Knights A., Laird G.K., Lawlor S.,
RA Lehvaeslaiho M.H., Leversha M.A., Lloyd C., Lloyd D.M., Lovell J.D.,
RA Marsh V.L., Martin S.L., McConnachie L.J., McLay K., McMurray A.A.,
RA Milne S.A., Mistry D., Moore M.J.F., Mullikin J.C., Nickerson T.,
RA Oliver K., Parker A., Patel R., Pearce T.A.V., Peck A.I.,
RA Phillimore B.J.C.T., Prathalingam S.R., Plumb R.W., Ramsay H.,
RA Rice C.M., Ross M.T., Scott C.E., Sehra H.K., Shownkeen R., Sims S.,
RA Skuce C.D., Smith M.L., Soderlund C., Steward C.A., Sulston J.E.,
RA Swann R.M., Sycamore N., Taylor R., Tee L., Thomas D.W., Thorpe A.,
RA Tracey A., Tromans A.C., Vaudin M., Wall M., Wallis J.M.,
RA Whitehead S.L., Whittaker P., Willey D.L., Williams L., Williams S.A.,
RA Wilming L., Wray P.W., Hubbard T., Durbin R.M., Bentley D.R., Beck S.,
RA Rogers J.;
RT "The DNA sequence and comparative analysis of human chromosome 20.";
RL Nature 414:865-871(2001).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [7]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-30 AND SER-267, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [9]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-418, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [10]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-267, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Activates acetate so that it can be used for lipid
CC synthesis or for energy generation.
CC -!- CATALYTIC ACTIVITY: ATP + acetate + CoA = AMP + diphosphate +
CC acetyl-CoA.
CC -!- SUBUNIT: Monomer.
CC -!- INTERACTION:
CC Q92900:UPF1; NbExp=1; IntAct=EBI-372879, EBI-373471;
CC -!- SUBCELLULAR LOCATION: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q9NR19-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q9NR19-2; Sequence=VSP_046376;
CC Note=No experimental confirmation available;
CC -!- SIMILARITY: Belongs to the ATP-dependent AMP-binding enzyme
CC family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF263614; AAF75064.1; -; mRNA.
DR EMBL; AK092281; BAC03849.1; -; mRNA.
DR EMBL; AL133324; CAI19311.1; -; Genomic_DNA.
DR EMBL; AL049709; CAI19311.1; JOINED; Genomic_DNA.
DR EMBL; AL133324; CAI19312.1; -; Genomic_DNA.
DR EMBL; AL049709; CAI19312.1; JOINED; Genomic_DNA.
DR EMBL; AL049709; CAI19725.1; -; Genomic_DNA.
DR EMBL; AL133324; CAI19725.1; JOINED; Genomic_DNA.
DR EMBL; AL049709; CAI19726.1; -; Genomic_DNA.
DR EMBL; AL133324; CAI19726.1; JOINED; Genomic_DNA.
DR EMBL; CH471077; EAW76248.1; -; Genomic_DNA.
DR EMBL; BC012172; AAH12172.1; -; mRNA.
DR RefSeq; NP_001070020.2; NM_001076552.2.
DR RefSeq; NP_061147.1; NM_018677.3.
DR UniGene; Hs.517034; -.
DR ProteinModelPortal; Q9NR19; -.
DR SMR; Q9NR19; 45-696.
DR IntAct; Q9NR19; 3.
DR STRING; 9606.ENSP00000353804; -.
DR DrugBank; DB00131; Adenosine monophosphate.
DR DrugBank; DB00171; Adenosine triphosphate.
DR PhosphoSite; Q9NR19; -.
DR DMDM; 20137525; -.
DR PaxDb; Q9NR19; -.
DR PRIDE; Q9NR19; -.
DR Ensembl; ENST00000253382; ENSP00000253382; ENSG00000131069.
DR Ensembl; ENST00000360596; ENSP00000353804; ENSG00000131069.
DR GeneID; 55902; -.
DR KEGG; hsa:55902; -.
DR UCSC; uc010gey.2; human.
DR CTD; 55902; -.
DR GeneCards; GC20P033459; -.
DR HGNC; HGNC:15814; ACSS2.
DR HPA; HPA004141; -.
DR MIM; 605832; gene.
DR neXtProt; NX_Q9NR19; -.
DR PharmGKB; PA24429; -.
DR eggNOG; COG0365; -.
DR HOGENOM; HOG000229981; -.
DR HOVERGEN; HBG014401; -.
DR KO; K01895; -.
DR OMA; WVMGRVD; -.
DR OrthoDB; EOG77T140; -.
DR BioCyc; MetaCyc:HS05484-MONOMER; -.
DR BRENDA; 6.2.1.1; 2681.
DR Reactome; REACT_111217; Metabolism.
DR GeneWiki; ACSS2; -.
DR GenomeRNAi; 55902; -.
DR NextBio; 61271; -.
DR PRO; PR:Q9NR19; -.
DR ArrayExpress; Q9NR19; -.
DR Bgee; Q9NR19; -.
DR CleanEx; HS_ACSS2; -.
DR Genevestigator; Q9NR19; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; IDA:HPA.
DR GO; GO:0003987; F:acetate-CoA ligase activity; IDA:UniProtKB.
DR GO; GO:0016208; F:AMP binding; IC:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0019413; P:acetate biosynthetic process; IEA:Ensembl.
DR GO; GO:0019427; P:acetyl-CoA biosynthetic process from acetate; IEA:InterPro.
DR GO; GO:0006069; P:ethanol oxidation; TAS:Reactome.
DR GO; GO:0008610; P:lipid biosynthetic process; IMP:UniProtKB.
DR GO; GO:0019542; P:propionate biosynthetic process; IEA:Ensembl.
DR GO; GO:0006805; P:xenobiotic metabolic process; TAS:Reactome.
DR InterPro; IPR011904; Ac_CoA_lig.
DR InterPro; IPR025110; AMP-bd_C.
DR InterPro; IPR020845; AMP-binding_CS.
DR InterPro; IPR000873; AMP-dep_Synth/Lig.
DR Pfam; PF00501; AMP-binding; 1.
DR Pfam; PF13193; AMP-binding_C; 1.
DR TIGRFAMs; TIGR02188; Ac_CoA_lig_AcsA; 1.
DR PROSITE; PS00455; AMP_BINDING; 1.
PE 1: Evidence at protein level;
KW Acetylation; Alternative splicing; ATP-binding; Complete proteome;
KW Cytoplasm; Ligase; Nucleotide-binding; Phosphoprotein;
KW Reference proteome.
FT CHAIN 1 701 Acetyl-coenzyme A synthetase,
FT cytoplasmic.
FT /FTId=PRO_0000208423.
FT MOD_RES 30 30 Phosphoserine.
FT MOD_RES 263 263 Phosphoserine (By similarity).
FT MOD_RES 267 267 Phosphoserine.
FT MOD_RES 418 418 N6-acetyllysine.
FT VAR_SEQ 277 277 V -> VQGKLKEKSKRVQP (in isoform 2).
FT /FTId=VSP_046376.
FT CONFLICT 79 79 F -> L (in Ref. 2; BAC03849).
FT CONFLICT 615 615 V -> F (in Ref. 5; AAH12172).
FT CONFLICT 680 680 M -> L (in Ref. 2; BAC03849).
SQ SEQUENCE 701 AA; 78580 MW; 833580B41B73A8B4 CRC64;
MGLPEERVRS GSGSRGQEEA GAGGRARSWS PPPEVSRSAH VPSLQRYREL HRRSVEEPRE
FWGDIAKEFY WKTPCPGPFL RYNFDVTKGK IFIEWMKGAT TNICYNVLDR NVHEKKLGDK
VAFYWEGNEP GETTQITYHQ LLVQVCQFSN VLRKQGIQKG DRVAIYMPMI PELVVAMLAC
ARIGALHSIV FAGFSSESLC ERILDSSCSL LITTDAFYRG EKLVNLKELA DEALQKCQEK
GFPVRCCIVV KHLGRAELGM GDSTSQSPPI KRSCPDVQIS WNQGIDLWWH ELMQEAGDEC
EPEWCDAEDP LFILYTSGST GKPKGVVHTV GGYMLYVATT FKYVFDFHAE DVFWCTADIG
WITGHSYVTY GPLANGATSV LFEGIPTYPD VNRLWSIVDK YKVTKFYTAP TAIRLLMKFG
DEPVTKHSRA SLQVLGTVGE PINPEAWLWY HRVVGAQRCP IVDTFWQTET GGHMLTPLPG
ATPMKPGSAT FPFFGVAPAI LNESGEELEG EAEGYLVFKQ PWPGIMRTVY GNHERFETTY
FKKFPGYYVT GDGCQRDQDG YYWITGRIDD MLNVSGHLLS TAEVESALVE HEAVAEAAVV
GHPHPVKGEC LYCFVTLCDG HTFSPKLTEE LKKQIREKIG PIATPDYIQN APGLPKTRSG
KIMRRVLRKI AQNDHDLGDM STVADPSVIS HLFSHRCLTI Q
//
MIM
605832
*RECORD*
*FIELD* NO
605832
*FIELD* TI
*605832 ACETYL-CoA SYNTHETASE SHORT CHAIN FAMILY, MEMBER 2; ACSS2
;;ACS;;
ACETATE-CoA LIGASE;;
read moreACYL-CoA SYNTHETASE 1; ACECS1
*FIELD* TX
DESCRIPTION
Fatty acids are incorporated into membranes and signaling molecules and
have roles in energy storage and metabolism. These essential functions
require activation of the fatty acid by acyl-coenzyme A (CoA)
synthetases, such as ACSS2, which form an activating thioester linkage
between the fatty acid and CoA (Watkins et al., 2007).
CLONING
Sterol regulatory element-binding proteins (SREBPs; see 184756) are
transcription factors that activate genes required for the synthesis of
cholesterol and unsaturated fatty acids. By use of a suppressive
subtractive hybridization technique, Luong et al. (2000) identified a
cDNA clone regulated by SREBPs. The cDNA shows sequence homology to the
yeast acetyl-CoA synthetase gene (ACS) and encodes a cytosolic enzyme
(EC 6.2.1.13) that catalyzes the activation of acetate for use in lipid
synthesis or energy generation. The ACS protein contains 701 amino acids
and is predicted to have a molecular mass of 78.5 kD and an isoelectric
point of 6.27. ACS shares 93%, 66%, and 45% sequence identity with the
mouse, Drosophila, and S. cerevisiae ACS proteins, respectively.
Northern blot analysis of mouse tissues detected ACS expression at
highest levels in liver and kidney and at lower levels in heart, brain,
and testis.
Fujino et al. (2001) cloned mouse Acss1 (614355) and Acss2, which they
called Acecs1 and Acecs2, respectively. The deduced 682-amino acid Acss2
protein shares 45.8% identity with Acss1. Northern blot analysis
detected a 4.4-kb Acss2 transcript in all mouse tissues examined except
liver, with highest expression in heart. Fractionation of mouse kidney
revealed cytosolic localization for Acss1 and mitochondrial localization
for Acss2.
By database analysis, Watkins et al. (2007) identified a splice variant
of human ACSS2 that encodes a 651-amino acid protein that differs from
full-length ACSS2 at the N terminus.
GENE FUNCTION
Using purified recombinant ACS, Luong et al. (2000) demonstrated that
ACS functions as a monomer. Recombinant enzyme produced acetyl-CoA from
acetate in a reaction that required ATP. Using cell lines and transgenic
mice expressing forms of SREBP, Luong et al. (2000) demonstrated an
SREBP-mediated increase in ACS transcription. Using tissue culture cells
and cell-free extracts, they demonstrated that ACS transcription
increased when SREBPs entered the nucleus in response to cholesterol
deprivation, and that this increase was prevented when SREBP activation
was blocked with sterols. The authors noted that ACS transcription was
maintained at a significant basal level even when SREBPs were absent
from the nucleus.
By assaying proteins purified from transfected COS-7 cells, Fujino et
al. (2001) showed that both mouse Acss1 and Acss2 preferred acetate as
substrate for the synthesis of acetyl-CoA. Little to no activity was
detected toward other short or medium chain fatty acids. Acss1
expression, but not Acss2 expression, was induced by differentiation of
mouse 3T3-L1 cells. In contrast, Acss2 expression, but not Acss1
expression, was induced by fasting in mice and by diabetes in Zucker
rats. Radiolabeled acetate was incorporated into CO2 by COS-7 cells
expressing mouse Acss2. Fujino et al. (2001) concluded that the major
function of ACSS2 is to produce acetyl-CoA for oxidation through the
tricarboxylic acid cycle to produce ATP and CO2 in the mitochondrial
matrix.
GENE STRUCTURE
Watkins et al. (2007) determined that the ACSS2 gene contains 19 exons,
including alternative first exons.
MAPPING
By genomic sequence analysis, Watkins et al. (2007) mapped the ACSS2
gene to the plus strand of chromosome 20q11.22.
*FIELD* RF
1. Fujino, T.; Kondo, J.; Ishikawa, M.; Morikawa, K.; Yamamoto, T.
T.: Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved
in the oxidation of acetate. J. Biol. Chem. 276: 11420-11426, 2001.
2. Luong, A.; Hannah, V. C.; Brown, M. S.; Goldstein, J. L.: Molecular
characterization of human acetyl-CoA synthetase, an enzyme regulated
by sterol regulatory element-binding proteins. J. Biol. Chem. 275:
26458-26466, 2000.
3. Watkins, P. A.; Maiguel, D.; Jia, Z.; Pevsner, J.: Evidence for
26 distinct acyl-coenzyme A synthetase genes in the human genome. J.
Lipid Res. 48: 2736-2750, 2007.
*FIELD* CN
Patricia A. Hartz - updated: 10/4/2011
*FIELD* CD
Dawn Watkins-Chow: 4/9/2001
*FIELD* ED
mgross: 12/02/2011
mgross: 11/23/2011
terry: 10/4/2011
carol: 5/13/2008
carol: 4/9/2001
*RECORD*
*FIELD* NO
605832
*FIELD* TI
*605832 ACETYL-CoA SYNTHETASE SHORT CHAIN FAMILY, MEMBER 2; ACSS2
;;ACS;;
ACETATE-CoA LIGASE;;
read moreACYL-CoA SYNTHETASE 1; ACECS1
*FIELD* TX
DESCRIPTION
Fatty acids are incorporated into membranes and signaling molecules and
have roles in energy storage and metabolism. These essential functions
require activation of the fatty acid by acyl-coenzyme A (CoA)
synthetases, such as ACSS2, which form an activating thioester linkage
between the fatty acid and CoA (Watkins et al., 2007).
CLONING
Sterol regulatory element-binding proteins (SREBPs; see 184756) are
transcription factors that activate genes required for the synthesis of
cholesterol and unsaturated fatty acids. By use of a suppressive
subtractive hybridization technique, Luong et al. (2000) identified a
cDNA clone regulated by SREBPs. The cDNA shows sequence homology to the
yeast acetyl-CoA synthetase gene (ACS) and encodes a cytosolic enzyme
(EC 6.2.1.13) that catalyzes the activation of acetate for use in lipid
synthesis or energy generation. The ACS protein contains 701 amino acids
and is predicted to have a molecular mass of 78.5 kD and an isoelectric
point of 6.27. ACS shares 93%, 66%, and 45% sequence identity with the
mouse, Drosophila, and S. cerevisiae ACS proteins, respectively.
Northern blot analysis of mouse tissues detected ACS expression at
highest levels in liver and kidney and at lower levels in heart, brain,
and testis.
Fujino et al. (2001) cloned mouse Acss1 (614355) and Acss2, which they
called Acecs1 and Acecs2, respectively. The deduced 682-amino acid Acss2
protein shares 45.8% identity with Acss1. Northern blot analysis
detected a 4.4-kb Acss2 transcript in all mouse tissues examined except
liver, with highest expression in heart. Fractionation of mouse kidney
revealed cytosolic localization for Acss1 and mitochondrial localization
for Acss2.
By database analysis, Watkins et al. (2007) identified a splice variant
of human ACSS2 that encodes a 651-amino acid protein that differs from
full-length ACSS2 at the N terminus.
GENE FUNCTION
Using purified recombinant ACS, Luong et al. (2000) demonstrated that
ACS functions as a monomer. Recombinant enzyme produced acetyl-CoA from
acetate in a reaction that required ATP. Using cell lines and transgenic
mice expressing forms of SREBP, Luong et al. (2000) demonstrated an
SREBP-mediated increase in ACS transcription. Using tissue culture cells
and cell-free extracts, they demonstrated that ACS transcription
increased when SREBPs entered the nucleus in response to cholesterol
deprivation, and that this increase was prevented when SREBP activation
was blocked with sterols. The authors noted that ACS transcription was
maintained at a significant basal level even when SREBPs were absent
from the nucleus.
By assaying proteins purified from transfected COS-7 cells, Fujino et
al. (2001) showed that both mouse Acss1 and Acss2 preferred acetate as
substrate for the synthesis of acetyl-CoA. Little to no activity was
detected toward other short or medium chain fatty acids. Acss1
expression, but not Acss2 expression, was induced by differentiation of
mouse 3T3-L1 cells. In contrast, Acss2 expression, but not Acss1
expression, was induced by fasting in mice and by diabetes in Zucker
rats. Radiolabeled acetate was incorporated into CO2 by COS-7 cells
expressing mouse Acss2. Fujino et al. (2001) concluded that the major
function of ACSS2 is to produce acetyl-CoA for oxidation through the
tricarboxylic acid cycle to produce ATP and CO2 in the mitochondrial
matrix.
GENE STRUCTURE
Watkins et al. (2007) determined that the ACSS2 gene contains 19 exons,
including alternative first exons.
MAPPING
By genomic sequence analysis, Watkins et al. (2007) mapped the ACSS2
gene to the plus strand of chromosome 20q11.22.
*FIELD* RF
1. Fujino, T.; Kondo, J.; Ishikawa, M.; Morikawa, K.; Yamamoto, T.
T.: Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved
in the oxidation of acetate. J. Biol. Chem. 276: 11420-11426, 2001.
2. Luong, A.; Hannah, V. C.; Brown, M. S.; Goldstein, J. L.: Molecular
characterization of human acetyl-CoA synthetase, an enzyme regulated
by sterol regulatory element-binding proteins. J. Biol. Chem. 275:
26458-26466, 2000.
3. Watkins, P. A.; Maiguel, D.; Jia, Z.; Pevsner, J.: Evidence for
26 distinct acyl-coenzyme A synthetase genes in the human genome. J.
Lipid Res. 48: 2736-2750, 2007.
*FIELD* CN
Patricia A. Hartz - updated: 10/4/2011
*FIELD* CD
Dawn Watkins-Chow: 4/9/2001
*FIELD* ED
mgross: 12/02/2011
mgross: 11/23/2011
terry: 10/4/2011
carol: 5/13/2008
carol: 4/9/2001