Full text data of ALB
ALB
[Confidence: high (present in two of the MS resources)]
Serum albumin; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Serum albumin; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00022434
IPI00022434 Serum albumin precursor Serum albumin precursor membrane n/a 2 n/a n/a n/a n/a n/a n/a 4 n/a 3 2 2 2 n/a n/a n/a 3 2 3 extracellular n/a expected molecular weight found in band ~ 14 kDa and > 188 kDa
IPI00022434 Serum albumin precursor Serum albumin precursor membrane n/a 2 n/a n/a n/a n/a n/a n/a 4 n/a 3 2 2 2 n/a n/a n/a 3 2 3 extracellular n/a expected molecular weight found in band ~ 14 kDa and > 188 kDa
UniProt
P02768
ID ALBU_HUMAN Reviewed; 609 AA.
AC P02768; O95574; P04277; Q13140; Q645G4; Q68DN5; Q6UXK4; Q86YG0;
read moreAC Q9P157; Q9P1I7; Q9UHS3; Q9UJZ0;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
DT 01-APR-1990, sequence version 2.
DT 22-JAN-2014, entry version 202.
DE RecName: Full=Serum albumin;
DE Flags: Precursor;
GN Name=ALB;
GN ORFNames=GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675,
GN UNQ696/PRO1341;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT LYS-420.
RX PubMed=6171778; DOI=10.1093/nar/9.22.6103;
RA Lawn R.M., Adelman J., Bock S.C., Franke A.E., Houck C.M.,
RA Najarian R.C., Seeburg P.H., Wion K.L.;
RT "The sequence of human serum albumin cDNA and its expression in E.
RT coli.";
RL Nucleic Acids Res. 9:6103-6114(1981).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT GLY-121.
RX PubMed=6275391; DOI=10.1073/pnas.79.1.71;
RA Dugaiczyk A., Law S.W., Dennison O.E.;
RT "Nucleotide sequence and the encoded amino acids of human serum
RT albumin mRNA.";
RL Proc. Natl. Acad. Sci. U.S.A. 79:71-75(1982).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=3009475;
RA Minghetti P.P., Ruffner D.E., Kuang W.J., Dennison O.E., Hawkins J.W.,
RA Beattie W.G., Dugaiczyk A.;
RT "Molecular structure of the human albumin gene is revealed by
RT nucleotide sequence within q11-22 of chromosome 4.";
RL J. Biol. Chem. 261:6747-6757(1986).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Liver;
RA Yang S., Zhang R.A., Qi Z.W., Yuan Z.Y.;
RT "Human serum albumin.";
RL Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT HIROSHIMA-1
RP LYS-378.
RA Huang M.C., Wu H.T.;
RT "The cDNA sequences of human serum albumin.";
RL Submitted (AUG-2002) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RA Hinchliffe E.;
RT "Induction of galactose regulated gene expression in yeast.";
RL Patent number EP0248637, 09-DEC-1987.
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Liver;
RA Yu Z., Fu Y.;
RT "High expression HSA in Pichia for Pharmaceutical Use.";
RL Submitted (AUG-2004) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RA Wang F., Huang L.;
RT "Cloning and sequence analysis of human albumin gene.";
RL Submitted (SEP-2006) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RA Kim J.W.;
RT "Identification of a human cell growth inhibition gene.";
RL Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Fetal liver;
RX PubMed=11483580; DOI=10.1101/gr.175501;
RA Yu Y., Zhang C., Zhou G., Wu S., Qu X., Wei H., Xing G., Dong C.,
RA Zhai Y., Wan J., Ouyang S., Li L., Zhang S., Zhou K., Zhang Y., Wu C.,
RA He F.;
RT "Gene expression profiling in human fetal liver and identification of
RT tissue- and developmental-stage-specific genes through compiled
RT expression profiles and efficient cloning of full-length cDNAs.";
RL Genome Res. 11:1392-1403(2001).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP TYR-27.
RC TISSUE=Liver;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG SeattleSNPs variation discovery resource;
RL Submitted (JUN-2007) to the EMBL/GenBank/DDBJ databases.
RN [13]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [14]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RC TISSUE=Liver, and Skeletal muscle;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [15]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-455.
RC TISSUE=Liver;
RA Menaya J., Parrilla R., Ayuso M.S.;
RL Submitted (MAR-1995) to the EMBL/GenBank/DDBJ databases.
RN [16]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 1-167.
RX PubMed=12975309; DOI=10.1101/gr.1293003;
RA Clark H.F., Gurney A.L., Abaya E., Baker K., Baldwin D.T., Brush J.,
RA Chen J., Chow B., Chui C., Crowley C., Currell B., Deuel B., Dowd P.,
RA Eaton D., Foster J.S., Grimaldi C., Gu Q., Hass P.E., Heldens S.,
RA Huang A., Kim H.S., Klimowski L., Jin Y., Johnson S., Lee J.,
RA Lewis L., Liao D., Mark M.R., Robbie E., Sanchez C., Schoenfeld J.,
RA Seshagiri S., Simmons L., Singh J., Smith V., Stinson J., Vagts A.,
RA Vandlen R.L., Watanabe C., Wieand D., Woods K., Xie M.-H.,
RA Yansura D.G., Yi S., Yu G., Yuan J., Zhang M., Zhang Z., Goddard A.D.,
RA Wood W.I., Godowski P.J., Gray A.M.;
RT "The secreted protein discovery initiative (SPDI), a large-scale
RT effort to identify novel human secreted and transmembrane proteins: a
RT bioinformatics assessment.";
RL Genome Res. 13:2265-2270(2003).
RN [17]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-26.
RX PubMed=2419329;
RA Urano Y., Watanabe K., Sakai M., Tamaoki T.;
RT "The human albumin gene. Characterization of the 5' and 3' flanking
RT regions and the polymorphic gene transcripts.";
RL J. Biol. Chem. 261:3244-3251(1986).
RN [18]
RP PROTEIN SEQUENCE OF 25-609.
RX PubMed=1225573; DOI=10.1016/0014-5793(75)80242-0;
RA Meloun B., Moravek L., Kostka V.;
RT "Complete amino acid sequence of human serum albumin.";
RL FEBS Lett. 58:134-137(1975).
RN [19]
RP PROTEIN SEQUENCE OF 25-609.
RA Brown J.R., Shockley P., Behrens P.Q.;
RL (In) Bing D.H. (eds.);
RL The chemistry and physiology of the human plasma proteins, pp.23-40,
RL Pergamon Press, New York (1979).
RN [20]
RP PROTEIN SEQUENCE OF 25-44 AND 480-499.
RC TISSUE=Heart;
RX PubMed=7895732; DOI=10.1002/elps.11501501209;
RA Corbett J.M., Wheeler C.H., Baker C.S., Yacoub M.H., Dunn M.J.;
RT "The human myocardial two-dimensional gel protein database: update
RT 1994.";
RL Electrophoresis 15:1459-1465(1994).
RN [21]
RP PROTEIN SEQUENCE OF 25-34.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [22]
RP PROTEIN SEQUENCE OF 45-75; 98-130; 162-183; 239-254; 265-281; 287-298;
RP 348-372; 397-434; 438-452; 500-543; 550-558; 570-581 AND 599-609, AND
RP MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [23]
RP PROTEIN SEQUENCE OF 166-174.
RX PubMed=3087352; DOI=10.1016/0006-291X(86)90429-8;
RA Mogard M.H., Kobayashi R., Chen C.F., Lee T.D., Reeve J.R. Jr.,
RA Shively J.E., Walsh J.H.;
RT "The amino acid sequence of kinetensin, a novel peptide isolated from
RT pepsin-treated human plasma: homology with human serum albumin,
RT neurotensin and angiotensin.";
RL Biochem. Biophys. Res. Commun. 136:983-988(1986).
RN [24]
RP PROTEIN SEQUENCE OF 166-174.
RX PubMed=2437111;
RA Carraway R.E., Mitra S.P., Cochrane D.E.;
RT "Structure of a biologically active neurotensin-related peptide
RT obtained from pepsin-treated albumin(s).";
RL J. Biol. Chem. 262:5968-5973(1987).
RN [25]
RP PROTEIN SEQUENCE OF 222-229, AND ASPIRIN-ACETYLATION AT LYS-223.
RX PubMed=955075; DOI=10.1016/0014-5793(76)80496-6;
RA Walker J.E.;
RT "Lysine residue 199 of human serum albumin is modified by
RT acetylsalicylic acid.";
RL FEBS Lett. 66:173-175(1976).
RN [26]
RP PROTEIN SEQUENCE OF 250-264, GLYCATION AT LYS-75; LYS-161; LYS-186;
RP LYS-249; LYS-257; LYS-300; LYS-337; LYS-347; LYS-375; LYS-402;
RP LYS-437; LYS-468; LYS-560; LYS-549; LYS-569 AND LYS-597, LACK OF
RP GLYCATION AT LYS-28; LYS-44; LYS-65; LYS-88; LYS-97; LYS-117; LYS-130;
RP LYS-160; LYS-183; LYS-198; LYS-205; LYS-214; LYS-219; LYS-229;
RP LYS-236; LYS-264; LYS-286; LYS-298; LYS-310; LYS-383; LYS-396;
RP LYS-413; LYS-426; LYS-438; LYS-456; LYS-460; LYS-490; LYS-499;
RP LYS-524; LYS-543; LYS-548; LYS-562; LYS-565; LYS-581; LYS-584; LYS-588
RP AND LYS-598, AND MASS SPECTROMETRY.
RX PubMed=15047055; DOI=10.1016/j.jasms.2003.11.014;
RA Lapolla A., Fedele D., Reitano R., Arico N.C., Seraglia R., Traldi P.,
RA Marotta E., Tonani R.;
RT "Enzymatic digestion and mass spectrometry in the study of advanced
RT glycation end products/peptides.";
RL J. Am. Soc. Mass Spectrom. 15:496-509(2004).
RN [27]
RP DISULFIDE BONDS.
RA Saber M.A., Stockbauer P., Moravek L., Meloun B.;
RT "Disulfide bonds in human serum albumin.";
RL Collect. Czech. Chem. Commun. 42:564-579(1977).
RN [28]
RP BILIRUBIN-BINDING SITE.
RX PubMed=656055;
RA Jacobsen C.;
RT "Lysine residue 240 of human serum albumin is involved in high-
RT affinity binding of bilirubin.";
RL Biochem. J. 171:453-459(1978).
RN [29]
RP GLYCATION AT LYS-223 AND LYS-549.
RX PubMed=6853480;
RA Garlick R.L., Mazer J.S.;
RT "The principal site of nonenzymatic glycosylation of human serum
RT albumin in vivo.";
RL J. Biol. Chem. 258:6142-6146(1983).
RN [30]
RP GLYCATION AT LYS-549.
RX PubMed=6706980;
RA Shaklai N., Garlick R.L., Bunn H.F.;
RT "Nonenzymatic glycosylation of human serum albumin alters its
RT conformation and function.";
RL J. Biol. Chem. 259:3812-3817(1984).
RN [31]
RP GLYCATION AT LYS-36; LYS-223; LYS-257; LYS-305; LYS-341; LYS-375;
RP LYS-463; LYS-549 AND LYS-558.
RX PubMed=3759977;
RA Iberg N., Fluckiger R.;
RT "Nonenzymatic glycosylation of albumin in vivo. Identification of
RT multiple glycosylated sites.";
RL J. Biol. Chem. 261:13542-13545(1986).
RN [32]
RP FUNCTION, AND ZINC-BINDING SITES.
RX PubMed=19021548; DOI=10.1042/BST0361317;
RA Lu J., Stewart A.J., Sadler P.J., Pinheiro T.J., Blindauer C.A.;
RT "Albumin as a zinc carrier: properties of its high-affinity zinc-
RT binding site.";
RL Biochem. Soc. Trans. 36:1317-1321(2008).
RN [33]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-82, AND MASS
RP SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=18318008; DOI=10.1002/pmic.200700884;
RA Han G., Ye M., Zhou H., Jiang X., Feng S., Jiang X., Tian R., Wan D.,
RA Zou H., Gu J.;
RT "Large-scale phosphoproteome analysis of human liver tissue by
RT enrichment and fractionation of phosphopeptides with strong anion
RT exchange chromatography.";
RL Proteomics 8:1346-1361(2008).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-443; THR-444 AND
RP THR-446, AND MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [35]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [36]
RP X-RAY CRYSTALLOGRAPHY (6.0 ANGSTROMS).
RX PubMed=2727704; DOI=10.1126/science.2727704;
RA Carter D.C., He X.-M., Munson S.H., Twigg P.D., Gernert K.M.,
RA Broom M.B., Miller T.Y.;
RT "Three-dimensional structure of human serum albumin.";
RL Science 244:1195-1198(1989).
RN [37]
RP X-RAY CRYSTALLOGRAPHY (4.0 ANGSTROMS).
RX PubMed=2374930; DOI=10.1126/science.2374930;
RA Carter D.C., He X.-M.;
RT "Structure of human serum albumin.";
RL Science 249:302-303(1990).
RN [38]
RP X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS).
RX PubMed=1630489; DOI=10.1038/358209a0;
RA He X.-M., Carter D.C.;
RT "Atomic structure and chemistry of human serum albumin.";
RL Nature 358:209-215(1992).
RN [39]
RP ERRATUM.
RA He X.-M., Carter D.C.;
RL Nature 364:362-362(1993).
RN [40]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
RX PubMed=9731778; DOI=10.1038/1869;
RA Curry S., Mandelkow H., Brick P., Franks N.;
RT "Crystal structure of human serum albumin complexed with fatty acid
RT reveals an asymmetric distribution of binding sites.";
RL Nat. Struct. Biol. 5:827-835(1998).
RN [41]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
RX PubMed=10388840; DOI=10.1093/protein/12.6.439;
RA Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K.;
RT "Crystal structure of human serum albumin at 2.5-A resolution.";
RL Protein Eng. 12:439-446(1999).
RN [42]
RP X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 25-609.
RX PubMed=10940303; DOI=10.1074/jbc.M005460200;
RA Bhattacharya A.A., Curry S., Franks N.P.;
RT "Binding of the general anesthetics propofol and halothane to human
RT serum albumin. High resolution crystal structures.";
RL J. Biol. Chem. 275:38731-38738(2000).
RN [43]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
RX PubMed=11743713; DOI=10.1006/jmbi.2000.5208;
RA Petitpas I., Grune T., Bhattacharya A.A., Curry S.;
RT "Crystal structures of human serum albumin complexed with
RT monounsaturated and polyunsaturated fatty acids.";
RL J. Mol. Biol. 314:955-960(2001).
RN [44]
RP VARIANT CANTERBURY ASN-337.
RX PubMed=3828358; DOI=10.1016/0167-4838(87)90088-4;
RA Brennan S.O., Herbert P.;
RT "Albumin Canterbury (313 Lys-->Asn). A point mutation in the second
RT domain of serum albumin.";
RL Biochim. Biophys. Acta 912:191-197(1987).
RN [45]
RP VARIANTS NASKAPI/MERSIN GLU-396 AND MEXICO GLY-574.
RX PubMed=3474609; DOI=10.1073/pnas.84.13.4413;
RA Takahashi N., Takahashi Y., Blumberg B.S., Putnam F.W.;
RT "Amino acid substitutions in genetic variants of human serum albumin
RT and in sequences inferred from molecular cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:4413-4417(1987).
RN [46]
RP VARIANTS NAGASAKI-3 GLN-27 YANOMAMA-2 GLU-396; NAGASAKI-2 ASN-399 AND
RP MAKU GLU-565.
RX PubMed=3479777; DOI=10.1073/pnas.84.22.8001;
RA Takshashi N., Takahashi Y., Isobe T., Putnam F.W., Fujita M.,
RA Satoh C., Neel J.V.;
RT "Amino acid substitutions in inherited albumin variants from
RT Amerindian and Japanese populations.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:8001-8005(1987).
RN [47]
RP VARIANTS FUKUOKA-2 HIS-23; CHRISTCHURCH/HONOLULU-2 GLN-24; TAGLIACOZZO
RP ASN-337 AND ALBUMIN B/OSAKA-2/PHNOM PHEN LYS-594.
RX PubMed=2911589; DOI=10.1073/pnas.86.2.434;
RA Arai K., Ishioka N., Huss K., Madison J., Putnam F.W.;
RT "Identical structural changes in inherited albumin variants from
RT different populations.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:434-438(1989).
RN [48]
RP VARIANTS HONOLULU-2 GLN-24; NAGASAKI-1 GLY-293; HIROSHIMA-1 LYS-378;
RP TOCHIGI LYS-400; HIROSHIMA-2 LYS-406 AND OSAKA-2 LYS-594.
RX PubMed=2762316; DOI=10.1073/pnas.86.16.6092;
RA Arai K., Madison J., Huss K., Ishioka N., Satoh C., Fujita M.,
RA Neel J.V., Sakurabayashi I., Putnam F.W.;
RT "Point substitutions in Japanese alloalbumins.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:6092-6096(1989).
RN [49]
RP VARIANTS HONOLULU-1 PRO-24; HONOLULU-2 GLN-24; NAGOYA LYS-143; NEW
RP GUINEA ASN-337; MANAUS-1/LAMBADI LYS-525; FUKUOKA-1 ASN-587; OSAKA-1
RP LYS-589 AND OSAKA-2 LYS-594.
RX PubMed=2404284; DOI=10.1073/pnas.87.1.497;
RA Arai K., Madison J., Shimuzu A., Putnam F.W.;
RT "Point substitutions in albumin genetic variants from Asia.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:497-501(1990).
RN [50]
RP CHARACTERIZATION OF VARIANT REDHILL.
RX PubMed=2104980; DOI=10.1073/pnas.87.1.26;
RA Brennan S.O., Myles T., Peach R.J., Donaldson D., George P.M.;
RT "Albumin Redhill (-1 Arg, 320 Ala-->Thr): a glycoprotein variant of
RT human serum albumin whose precursor has an aberrant signal peptidase
RT cleavage site.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:26-30(1990).
RN [51]
RP VARIANTS VARESE HIS-23; TORINO LYS-84 AND VIBO VALENTIA LYS-106.
RX PubMed=2247440; DOI=10.1073/pnas.87.22.8721;
RA Galliano M., Minchiotti L., Porta F., Rossi A., Ferri G., Madison J.,
RA Watkins S., Putnam F.W.;
RT "Mutations in genetic variants of human serum albumin found in
RT Italy.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:8721-8725(1990).
RN [52]
RP CHARACTERIZATION OF VARIANT VENEZIA.
RX PubMed=2068071; DOI=10.1073/pnas.88.14.5959;
RA Watkins S., Madison J., Davis E., Sakamoto Y., Galliano M.,
RA Minchiotti L., Putnam F.W.;
RT "A donor splice mutation and a single-base deletion produce two
RT carboxyl-terminal variants of human serum albumin.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:5959-5963(1991).
RN [53]
RP VARIANTS KOMAGOME-3 HIS-23; IOWA CITY-2 VAL-25; KOMAGOME-2 ARG-152;
RP IOWA CITY-1 VAL-389 AND KOMAGOME-1 GLU-396.
RX PubMed=1946412; DOI=10.1073/pnas.88.21.9853;
RA Madison J., Arai K., Feld R.D., Kyle R.A., Watkins S., Davis E.,
RA Matsuda Y., Amaki I., Putnam F.W.;
RT "Genetic variants of serum albumin in Americans and Japanese.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:9853-9857(1991).
RN [54]
RP VARIANT CASEBROOK ASN-518.
RX PubMed=1859851; DOI=10.1016/0925-4439(91)90023-3;
RA Peach R.J., Brennan S.O.;
RT "Structural characterization of a glycoprotein variant of human serum
RT albumin: albumin Casebrook (494 Asp-->Asn).";
RL Biochim. Biophys. Acta 1097:49-54(1991).
RN [55]
RP VARIANTS SONDRIO LYS-357 AND PARIS-2 ASN-587.
RX PubMed=1347703; DOI=10.1016/0167-4838(92)90207-T;
RA Minchiotti L., Galliano M., Stoppini M., Ferri G., Crespeau H.,
RA Rochu D., Porta F.;
RT "Two alloalbumins with identical electrophoretic mobility are produced
RT by differently charged amino acid substitutions.";
RL Biochim. Biophys. Acta 1119:232-238(1992).
RN [56]
RP VARIANTS MALMO-I CYS-23; MALMO-95 ASN-87; MALMO-10 ARG-292; MALMO-47
RP LYS-342; MALMO-5 GLN-400 AND MALMO-61 ALA-574.
RX PubMed=1518850; DOI=10.1073/pnas.89.17.8225;
RA Carlson J., Sakamoto Y., Laurell C.-B., Madison J., Watkins S.,
RA Putnam F.W.;
RT "Alloalbuminemia in Sweden: structural study and phenotypic
RT distribution of nine albumin variants.";
RL Proc. Natl. Acad. Sci. U.S.A. 89:8225-8229(1992).
RN [57]
RP VARIANT HERBORN GLU-264.
RX PubMed=8513793; DOI=10.1111/j.1432-1033.1993.tb17939.x;
RA Minchiotti L., Galliano M., Zapponi M.C., Tenni R.;
RT "The structural characterization and bilirubin-binding properties of
RT albumin Herborn, a [Lys240-->Glu] albumin mutant.";
RL Eur. J. Biochem. 214:437-444(1993).
RN [58]
RP VARIANT HAWKES BAY PHE-201.
RX PubMed=8347685; DOI=10.1016/0925-4439(93)90151-P;
RA Brennan S.O., Fellowes A.P.;
RT "Albumin Hawkes Bay; a low level variant caused by loss of a
RT sulphydryl group at position 177.";
RL Biochim. Biophys. Acta 1182:46-50(1993).
RN [59]
RP VARIANT ORTONOVO LYS-529.
RX PubMed=7902134; DOI=10.1016/0925-4439(93)90117-J;
RA Galliano M., Minchiotti L., Iadarola P., Stoppini M., Giagnoni P.,
RA Watkins S., Madison J., Putnam F.W.;
RT "Protein and DNA sequence analysis of a 'private' genetic variant:
RT albumin Ortonovo (Glu-505-->Lys).";
RL Biochim. Biophys. Acta 1225:27-32(1993).
RN [60]
RP VARIANTS LARINO TYR-27; TRADATE-2 GLN-249 AND CASERTA ASN-300.
RX PubMed=8022807; DOI=10.1073/pnas.91.14.6476;
RA Madison J., Galliano M., Watkins S., Minchiotti L., Porta F.,
RA Rossi A., Putnam F.W.;
RT "Genetic variants of human serum albumin in Italy: point mutants and a
RT carboxyl-terminal variant.";
RL Proc. Natl. Acad. Sci. U.S.A. 91:6476-6480(1994).
RN [61]
RP VARIANT DH HIS-242.
RX PubMed=8048949; DOI=10.1006/bbrc.1994.1998;
RA Sunthornthepvarakul T., Angkeow P., Weiss R.E., Hayashi Y.,
RA Retetoff S.;
RT "An identical missense mutation in the albumin gene results in
RT familial dysalbuminemic hyperthyroxinemia in 8 unrelated families.";
RL Biochem. Biophys. Res. Commun. 202:781-787(1994).
RN [62]
RP VARIANT DH HIS-242, AND PROTEIN SEQUENCE OF 25-51.
RX PubMed=7852505; DOI=10.1210/jc.80.2.461;
RA Rushbrook J.I., Becker E., Schussler G.C., Divino C.M.;
RT "Identification of a human serum albumin species associated with
RT familial dysalbuminemic hyperthyroxinemia.";
RL J. Clin. Endocrinol. Metab. 80:461-467(1995).
RN [63]
RP VARIANT DH HIS-242.
RX PubMed=9329347; DOI=10.1210/jc.82.10.3246;
RA Wada N., Chiba H., Shimizu C., Kijima H., Kubo M., Koike T.;
RT "A novel missense mutation in codon 218 of the albumin gene in a
RT distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a
RT Japanese kindred.";
RL J. Clin. Endocrinol. Metab. 82:3246-3250(1997).
RN [64]
RP VARIANT DH PRO-90.
RX PubMed=9589637; DOI=10.1210/jc.83.5.1448;
RA Sunthornthepvarakul T., Likitmaskul S., Ngowngarmratana S.,
RA Angsusingha K., Kitvitayasak S., Scherberg N.H., Refetoff S.;
RT "Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly
RT inherited albumin defect.";
RL J. Clin. Endocrinol. Metab. 83:1448-1454(1998).
RN [65]
RP VARIANT TYR-73, AND MASS SPECTROMETRY.
RC TISSUE=Urine;
RX PubMed=11680902;
RX DOI=10.1002/1615-9861(200101)1:1<93::AID-PROT93>3.3.CO;2-V;
RA Spahr C.S., Davis M.T., McGinley M.D., Robinson J.H., Bures E.J.,
RA Beierle J., Mort J., Courchesne P.L., Chen K., Wahl R.C., Yu W.,
RA Luethy R., Patterson S.D.;
RT "Towards defining the urinary proteome using liquid chromatography-
RT tandem mass spectrometry I. Profiling an unfractionated tryptic
RT digest.";
RL Proteomics 1:93-107(2001).
RN [66]
RP CHARACTERIZATION OF VARIANT KENITRA.
RX PubMed=11168369; DOI=10.1046/j.1432-1033.2001.01899.x;
RA Minchiotti L., Campagnoli M., Rossi A., Cosulich M.E., Monti M.,
RA Pucci P., Kragh-Hansen U., Granel B., Disdier P., Weiller P.J.,
RA Galliano M.;
RT "A nucleotide insertion and frameshift cause albumin Kenitra, an
RT extended and O-glycosylated mutant of human serum albumin with two
RT additional disulfide bridges.";
RL Eur. J. Biochem. 268:344-352(2001).
CC -!- FUNCTION: Serum albumin, the main protein of plasma, has a good
CC binding capacity for water, Ca(2+), Na(+), K(+), fatty acids,
CC hormones, bilirubin and drugs. Its main function is the regulation
CC of the colloidal osmotic pressure of blood. Major zinc transporter
CC in plasma, typically binds about 80% of all plasma zinc.
CC -!- INTERACTION:
CC P02786:TFRC; NbExp=2; IntAct=EBI-714423, EBI-355727;
CC -!- SUBCELLULAR LOCATION: Secreted.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P02768-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P02768-2; Sequence=VSP_021275;
CC -!- TISSUE SPECIFICITY: Plasma.
CC -!- PTM: Kenitra variant is partially O-glycosylated at Thr-620. It
CC has two new disulfide bonds Cys-600 to Cys-602 and Cys-601 to Cys-
CC 606.
CC -!- PTM: Glycated in diabetic patients.
CC -!- PTM: Phosphorylation sites are present in the extracellular
CC medium.
CC -!- PTM: Acetylated on Lys-223 by acetylsalicylic acid.
CC -!- POLYMORPHISM: A variant structure of albumin could lead to
CC increased binding of zinc resulting in an asymptomatic
CC augmentation of zinc concentration in the blood. The sequence
CC shown is that of variant albumin A.
CC -!- DISEASE: Dysalbuminemic hyperthyroxinemia (DH) [MIM:103600]: A
CC disorder characterized by abnormally elevated levels of total
CC serum thyroxine (T4) in euthyroid patients. It is due to abnormal
CC serum albumin that binds T4 with enhanced affinity. Note=The
CC disease is caused by mutations affecting the gene represented in
CC this entry.
CC -!- SIMILARITY: Belongs to the ALB/AFP/VDB family.
CC -!- SIMILARITY: Contains 3 albumin domains.
CC -!- CAUTION: A peptide arising from positions 166 to 174 was
CC originally (PubMed:3087352 and PubMed:2437111) termed neurotensin-
CC related peptide (NRP) or kinetensin and was thought to regulate
CC fat digestion, lipid absorption, and blood flow.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAF22034.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAF69644.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAG35503.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC -!- WEB RESOURCE: Name=Albumin Website;
CC URL="http://www.albumin.org";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Serum albumin entry;
CC URL="http://en.wikipedia.org/wiki/Serum_albumin";
CC -!- WEB RESOURCE: Name=GeneReviews;
CC URL="http://www.ncbi.nlm.nih.gov/sites/GeneTests/lab/gene/ALB";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/alb/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; V00494; CAA23753.1; -; mRNA.
DR EMBL; V00495; CAA23754.1; -; mRNA.
DR EMBL; M12523; AAA98797.1; -; Genomic_DNA.
DR EMBL; M12523; AAA98798.1; -; Genomic_DNA.
DR EMBL; AF190168; AAF01333.1; -; mRNA.
DR EMBL; AF542069; AAN17825.1; -; mRNA.
DR EMBL; A06977; CAA00606.1; -; mRNA.
DR EMBL; AY728024; AAU21642.1; -; mRNA.
DR EMBL; DQ986150; ABJ16448.1; -; mRNA.
DR EMBL; AY544124; AAT11155.1; -; mRNA.
DR EMBL; AY550967; AAT52213.1; -; mRNA.
DR EMBL; AF116645; AAF71067.1; -; mRNA.
DR EMBL; AF118090; AAF22034.1; ALT_INIT; mRNA.
DR EMBL; AF119840; AAF69594.1; -; mRNA.
DR EMBL; AF119890; AAF69644.1; ALT_INIT; mRNA.
DR EMBL; AF130077; AAG35503.1; ALT_INIT; mRNA.
DR EMBL; CR749331; CAH18185.1; -; mRNA.
DR EMBL; EF649953; ABS29264.1; -; Genomic_DNA.
DR EMBL; CH471057; EAX05676.1; -; Genomic_DNA.
DR EMBL; BC014308; AAH14308.1; -; mRNA.
DR EMBL; BC034023; AAH34023.1; -; mRNA.
DR EMBL; BC036003; AAH36003.1; -; mRNA.
DR EMBL; BC041789; AAH41789.1; -; mRNA.
DR EMBL; U22961; AAA64922.1; -; mRNA.
DR EMBL; AY358313; AAQ89947.1; -; mRNA.
DR EMBL; AH002596; AAA51688.1; -; Genomic_DNA.
DR PIR; A93743; ABHUS.
DR RefSeq; NP_000468.1; NM_000477.5.
DR UniGene; Hs.418167; -.
DR UniGene; Hs.592379; -.
DR PDB; 1AO6; X-ray; 2.50 A; A/B=25-609.
DR PDB; 1BJ5; X-ray; 2.50 A; A=25-609.
DR PDB; 1BKE; X-ray; 3.15 A; A=28-608.
DR PDB; 1BM0; X-ray; 2.50 A; A/B=25-609.
DR PDB; 1E78; X-ray; 2.60 A; A/B=25-609.
DR PDB; 1E7A; X-ray; 2.20 A; A/B=25-609.
DR PDB; 1E7B; X-ray; 2.38 A; A/B=25-609.
DR PDB; 1E7C; X-ray; 2.40 A; A=25-609.
DR PDB; 1E7E; X-ray; 2.50 A; A=25-609.
DR PDB; 1E7F; X-ray; 2.43 A; A=25-609.
DR PDB; 1E7G; X-ray; 2.50 A; A=25-609.
DR PDB; 1E7H; X-ray; 2.43 A; A=25-609.
DR PDB; 1E7I; X-ray; 2.70 A; A=25-609.
DR PDB; 1GNI; X-ray; 2.40 A; A=25-609.
DR PDB; 1GNJ; X-ray; 2.60 A; A=25-609.
DR PDB; 1H9Z; X-ray; 2.50 A; A=25-609.
DR PDB; 1HA2; X-ray; 2.50 A; A=25-609.
DR PDB; 1HK1; X-ray; 2.65 A; A=25-609.
DR PDB; 1HK2; X-ray; 2.80 A; A=25-609.
DR PDB; 1HK3; X-ray; 2.80 A; A=25-609.
DR PDB; 1HK4; X-ray; 2.40 A; A=25-609.
DR PDB; 1HK5; X-ray; 2.70 A; A=25-609.
DR PDB; 1N5U; X-ray; 1.90 A; A=25-609.
DR PDB; 1O9X; X-ray; 3.20 A; A=25-609.
DR PDB; 1TF0; X-ray; 2.70 A; A=25-596.
DR PDB; 1UOR; X-ray; 2.80 A; A=25-609.
DR PDB; 1YSX; NMR; -; A=409-609.
DR PDB; 2BX8; X-ray; 2.70 A; A/B=25-609.
DR PDB; 2BXA; X-ray; 2.35 A; A/B=25-609.
DR PDB; 2BXB; X-ray; 3.20 A; A/B=25-609.
DR PDB; 2BXC; X-ray; 3.10 A; A/B=25-609.
DR PDB; 2BXD; X-ray; 3.05 A; A/B=25-609.
DR PDB; 2BXE; X-ray; 2.95 A; A/B=25-609.
DR PDB; 2BXF; X-ray; 2.95 A; A/B=25-609.
DR PDB; 2BXG; X-ray; 2.70 A; A/B=25-609.
DR PDB; 2BXH; X-ray; 2.25 A; A/B=25-609.
DR PDB; 2BXI; X-ray; 2.50 A; A=25-609.
DR PDB; 2BXK; X-ray; 2.40 A; A=25-609.
DR PDB; 2BXL; X-ray; 2.60 A; A=25-609.
DR PDB; 2BXM; X-ray; 2.50 A; A=25-609.
DR PDB; 2BXN; X-ray; 2.65 A; A=25-609.
DR PDB; 2BXO; X-ray; 2.60 A; A=25-609.
DR PDB; 2BXP; X-ray; 2.30 A; A=25-609.
DR PDB; 2BXQ; X-ray; 2.60 A; A=25-609.
DR PDB; 2ESG; X-ray; -; C=25-609.
DR PDB; 2I2Z; X-ray; 2.70 A; A=25-609.
DR PDB; 2I30; X-ray; 2.90 A; A=25-609.
DR PDB; 2VDB; X-ray; 2.52 A; A=30-608.
DR PDB; 2VUE; X-ray; 2.42 A; A/B=25-609.
DR PDB; 2VUF; X-ray; 3.05 A; A/B=25-609.
DR PDB; 2XSI; X-ray; 2.70 A; A=25-609.
DR PDB; 2XVQ; X-ray; 2.90 A; A/B=25-609.
DR PDB; 2XVU; X-ray; 2.60 A; A/B=25-609.
DR PDB; 2XVV; X-ray; 2.40 A; A=25-609.
DR PDB; 2XVW; X-ray; 2.65 A; A=25-609.
DR PDB; 2XW0; X-ray; 2.40 A; A/B=25-609.
DR PDB; 2XW1; X-ray; 2.50 A; A/B=25-609.
DR PDB; 2YDF; X-ray; 2.75 A; A/B=25-609.
DR PDB; 3A73; X-ray; 2.19 A; A/B=25-609.
DR PDB; 3B9L; X-ray; 2.60 A; A=25-609.
DR PDB; 3B9M; X-ray; 2.70 A; A=25-609.
DR PDB; 3CX9; X-ray; 2.80 A; A=27-608.
DR PDB; 3JQZ; X-ray; 3.30 A; A/B=25-609.
DR PDB; 3JRY; X-ray; 2.30 A; A/B=25-609.
DR PDB; 3LU6; X-ray; 2.70 A; A/B=25-609.
DR PDB; 3LU7; X-ray; 2.80 A; A/B=25-609.
DR PDB; 3LU8; X-ray; 2.60 A; A/B=25-609.
DR PDB; 3SQJ; X-ray; 2.05 A; A/B=27-608.
DR PDB; 3TDL; X-ray; 2.60 A; A=25-609.
DR PDB; 3UIV; X-ray; 2.20 A; A/H=25-609.
DR PDB; 4E99; X-ray; 2.30 A; A=25-609.
DR PDB; 4EMX; X-ray; 2.30 A; A/B=25-609.
DR PDB; 4G03; X-ray; 2.22 A; A/B=25-609.
DR PDB; 4G04; X-ray; 2.30 A; A/B=25-609.
DR PDB; 4HGK; X-ray; 3.04 A; A/B=25-609.
DR PDB; 4HGM; X-ray; 2.34 A; B=25-609.
DR PDB; 4IW1; X-ray; 2.56 A; A=25-609.
DR PDB; 4IW2; X-ray; 2.41 A; A=25-609.
DR PDB; 4K2C; X-ray; 3.23 A; A/B=25-609.
DR PDB; 4K71; X-ray; 2.40 A; A/D=25-609.
DR PDB; 4L8U; X-ray; 2.01 A; A=25-609.
DR PDB; 4L9K; X-ray; 2.40 A; A/B=25-609.
DR PDB; 4L9Q; X-ray; 2.70 A; A/B=25-609.
DR PDB; 4LA0; X-ray; 2.40 A; A/B=25-609.
DR PDB; 4LB2; X-ray; 2.80 A; A/B=25-609.
DR PDB; 4LB9; X-ray; 2.70 A; A=25-609.
DR PDBsum; 1AO6; -.
DR PDBsum; 1BJ5; -.
DR PDBsum; 1BKE; -.
DR PDBsum; 1BM0; -.
DR PDBsum; 1E78; -.
DR PDBsum; 1E7A; -.
DR PDBsum; 1E7B; -.
DR PDBsum; 1E7C; -.
DR PDBsum; 1E7E; -.
DR PDBsum; 1E7F; -.
DR PDBsum; 1E7G; -.
DR PDBsum; 1E7H; -.
DR PDBsum; 1E7I; -.
DR PDBsum; 1GNI; -.
DR PDBsum; 1GNJ; -.
DR PDBsum; 1H9Z; -.
DR PDBsum; 1HA2; -.
DR PDBsum; 1HK1; -.
DR PDBsum; 1HK2; -.
DR PDBsum; 1HK3; -.
DR PDBsum; 1HK4; -.
DR PDBsum; 1HK5; -.
DR PDBsum; 1N5U; -.
DR PDBsum; 1O9X; -.
DR PDBsum; 1TF0; -.
DR PDBsum; 1UOR; -.
DR PDBsum; 1YSX; -.
DR PDBsum; 2BX8; -.
DR PDBsum; 2BXA; -.
DR PDBsum; 2BXB; -.
DR PDBsum; 2BXC; -.
DR PDBsum; 2BXD; -.
DR PDBsum; 2BXE; -.
DR PDBsum; 2BXF; -.
DR PDBsum; 2BXG; -.
DR PDBsum; 2BXH; -.
DR PDBsum; 2BXI; -.
DR PDBsum; 2BXK; -.
DR PDBsum; 2BXL; -.
DR PDBsum; 2BXM; -.
DR PDBsum; 2BXN; -.
DR PDBsum; 2BXO; -.
DR PDBsum; 2BXP; -.
DR PDBsum; 2BXQ; -.
DR PDBsum; 2ESG; -.
DR PDBsum; 2I2Z; -.
DR PDBsum; 2I30; -.
DR PDBsum; 2VDB; -.
DR PDBsum; 2VUE; -.
DR PDBsum; 2VUF; -.
DR PDBsum; 2XSI; -.
DR PDBsum; 2XVQ; -.
DR PDBsum; 2XVU; -.
DR PDBsum; 2XVV; -.
DR PDBsum; 2XVW; -.
DR PDBsum; 2XW0; -.
DR PDBsum; 2XW1; -.
DR PDBsum; 2YDF; -.
DR PDBsum; 3A73; -.
DR PDBsum; 3B9L; -.
DR PDBsum; 3B9M; -.
DR PDBsum; 3CX9; -.
DR PDBsum; 3JQZ; -.
DR PDBsum; 3JRY; -.
DR PDBsum; 3LU6; -.
DR PDBsum; 3LU7; -.
DR PDBsum; 3LU8; -.
DR PDBsum; 3SQJ; -.
DR PDBsum; 3TDL; -.
DR PDBsum; 3UIV; -.
DR PDBsum; 4E99; -.
DR PDBsum; 4EMX; -.
DR PDBsum; 4G03; -.
DR PDBsum; 4G04; -.
DR PDBsum; 4HGK; -.
DR PDBsum; 4HGM; -.
DR PDBsum; 4IW1; -.
DR PDBsum; 4IW2; -.
DR PDBsum; 4K2C; -.
DR PDBsum; 4K71; -.
DR PDBsum; 4L8U; -.
DR PDBsum; 4L9K; -.
DR PDBsum; 4L9Q; -.
DR PDBsum; 4LA0; -.
DR PDBsum; 4LB2; -.
DR PDBsum; 4LB9; -.
DR DisProt; DP00515; -.
DR ProteinModelPortal; P02768; -.
DR SMR; P02768; 26-608.
DR DIP; DIP-29902N; -.
DR IntAct; P02768; 154.
DR MINT; MINT-3004222; -.
DR BindingDB; P02768; -.
DR ChEMBL; CHEMBL3253; -.
DR DrugBank; DB01418; Acenocoumarol.
DR DrugBank; DB00459; Acitretin.
DR DrugBank; DB00802; Alfentanil.
DR DrugBank; DB01370; Aluminium.
DR DrugBank; DB00995; Auranofin.
DR DrugBank; DB01402; Bismuth.
DR DrugBank; DB01197; Captopril.
DR DrugBank; DB00958; Carboplatin.
DR DrugBank; DB00456; Cefalotin.
DR DrugBank; DB01327; Cefazolin.
DR DrugBank; DB01328; Cefonicid.
DR DrugBank; DB01329; Cefoperazone.
DR DrugBank; DB01114; Chlorpheniramine.
DR DrugBank; DB00477; Chlorpromazine.
DR DrugBank; DB00537; Ciprofloxacin.
DR DrugBank; DB01068; Clonazepam.
DR DrugBank; DB01147; Cloxacillin.
DR DrugBank; DB00987; Cytarabine.
DR DrugBank; DB01219; Dantrolene.
DR DrugBank; DB00586; Diclofenac.
DR DrugBank; DB00861; Diflunisal.
DR DrugBank; DB01396; Digitoxin.
DR DrugBank; DB00655; Estrone.
DR DrugBank; DB00903; Ethacrynic acid.
DR DrugBank; DB00749; Etodolac.
DR DrugBank; DB00712; Flurbiprofen.
DR DrugBank; DB00743; Gadobenate Dimeglumine.
DR DrugBank; DB01044; Gatifloxacin.
DR DrugBank; DB01120; Gliclazide.
DR DrugBank; DB01159; Halothane.
DR DrugBank; DB00062; Human Serum Albumin.
DR DrugBank; DB00070; Hyaluronidase.
DR DrugBank; DB01050; Ibuprofen.
DR DrugBank; DB01307; Insulin-detemir.
DR DrugBank; DB01308; Insulin-glargine.
DR DrugBank; DB04711; Iodipamide.
DR DrugBank; DB01009; Ketoprofen.
DR DrugBank; DB00848; Levamisole.
DR DrugBank; DB00451; Levothyroxine.
DR DrugBank; DB00279; Liothyronine.
DR DrugBank; DB00784; Mefenamic acid.
DR DrugBank; DB00532; Mephenytoin.
DR DrugBank; DB00563; Methotrexate.
DR DrugBank; DB00540; Nortriptyline.
DR DrugBank; DB00842; Oxazepam.
DR DrugBank; DB01229; Paclitaxel.
DR DrugBank; DB00946; Phenprocoumon.
DR DrugBank; DB01032; Probenecid.
DR DrugBank; DB00818; Propofol.
DR DrugBank; DB00165; Pyridoxine.
DR DrugBank; DB00936; Salicyclic acid.
DR DrugBank; DB01232; Saquinavir.
DR DrugBank; DB00096; Serum albumin.
DR DrugBank; DB00064; Serum albumin iodonated.
DR DrugBank; DB00815; Sodium lauryl sulfate.
DR DrugBank; DB00364; Sucralfate.
DR DrugBank; DB00576; Sulfamethizole.
DR DrugBank; DB00605; Sulindac.
DR DrugBank; DB00870; Suprofen.
DR DrugBank; DB00624; Testosterone.
DR DrugBank; DB00137; Xanthophyll.
DR Allergome; 763; Hom s HSA.
DR PhosphoSite; P02768; -.
DR UniCarbKB; P02768; -.
DR DMDM; 113576; -.
DR DOSAC-COBS-2DPAGE; P02768; -.
DR OGP; P02768; -.
DR REPRODUCTION-2DPAGE; IPI00384697; -.
DR REPRODUCTION-2DPAGE; IPI00745872; -.
DR REPRODUCTION-2DPAGE; P02768; -.
DR SWISS-2DPAGE; P02768; -.
DR UCD-2DPAGE; P02768; -.
DR PaxDb; P02768; -.
DR PRIDE; P02768; -.
DR DNASU; 213; -.
DR Ensembl; ENST00000295897; ENSP00000295897; ENSG00000163631.
DR Ensembl; ENST00000509063; ENSP00000422784; ENSG00000163631.
DR GeneID; 213; -.
DR KEGG; hsa:213; -.
DR UCSC; uc003hgs.4; human.
DR CTD; 213; -.
DR GeneCards; GC04P074259; -.
DR HGNC; HGNC:399; ALB.
DR HPA; CAB006262; -.
DR MIM; 103600; gene+phenotype.
DR neXtProt; NX_P02768; -.
DR Orphanet; 86816; Congenital analbuminemia.
DR Orphanet; 276271; Familial dysalbuminemic hyperthyroxinemia.
DR PharmGKB; PA24690; -.
DR eggNOG; NOG45992; -.
DR HOVERGEN; HBG004207; -.
DR KO; K16141; -.
DR OMA; NCDKSLH; -.
DR OrthoDB; EOG7S4X5C; -.
DR PhylomeDB; P02768; -.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_15518; Transmembrane transport of small molecules.
DR Reactome; REACT_160300; Binding and Uptake of Ligands by Scavenger Receptors.
DR Reactome; REACT_604; Hemostasis.
DR ChiTaRS; ALB; human.
DR EvolutionaryTrace; P02768; -.
DR GeneWiki; Serum_albumin; -.
DR GenomeRNAi; 213; -.
DR NextBio; 862; -.
DR PMAP-CutDB; P02768; -.
DR PRO; PR:P02768; -.
DR ArrayExpress; P02768; -.
DR Bgee; P02768; -.
DR Genevestigator; P02768; -.
DR GO; GO:0005604; C:basement membrane; IEA:Ensembl.
DR GO; GO:0005615; C:extracellular space; IDA:BHF-UCL.
DR GO; GO:0070062; C:extracellular vesicular exosome; IDA:UniProtKB.
DR GO; GO:0031093; C:platelet alpha granule lumen; TAS:Reactome.
DR GO; GO:0043234; C:protein complex; IDA:UniProtKB.
DR GO; GO:0016209; F:antioxidant activity; NAS:UniProtKB.
DR GO; GO:0005507; F:copper ion binding; NAS:UniProtKB.
DR GO; GO:0003677; F:DNA binding; IDA:UniProtKB.
DR GO; GO:0008144; F:drug binding; IDA:UniProtKB.
DR GO; GO:0005504; F:fatty acid binding; IDA:UniProtKB.
DR GO; GO:0030170; F:pyridoxal phosphate binding; IDA:UniProtKB.
DR GO; GO:0015643; F:toxic substance binding; IDA:UniProtKB.
DR GO; GO:0008270; F:zinc ion binding; IEA:Ensembl.
DR GO; GO:0015721; P:bile acid and bile salt transport; TAS:Reactome.
DR GO; GO:0008206; P:bile acid metabolic process; TAS:Reactome.
DR GO; GO:0009267; P:cellular response to starvation; IDA:UniProtKB.
DR GO; GO:0019836; P:hemolysis by symbiont of host erythrocytes; IDA:UniProtKB.
DR GO; GO:0042157; P:lipoprotein metabolic process; TAS:Reactome.
DR GO; GO:0051659; P:maintenance of mitochondrion location; IDA:UniProtKB.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IDA:UniProtKB.
DR GO; GO:0030168; P:platelet activation; TAS:Reactome.
DR GO; GO:0002576; P:platelet degranulation; TAS:Reactome.
DR GO; GO:0046010; P:positive regulation of circadian sleep/wake cycle, non-REM sleep; IEA:Ensembl.
DR GO; GO:0046689; P:response to mercury ion; IEA:Ensembl.
DR GO; GO:0007584; P:response to nutrient; IEA:Ensembl.
DR GO; GO:0010033; P:response to organic substance; IEA:Ensembl.
DR GO; GO:0070541; P:response to platinum ion; IEA:Ensembl.
DR GO; GO:0043252; P:sodium-independent organic anion transport; TAS:Reactome.
DR GO; GO:0055085; P:transmembrane transport; TAS:Reactome.
DR InterPro; IPR000264; ALB/AFP/VDB.
DR InterPro; IPR020858; Serum_albumin-like.
DR InterPro; IPR021177; Serum_albumin/AFP.
DR InterPro; IPR020857; Serum_albumin_CS.
DR InterPro; IPR014760; Serum_albumin_N.
DR Pfam; PF00273; Serum_albumin; 3.
DR PIRSF; PIRSF002520; Serum_albumin_subgroup; 1.
DR PRINTS; PR00802; SERUMALBUMIN.
DR SMART; SM00103; ALBUMIN; 3.
DR SUPFAM; SSF48552; SSF48552; 3.
DR PROSITE; PS00212; ALBUMIN_1; 3.
DR PROSITE; PS51438; ALBUMIN_2; 3.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing;
KW Cleavage on pair of basic residues; Complete proteome; Copper;
KW Direct protein sequencing; Disease mutation; Disulfide bond;
KW Glycation; Glycoprotein; Lipid-binding; Metal-binding; Phosphoprotein;
KW Polymorphism; Reference proteome; Repeat; Secreted; Signal; Zinc.
FT SIGNAL 1 18
FT PROPEP 19 22
FT /FTId=PRO_0000001067.
FT CHAIN 25 609 Serum albumin.
FT /FTId=PRO_0000001068.
FT DOMAIN 19 210 Albumin 1.
FT DOMAIN 211 403 Albumin 2.
FT DOMAIN 404 601 Albumin 3.
FT METAL 27 27 Copper (By similarity).
FT METAL 91 91 Zinc.
FT METAL 123 123 Zinc.
FT METAL 271 271 Zinc.
FT METAL 273 273 Zinc.
FT BINDING 264 264 Bilirubin.
FT SITE 28 28 Not glycated.
FT SITE 44 44 Not glycated.
FT SITE 65 65 Not glycated.
FT SITE 88 88 Not glycated.
FT SITE 97 97 Not glycated.
FT SITE 117 117 Not glycated.
FT SITE 130 130 Not glycated.
FT SITE 160 160 Not glycated.
FT SITE 183 183 Not glycated.
FT SITE 198 198 Not glycated.
FT SITE 205 205 Not glycated.
FT SITE 214 214 Not glycated.
FT SITE 219 219 Not glycated.
FT SITE 223 223 Aspirin-acetylated lysine.
FT SITE 229 229 Not glycated.
FT SITE 236 236 Not glycated.
FT SITE 264 264 Not glycated.
FT SITE 286 286 Not glycated.
FT SITE 298 298 Not glycated.
FT SITE 310 310 Not glycated.
FT SITE 383 383 Not glycated.
FT SITE 396 396 Not glycated.
FT SITE 413 413 Not glycated.
FT SITE 426 426 Not glycated.
FT SITE 438 438 Not glycated.
FT SITE 456 456 Not glycated.
FT SITE 460 460 Not glycated.
FT SITE 490 490 Not glycated.
FT SITE 499 499 Not glycated.
FT SITE 524 524 Not glycated.
FT SITE 543 543 Not glycated.
FT SITE 548 548 Not glycated.
FT SITE 562 562 Not glycated.
FT SITE 565 565 Not glycated.
FT SITE 581 581 Not glycated.
FT SITE 584 584 Not glycated.
FT SITE 588 588 Not glycated.
FT SITE 598 598 Not glycated.
FT MOD_RES 82 82 Phosphoserine.
FT MOD_RES 443 443 Phosphoserine.
FT MOD_RES 444 444 Phosphothreonine.
FT MOD_RES 446 446 Phosphothreonine.
FT CARBOHYD 36 36 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 75 75 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 161 161 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 186 186 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 223 223 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 249 249 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 257 257 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 300 300 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 305 305 N-linked (Glc) (glycation).
FT CARBOHYD 337 337 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 341 341 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 342 342 N-linked (GlcNAc...); in variant Redhill.
FT /FTId=CAR_000226.
FT CARBOHYD 347 347 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 375 375 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 402 402 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 437 437 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 463 463 N-linked (Glc) (glycation).
FT CARBOHYD 468 468 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 518 518 N-linked (GlcNAc...); in variant
FT Casebrook.
FT /FTId=CAR_000069.
FT CARBOHYD 549 549 N-linked (Glc) (glycation).
FT CARBOHYD 558 558 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 560 560 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 569 569 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 597 597 N-linked (Glc) (glycation); in vitro.
FT DISULFID 77 86
FT DISULFID 99 115
FT DISULFID 114 125
FT DISULFID 148 193
FT DISULFID 192 201
FT DISULFID 224 270
FT DISULFID 269 277
FT DISULFID 289 303
FT DISULFID 302 313
FT DISULFID 340 385
FT DISULFID 384 393
FT DISULFID 416 462
FT DISULFID 461 472
FT DISULFID 485 501
FT DISULFID 500 511
FT DISULFID 538 583
FT DISULFID 582 591
FT VAR_SEQ 43 234 Missing (in isoform 2).
FT /FTId=VSP_021275.
FT VARIANT 23 23 R -> C (in Redhill/Malmo-I/Tradate;
FT associated with T-344 in Redhill).
FT /FTId=VAR_000499.
FT VARIANT 23 23 R -> H (in Fukuoka-2/Lille/Taipei/Varese/
FT Komagome-3).
FT /FTId=VAR_000500.
FT VARIANT 24 24 R -> L (in Jaffna).
FT /FTId=VAR_000501.
FT VARIANT 24 24 R -> P (in Takefu/Honolulu-1).
FT /FTId=VAR_000502.
FT VARIANT 24 24 R -> Q (in Christchurch/Honolulu-2).
FT /FTId=VAR_000503.
FT VARIANT 25 25 D -> V (in Bleinheim/Iowa city-2).
FT /FTId=VAR_000504.
FT VARIANT 27 27 H -> Q (in Nagasaki-3).
FT /FTId=VAR_000505.
FT VARIANT 27 27 H -> Y (in Larino).
FT /FTId=VAR_000506.
FT VARIANT 73 73 F -> Y.
FT /FTId=VAR_010657.
FT VARIANT 84 84 E -> K (in Torino).
FT /FTId=VAR_000507.
FT VARIANT 87 87 D -> N (in Malmo-95/Dalakarlia).
FT /FTId=VAR_000508.
FT VARIANT 90 90 L -> P (in DH).
FT /FTId=VAR_013011.
FT VARIANT 106 106 E -> K (in Vibo Valentia).
FT /FTId=VAR_000509.
FT VARIANT 121 121 E -> G.
FT /FTId=VAR_014290.
FT VARIANT 138 138 R -> G (in Yanomama-2).
FT /FTId=VAR_000510.
FT VARIANT 143 143 E -> K (in Nagoya).
FT /FTId=VAR_000511.
FT VARIANT 146 146 V -> E (in Tregasio).
FT /FTId=VAR_013012.
FT VARIANT 152 152 H -> R (in Komagome-2).
FT /FTId=VAR_000512.
FT VARIANT 201 201 C -> F (in Hawkes bay).
FT /FTId=VAR_000513.
FT VARIANT 215 215 A -> T (in dbSNP:rs3210154).
FT /FTId=VAR_014291.
FT VARIANT 215 215 A -> V (in dbSNP:rs3204504).
FT /FTId=VAR_014292.
FT VARIANT 220 220 Q -> L (in dbSNP:rs3210163).
FT /FTId=VAR_014293.
FT VARIANT 242 242 R -> H (in DH).
FT /FTId=VAR_000514.
FT VARIANT 242 242 R -> P (in DH).
FT /FTId=VAR_013013.
FT VARIANT 249 249 K -> Q (in Tradate-2).
FT /FTId=VAR_000515.
FT VARIANT 264 264 K -> E (in Herborn).
FT /FTId=VAR_000516.
FT VARIANT 292 292 Q -> R (in Malmo-10).
FT /FTId=VAR_000517.
FT VARIANT 293 293 D -> G (in Nagasaki-1).
FT /FTId=VAR_000518.
FT VARIANT 300 300 K -> N (in Caserta).
FT /FTId=VAR_000519.
FT VARIANT 337 337 K -> N (in Canterbury/New Guinea/
FT Tagliacozzo/Cuneo/Cooperstown).
FT /FTId=VAR_000520.
FT VARIANT 338 338 D -> G (in Bergamo).
FT /FTId=VAR_013014.
FT VARIANT 338 338 D -> V (in Brest).
FT /FTId=VAR_013015.
FT VARIANT 342 342 N -> K (in Malmo-47).
FT /FTId=VAR_000521.
FT VARIANT 344 344 A -> T (in Redhill; associated with C-
FT 23).
FT /FTId=VAR_000522.
FT VARIANT 345 345 E -> K (in Roma).
FT /FTId=VAR_000523.
FT VARIANT 357 357 E -> K (in Sondrio).
FT /FTId=VAR_000524.
FT VARIANT 378 378 E -> K (in Hiroshima-1).
FT /FTId=VAR_000525.
FT VARIANT 382 382 E -> K (in Coari I/Porto Alegre).
FT /FTId=VAR_000526.
FT VARIANT 383 383 K -> N (in Trieste).
FT /FTId=VAR_013016.
FT VARIANT 389 389 D -> H (in Parklands).
FT /FTId=VAR_000527.
FT VARIANT 389 389 D -> V (in Iowa city-1).
FT /FTId=VAR_000528.
FT VARIANT 396 396 K -> E (in Naskapi/Mersin/Komagome-1).
FT /FTId=VAR_000529.
FT VARIANT 399 399 D -> N (in Nagasaki-2).
FT /FTId=VAR_000530.
FT VARIANT 400 400 E -> K (in Tochigi).
FT /FTId=VAR_000531.
FT VARIANT 400 400 E -> Q (in Malmo-5).
FT /FTId=VAR_000532.
FT VARIANT 406 406 E -> K (in Hiroshima-2).
FT /FTId=VAR_000533.
FT VARIANT 420 420 E -> K.
FT /FTId=VAR_014294.
FT VARIANT 434 434 R -> C (in Liprizzi).
FT /FTId=VAR_013017.
FT VARIANT 490 490 K -> E (in dbSNP:rs1063469).
FT /FTId=VAR_014295.
FT VARIANT 503 503 E -> K (in Dublin).
FT /FTId=VAR_000534.
FT VARIANT 518 518 D -> N (in Casebrook).
FT /FTId=VAR_000535.
FT VARIANT 525 525 E -> K (in Manaus-1/Adana/Lambadi/
FT Vancouver).
FT /FTId=VAR_000536.
FT VARIANT 529 529 E -> K (in Ortonovo).
FT /FTId=VAR_000537.
FT VARIANT 557 557 V -> M (in Maddaloni; dbSNP:rs78284052).
FT /FTId=VAR_013018.
FT VARIANT 560 560 K -> E (in Castel di Sangro).
FT /FTId=VAR_000538.
FT VARIANT 565 565 K -> E (in Maku).
FT /FTId=VAR_000539.
FT VARIANT 574 574 D -> A (in Malmo-61).
FT /FTId=VAR_000541.
FT VARIANT 574 574 D -> G (in Mexico).
FT /FTId=VAR_000540.
FT VARIANT 584 584 K -> E (in Church bay).
FT /FTId=VAR_013019.
FT VARIANT 587 587 D -> N (in Fukuoka-1/Paris-2).
FT /FTId=VAR_000542.
FT VARIANT 589 589 E -> K (in Osaka-1).
FT /FTId=VAR_000543.
FT VARIANT 594 594 E -> K (in Osaka-2/Phnom Phen/albumin B/
FT Verona).
FT /FTId=VAR_000544.
FT VARIANT 596 609 GKKLVAASQAALGL -> PTMRIRERK (in Venezia).
FT /FTId=VAR_000547.
FT VARIANT 597 597 K -> E (in Gent/Milano Fast).
FT /FTId=VAR_000545.
FT VARIANT 598 598 K -> N (in Vanves).
FT /FTId=VAR_000546.
FT VARIANT 599 609 LVAASQAALGL -> TCCCKSSCLRLITSHLKASQPTMRIR
FT ERK (in Kenitra).
FT /FTId=VAR_012981.
FT CONFLICT 55 55 L -> P (in Ref. 11; CAH18185).
FT CONFLICT 122 122 R -> S (in Ref. 4; AAF01333).
FT CONFLICT 155 155 E -> Q (in Ref. 18; AA sequence).
FT CONFLICT 174 174 Y -> L (in Ref. 23; AA sequence and 24;
FT AA sequence).
FT CONFLICT 194 194 Q -> E (in Ref. 18; AA sequence).
FT CONFLICT 327 332 PSLAAD -> MFVLLC (in Ref. 10; AAF71067).
FT CONFLICT 405 405 V -> A (in Ref. 10; AAF71067).
FT CONFLICT 409 409 Q -> E (in Ref. 14; AAH14308).
FT CONFLICT 441 441 Q -> E (in Ref. 2; CAA23753).
FT CONFLICT 466 466 E -> G (in Ref. 4; AAF01333).
FT CONFLICT 488 489 HE -> EH (in Ref. 18; AA sequence).
FT CONFLICT 490 490 K -> R (in Ref. 11; CAH18185).
FT CONFLICT 525 525 E -> Q (in Ref. 18; AA sequence).
FT CONFLICT 551 551 T -> A (in Ref. 11; CAH18185).
FT CONFLICT 560 560 K -> R (in Ref. 11; CAH18185).
FT CONFLICT 604 604 Q -> R (in Ref. 5; AAN17825).
FT HELIX 30 38
FT HELIX 40 54
FT STRAND 55 58
FT HELIX 60 79
FT TURN 84 87
FT HELIX 90 99
FT TURN 101 103
FT HELIX 104 108
FT HELIX 109 116
FT HELIX 119 128
FT HELIX 144 153
FT HELIX 155 169
FT STRAND 170 173
FT HELIX 175 192
FT STRAND 195 197
FT HELIX 198 230
FT HELIX 232 246
FT STRAND 248 250
FT HELIX 252 271
FT HELIX 274 289
FT HELIX 290 294
FT HELIX 297 299
FT HELIX 300 303
FT HELIX 307 315
FT HELIX 330 333
FT STRAND 336 338
FT HELIX 339 345
FT HELIX 347 360
FT HELIX 367 384
FT STRAND 387 389
FT HELIX 390 394
FT HELIX 397 422
FT HELIX 424 438
FT STRAND 440 442
FT HELIX 444 461
FT STRAND 462 464
FT HELIX 466 488
FT STRAND 489 491
FT HELIX 495 502
FT TURN 505 507
FT HELIX 508 513
FT STRAND 519 521
FT HELIX 529 531
FT HELIX 535 538
FT HELIX 542 559
FT STRAND 561 563
FT HELIX 565 583
FT STRAND 584 587
FT HELIX 588 590
FT TURN 591 593
FT HELIX 594 606
SQ SEQUENCE 609 AA; 69367 MW; F88FF61DD242E818 CRC64;
MKWVTFISLL FLFSSAYSRG VFRRDAHKSE VAHRFKDLGE ENFKALVLIA FAQYLQQCPF
EDHVKLVNEV TEFAKTCVAD ESAENCDKSL HTLFGDKLCT VATLRETYGE MADCCAKQEP
ERNECFLQHK DDNPNLPRLV RPEVDVMCTA FHDNEETFLK KYLYEIARRH PYFYAPELLF
FAKRYKAAFT ECCQAADKAA CLLPKLDELR DEGKASSAKQ RLKCASLQKF GERAFKAWAV
ARLSQRFPKA EFAEVSKLVT DLTKVHTECC HGDLLECADD RADLAKYICE NQDSISSKLK
ECCEKPLLEK SHCIAEVEND EMPADLPSLA ADFVESKDVC KNYAEAKDVF LGMFLYEYAR
RHPDYSVVLL LRLAKTYETT LEKCCAAADP HECYAKVFDE FKPLVEEPQN LIKQNCELFE
QLGEYKFQNA LLVRYTKKVP QVSTPTLVEV SRNLGKVGSK CCKHPEAKRM PCAEDYLSVV
LNQLCVLHEK TPVSDRVTKC CTESLVNRRP CFSALEVDET YVPKEFNAET FTFHADICTL
SEKERQIKKQ TALVELVKHK PKATKEQLKA VMDDFAAFVE KCCKADDKET CFAEEGKKLV
AASQAALGL
//
ID ALBU_HUMAN Reviewed; 609 AA.
AC P02768; O95574; P04277; Q13140; Q645G4; Q68DN5; Q6UXK4; Q86YG0;
read moreAC Q9P157; Q9P1I7; Q9UHS3; Q9UJZ0;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
DT 01-APR-1990, sequence version 2.
DT 22-JAN-2014, entry version 202.
DE RecName: Full=Serum albumin;
DE Flags: Precursor;
GN Name=ALB;
GN ORFNames=GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675,
GN UNQ696/PRO1341;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT LYS-420.
RX PubMed=6171778; DOI=10.1093/nar/9.22.6103;
RA Lawn R.M., Adelman J., Bock S.C., Franke A.E., Houck C.M.,
RA Najarian R.C., Seeburg P.H., Wion K.L.;
RT "The sequence of human serum albumin cDNA and its expression in E.
RT coli.";
RL Nucleic Acids Res. 9:6103-6114(1981).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT GLY-121.
RX PubMed=6275391; DOI=10.1073/pnas.79.1.71;
RA Dugaiczyk A., Law S.W., Dennison O.E.;
RT "Nucleotide sequence and the encoded amino acids of human serum
RT albumin mRNA.";
RL Proc. Natl. Acad. Sci. U.S.A. 79:71-75(1982).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=3009475;
RA Minghetti P.P., Ruffner D.E., Kuang W.J., Dennison O.E., Hawkins J.W.,
RA Beattie W.G., Dugaiczyk A.;
RT "Molecular structure of the human albumin gene is revealed by
RT nucleotide sequence within q11-22 of chromosome 4.";
RL J. Biol. Chem. 261:6747-6757(1986).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Liver;
RA Yang S., Zhang R.A., Qi Z.W., Yuan Z.Y.;
RT "Human serum albumin.";
RL Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT HIROSHIMA-1
RP LYS-378.
RA Huang M.C., Wu H.T.;
RT "The cDNA sequences of human serum albumin.";
RL Submitted (AUG-2002) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RA Hinchliffe E.;
RT "Induction of galactose regulated gene expression in yeast.";
RL Patent number EP0248637, 09-DEC-1987.
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Liver;
RA Yu Z., Fu Y.;
RT "High expression HSA in Pichia for Pharmaceutical Use.";
RL Submitted (AUG-2004) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RA Wang F., Huang L.;
RT "Cloning and sequence analysis of human albumin gene.";
RL Submitted (SEP-2006) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RA Kim J.W.;
RT "Identification of a human cell growth inhibition gene.";
RL Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Fetal liver;
RX PubMed=11483580; DOI=10.1101/gr.175501;
RA Yu Y., Zhang C., Zhou G., Wu S., Qu X., Wei H., Xing G., Dong C.,
RA Zhai Y., Wan J., Ouyang S., Li L., Zhang S., Zhou K., Zhang Y., Wu C.,
RA He F.;
RT "Gene expression profiling in human fetal liver and identification of
RT tissue- and developmental-stage-specific genes through compiled
RT expression profiles and efficient cloning of full-length cDNAs.";
RL Genome Res. 11:1392-1403(2001).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP TYR-27.
RC TISSUE=Liver;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG SeattleSNPs variation discovery resource;
RL Submitted (JUN-2007) to the EMBL/GenBank/DDBJ databases.
RN [13]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [14]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RC TISSUE=Liver, and Skeletal muscle;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [15]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-455.
RC TISSUE=Liver;
RA Menaya J., Parrilla R., Ayuso M.S.;
RL Submitted (MAR-1995) to the EMBL/GenBank/DDBJ databases.
RN [16]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 1-167.
RX PubMed=12975309; DOI=10.1101/gr.1293003;
RA Clark H.F., Gurney A.L., Abaya E., Baker K., Baldwin D.T., Brush J.,
RA Chen J., Chow B., Chui C., Crowley C., Currell B., Deuel B., Dowd P.,
RA Eaton D., Foster J.S., Grimaldi C., Gu Q., Hass P.E., Heldens S.,
RA Huang A., Kim H.S., Klimowski L., Jin Y., Johnson S., Lee J.,
RA Lewis L., Liao D., Mark M.R., Robbie E., Sanchez C., Schoenfeld J.,
RA Seshagiri S., Simmons L., Singh J., Smith V., Stinson J., Vagts A.,
RA Vandlen R.L., Watanabe C., Wieand D., Woods K., Xie M.-H.,
RA Yansura D.G., Yi S., Yu G., Yuan J., Zhang M., Zhang Z., Goddard A.D.,
RA Wood W.I., Godowski P.J., Gray A.M.;
RT "The secreted protein discovery initiative (SPDI), a large-scale
RT effort to identify novel human secreted and transmembrane proteins: a
RT bioinformatics assessment.";
RL Genome Res. 13:2265-2270(2003).
RN [17]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-26.
RX PubMed=2419329;
RA Urano Y., Watanabe K., Sakai M., Tamaoki T.;
RT "The human albumin gene. Characterization of the 5' and 3' flanking
RT regions and the polymorphic gene transcripts.";
RL J. Biol. Chem. 261:3244-3251(1986).
RN [18]
RP PROTEIN SEQUENCE OF 25-609.
RX PubMed=1225573; DOI=10.1016/0014-5793(75)80242-0;
RA Meloun B., Moravek L., Kostka V.;
RT "Complete amino acid sequence of human serum albumin.";
RL FEBS Lett. 58:134-137(1975).
RN [19]
RP PROTEIN SEQUENCE OF 25-609.
RA Brown J.R., Shockley P., Behrens P.Q.;
RL (In) Bing D.H. (eds.);
RL The chemistry and physiology of the human plasma proteins, pp.23-40,
RL Pergamon Press, New York (1979).
RN [20]
RP PROTEIN SEQUENCE OF 25-44 AND 480-499.
RC TISSUE=Heart;
RX PubMed=7895732; DOI=10.1002/elps.11501501209;
RA Corbett J.M., Wheeler C.H., Baker C.S., Yacoub M.H., Dunn M.J.;
RT "The human myocardial two-dimensional gel protein database: update
RT 1994.";
RL Electrophoresis 15:1459-1465(1994).
RN [21]
RP PROTEIN SEQUENCE OF 25-34.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [22]
RP PROTEIN SEQUENCE OF 45-75; 98-130; 162-183; 239-254; 265-281; 287-298;
RP 348-372; 397-434; 438-452; 500-543; 550-558; 570-581 AND 599-609, AND
RP MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [23]
RP PROTEIN SEQUENCE OF 166-174.
RX PubMed=3087352; DOI=10.1016/0006-291X(86)90429-8;
RA Mogard M.H., Kobayashi R., Chen C.F., Lee T.D., Reeve J.R. Jr.,
RA Shively J.E., Walsh J.H.;
RT "The amino acid sequence of kinetensin, a novel peptide isolated from
RT pepsin-treated human plasma: homology with human serum albumin,
RT neurotensin and angiotensin.";
RL Biochem. Biophys. Res. Commun. 136:983-988(1986).
RN [24]
RP PROTEIN SEQUENCE OF 166-174.
RX PubMed=2437111;
RA Carraway R.E., Mitra S.P., Cochrane D.E.;
RT "Structure of a biologically active neurotensin-related peptide
RT obtained from pepsin-treated albumin(s).";
RL J. Biol. Chem. 262:5968-5973(1987).
RN [25]
RP PROTEIN SEQUENCE OF 222-229, AND ASPIRIN-ACETYLATION AT LYS-223.
RX PubMed=955075; DOI=10.1016/0014-5793(76)80496-6;
RA Walker J.E.;
RT "Lysine residue 199 of human serum albumin is modified by
RT acetylsalicylic acid.";
RL FEBS Lett. 66:173-175(1976).
RN [26]
RP PROTEIN SEQUENCE OF 250-264, GLYCATION AT LYS-75; LYS-161; LYS-186;
RP LYS-249; LYS-257; LYS-300; LYS-337; LYS-347; LYS-375; LYS-402;
RP LYS-437; LYS-468; LYS-560; LYS-549; LYS-569 AND LYS-597, LACK OF
RP GLYCATION AT LYS-28; LYS-44; LYS-65; LYS-88; LYS-97; LYS-117; LYS-130;
RP LYS-160; LYS-183; LYS-198; LYS-205; LYS-214; LYS-219; LYS-229;
RP LYS-236; LYS-264; LYS-286; LYS-298; LYS-310; LYS-383; LYS-396;
RP LYS-413; LYS-426; LYS-438; LYS-456; LYS-460; LYS-490; LYS-499;
RP LYS-524; LYS-543; LYS-548; LYS-562; LYS-565; LYS-581; LYS-584; LYS-588
RP AND LYS-598, AND MASS SPECTROMETRY.
RX PubMed=15047055; DOI=10.1016/j.jasms.2003.11.014;
RA Lapolla A., Fedele D., Reitano R., Arico N.C., Seraglia R., Traldi P.,
RA Marotta E., Tonani R.;
RT "Enzymatic digestion and mass spectrometry in the study of advanced
RT glycation end products/peptides.";
RL J. Am. Soc. Mass Spectrom. 15:496-509(2004).
RN [27]
RP DISULFIDE BONDS.
RA Saber M.A., Stockbauer P., Moravek L., Meloun B.;
RT "Disulfide bonds in human serum albumin.";
RL Collect. Czech. Chem. Commun. 42:564-579(1977).
RN [28]
RP BILIRUBIN-BINDING SITE.
RX PubMed=656055;
RA Jacobsen C.;
RT "Lysine residue 240 of human serum albumin is involved in high-
RT affinity binding of bilirubin.";
RL Biochem. J. 171:453-459(1978).
RN [29]
RP GLYCATION AT LYS-223 AND LYS-549.
RX PubMed=6853480;
RA Garlick R.L., Mazer J.S.;
RT "The principal site of nonenzymatic glycosylation of human serum
RT albumin in vivo.";
RL J. Biol. Chem. 258:6142-6146(1983).
RN [30]
RP GLYCATION AT LYS-549.
RX PubMed=6706980;
RA Shaklai N., Garlick R.L., Bunn H.F.;
RT "Nonenzymatic glycosylation of human serum albumin alters its
RT conformation and function.";
RL J. Biol. Chem. 259:3812-3817(1984).
RN [31]
RP GLYCATION AT LYS-36; LYS-223; LYS-257; LYS-305; LYS-341; LYS-375;
RP LYS-463; LYS-549 AND LYS-558.
RX PubMed=3759977;
RA Iberg N., Fluckiger R.;
RT "Nonenzymatic glycosylation of albumin in vivo. Identification of
RT multiple glycosylated sites.";
RL J. Biol. Chem. 261:13542-13545(1986).
RN [32]
RP FUNCTION, AND ZINC-BINDING SITES.
RX PubMed=19021548; DOI=10.1042/BST0361317;
RA Lu J., Stewart A.J., Sadler P.J., Pinheiro T.J., Blindauer C.A.;
RT "Albumin as a zinc carrier: properties of its high-affinity zinc-
RT binding site.";
RL Biochem. Soc. Trans. 36:1317-1321(2008).
RN [33]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-82, AND MASS
RP SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=18318008; DOI=10.1002/pmic.200700884;
RA Han G., Ye M., Zhou H., Jiang X., Feng S., Jiang X., Tian R., Wan D.,
RA Zou H., Gu J.;
RT "Large-scale phosphoproteome analysis of human liver tissue by
RT enrichment and fractionation of phosphopeptides with strong anion
RT exchange chromatography.";
RL Proteomics 8:1346-1361(2008).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-443; THR-444 AND
RP THR-446, AND MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [35]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [36]
RP X-RAY CRYSTALLOGRAPHY (6.0 ANGSTROMS).
RX PubMed=2727704; DOI=10.1126/science.2727704;
RA Carter D.C., He X.-M., Munson S.H., Twigg P.D., Gernert K.M.,
RA Broom M.B., Miller T.Y.;
RT "Three-dimensional structure of human serum albumin.";
RL Science 244:1195-1198(1989).
RN [37]
RP X-RAY CRYSTALLOGRAPHY (4.0 ANGSTROMS).
RX PubMed=2374930; DOI=10.1126/science.2374930;
RA Carter D.C., He X.-M.;
RT "Structure of human serum albumin.";
RL Science 249:302-303(1990).
RN [38]
RP X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS).
RX PubMed=1630489; DOI=10.1038/358209a0;
RA He X.-M., Carter D.C.;
RT "Atomic structure and chemistry of human serum albumin.";
RL Nature 358:209-215(1992).
RN [39]
RP ERRATUM.
RA He X.-M., Carter D.C.;
RL Nature 364:362-362(1993).
RN [40]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
RX PubMed=9731778; DOI=10.1038/1869;
RA Curry S., Mandelkow H., Brick P., Franks N.;
RT "Crystal structure of human serum albumin complexed with fatty acid
RT reveals an asymmetric distribution of binding sites.";
RL Nat. Struct. Biol. 5:827-835(1998).
RN [41]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
RX PubMed=10388840; DOI=10.1093/protein/12.6.439;
RA Sugio S., Kashima A., Mochizuki S., Noda M., Kobayashi K.;
RT "Crystal structure of human serum albumin at 2.5-A resolution.";
RL Protein Eng. 12:439-446(1999).
RN [42]
RP X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 25-609.
RX PubMed=10940303; DOI=10.1074/jbc.M005460200;
RA Bhattacharya A.A., Curry S., Franks N.P.;
RT "Binding of the general anesthetics propofol and halothane to human
RT serum albumin. High resolution crystal structures.";
RL J. Biol. Chem. 275:38731-38738(2000).
RN [43]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
RX PubMed=11743713; DOI=10.1006/jmbi.2000.5208;
RA Petitpas I., Grune T., Bhattacharya A.A., Curry S.;
RT "Crystal structures of human serum albumin complexed with
RT monounsaturated and polyunsaturated fatty acids.";
RL J. Mol. Biol. 314:955-960(2001).
RN [44]
RP VARIANT CANTERBURY ASN-337.
RX PubMed=3828358; DOI=10.1016/0167-4838(87)90088-4;
RA Brennan S.O., Herbert P.;
RT "Albumin Canterbury (313 Lys-->Asn). A point mutation in the second
RT domain of serum albumin.";
RL Biochim. Biophys. Acta 912:191-197(1987).
RN [45]
RP VARIANTS NASKAPI/MERSIN GLU-396 AND MEXICO GLY-574.
RX PubMed=3474609; DOI=10.1073/pnas.84.13.4413;
RA Takahashi N., Takahashi Y., Blumberg B.S., Putnam F.W.;
RT "Amino acid substitutions in genetic variants of human serum albumin
RT and in sequences inferred from molecular cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:4413-4417(1987).
RN [46]
RP VARIANTS NAGASAKI-3 GLN-27 YANOMAMA-2 GLU-396; NAGASAKI-2 ASN-399 AND
RP MAKU GLU-565.
RX PubMed=3479777; DOI=10.1073/pnas.84.22.8001;
RA Takshashi N., Takahashi Y., Isobe T., Putnam F.W., Fujita M.,
RA Satoh C., Neel J.V.;
RT "Amino acid substitutions in inherited albumin variants from
RT Amerindian and Japanese populations.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:8001-8005(1987).
RN [47]
RP VARIANTS FUKUOKA-2 HIS-23; CHRISTCHURCH/HONOLULU-2 GLN-24; TAGLIACOZZO
RP ASN-337 AND ALBUMIN B/OSAKA-2/PHNOM PHEN LYS-594.
RX PubMed=2911589; DOI=10.1073/pnas.86.2.434;
RA Arai K., Ishioka N., Huss K., Madison J., Putnam F.W.;
RT "Identical structural changes in inherited albumin variants from
RT different populations.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:434-438(1989).
RN [48]
RP VARIANTS HONOLULU-2 GLN-24; NAGASAKI-1 GLY-293; HIROSHIMA-1 LYS-378;
RP TOCHIGI LYS-400; HIROSHIMA-2 LYS-406 AND OSAKA-2 LYS-594.
RX PubMed=2762316; DOI=10.1073/pnas.86.16.6092;
RA Arai K., Madison J., Huss K., Ishioka N., Satoh C., Fujita M.,
RA Neel J.V., Sakurabayashi I., Putnam F.W.;
RT "Point substitutions in Japanese alloalbumins.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:6092-6096(1989).
RN [49]
RP VARIANTS HONOLULU-1 PRO-24; HONOLULU-2 GLN-24; NAGOYA LYS-143; NEW
RP GUINEA ASN-337; MANAUS-1/LAMBADI LYS-525; FUKUOKA-1 ASN-587; OSAKA-1
RP LYS-589 AND OSAKA-2 LYS-594.
RX PubMed=2404284; DOI=10.1073/pnas.87.1.497;
RA Arai K., Madison J., Shimuzu A., Putnam F.W.;
RT "Point substitutions in albumin genetic variants from Asia.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:497-501(1990).
RN [50]
RP CHARACTERIZATION OF VARIANT REDHILL.
RX PubMed=2104980; DOI=10.1073/pnas.87.1.26;
RA Brennan S.O., Myles T., Peach R.J., Donaldson D., George P.M.;
RT "Albumin Redhill (-1 Arg, 320 Ala-->Thr): a glycoprotein variant of
RT human serum albumin whose precursor has an aberrant signal peptidase
RT cleavage site.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:26-30(1990).
RN [51]
RP VARIANTS VARESE HIS-23; TORINO LYS-84 AND VIBO VALENTIA LYS-106.
RX PubMed=2247440; DOI=10.1073/pnas.87.22.8721;
RA Galliano M., Minchiotti L., Porta F., Rossi A., Ferri G., Madison J.,
RA Watkins S., Putnam F.W.;
RT "Mutations in genetic variants of human serum albumin found in
RT Italy.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:8721-8725(1990).
RN [52]
RP CHARACTERIZATION OF VARIANT VENEZIA.
RX PubMed=2068071; DOI=10.1073/pnas.88.14.5959;
RA Watkins S., Madison J., Davis E., Sakamoto Y., Galliano M.,
RA Minchiotti L., Putnam F.W.;
RT "A donor splice mutation and a single-base deletion produce two
RT carboxyl-terminal variants of human serum albumin.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:5959-5963(1991).
RN [53]
RP VARIANTS KOMAGOME-3 HIS-23; IOWA CITY-2 VAL-25; KOMAGOME-2 ARG-152;
RP IOWA CITY-1 VAL-389 AND KOMAGOME-1 GLU-396.
RX PubMed=1946412; DOI=10.1073/pnas.88.21.9853;
RA Madison J., Arai K., Feld R.D., Kyle R.A., Watkins S., Davis E.,
RA Matsuda Y., Amaki I., Putnam F.W.;
RT "Genetic variants of serum albumin in Americans and Japanese.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:9853-9857(1991).
RN [54]
RP VARIANT CASEBROOK ASN-518.
RX PubMed=1859851; DOI=10.1016/0925-4439(91)90023-3;
RA Peach R.J., Brennan S.O.;
RT "Structural characterization of a glycoprotein variant of human serum
RT albumin: albumin Casebrook (494 Asp-->Asn).";
RL Biochim. Biophys. Acta 1097:49-54(1991).
RN [55]
RP VARIANTS SONDRIO LYS-357 AND PARIS-2 ASN-587.
RX PubMed=1347703; DOI=10.1016/0167-4838(92)90207-T;
RA Minchiotti L., Galliano M., Stoppini M., Ferri G., Crespeau H.,
RA Rochu D., Porta F.;
RT "Two alloalbumins with identical electrophoretic mobility are produced
RT by differently charged amino acid substitutions.";
RL Biochim. Biophys. Acta 1119:232-238(1992).
RN [56]
RP VARIANTS MALMO-I CYS-23; MALMO-95 ASN-87; MALMO-10 ARG-292; MALMO-47
RP LYS-342; MALMO-5 GLN-400 AND MALMO-61 ALA-574.
RX PubMed=1518850; DOI=10.1073/pnas.89.17.8225;
RA Carlson J., Sakamoto Y., Laurell C.-B., Madison J., Watkins S.,
RA Putnam F.W.;
RT "Alloalbuminemia in Sweden: structural study and phenotypic
RT distribution of nine albumin variants.";
RL Proc. Natl. Acad. Sci. U.S.A. 89:8225-8229(1992).
RN [57]
RP VARIANT HERBORN GLU-264.
RX PubMed=8513793; DOI=10.1111/j.1432-1033.1993.tb17939.x;
RA Minchiotti L., Galliano M., Zapponi M.C., Tenni R.;
RT "The structural characterization and bilirubin-binding properties of
RT albumin Herborn, a [Lys240-->Glu] albumin mutant.";
RL Eur. J. Biochem. 214:437-444(1993).
RN [58]
RP VARIANT HAWKES BAY PHE-201.
RX PubMed=8347685; DOI=10.1016/0925-4439(93)90151-P;
RA Brennan S.O., Fellowes A.P.;
RT "Albumin Hawkes Bay; a low level variant caused by loss of a
RT sulphydryl group at position 177.";
RL Biochim. Biophys. Acta 1182:46-50(1993).
RN [59]
RP VARIANT ORTONOVO LYS-529.
RX PubMed=7902134; DOI=10.1016/0925-4439(93)90117-J;
RA Galliano M., Minchiotti L., Iadarola P., Stoppini M., Giagnoni P.,
RA Watkins S., Madison J., Putnam F.W.;
RT "Protein and DNA sequence analysis of a 'private' genetic variant:
RT albumin Ortonovo (Glu-505-->Lys).";
RL Biochim. Biophys. Acta 1225:27-32(1993).
RN [60]
RP VARIANTS LARINO TYR-27; TRADATE-2 GLN-249 AND CASERTA ASN-300.
RX PubMed=8022807; DOI=10.1073/pnas.91.14.6476;
RA Madison J., Galliano M., Watkins S., Minchiotti L., Porta F.,
RA Rossi A., Putnam F.W.;
RT "Genetic variants of human serum albumin in Italy: point mutants and a
RT carboxyl-terminal variant.";
RL Proc. Natl. Acad. Sci. U.S.A. 91:6476-6480(1994).
RN [61]
RP VARIANT DH HIS-242.
RX PubMed=8048949; DOI=10.1006/bbrc.1994.1998;
RA Sunthornthepvarakul T., Angkeow P., Weiss R.E., Hayashi Y.,
RA Retetoff S.;
RT "An identical missense mutation in the albumin gene results in
RT familial dysalbuminemic hyperthyroxinemia in 8 unrelated families.";
RL Biochem. Biophys. Res. Commun. 202:781-787(1994).
RN [62]
RP VARIANT DH HIS-242, AND PROTEIN SEQUENCE OF 25-51.
RX PubMed=7852505; DOI=10.1210/jc.80.2.461;
RA Rushbrook J.I., Becker E., Schussler G.C., Divino C.M.;
RT "Identification of a human serum albumin species associated with
RT familial dysalbuminemic hyperthyroxinemia.";
RL J. Clin. Endocrinol. Metab. 80:461-467(1995).
RN [63]
RP VARIANT DH HIS-242.
RX PubMed=9329347; DOI=10.1210/jc.82.10.3246;
RA Wada N., Chiba H., Shimizu C., Kijima H., Kubo M., Koike T.;
RT "A novel missense mutation in codon 218 of the albumin gene in a
RT distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a
RT Japanese kindred.";
RL J. Clin. Endocrinol. Metab. 82:3246-3250(1997).
RN [64]
RP VARIANT DH PRO-90.
RX PubMed=9589637; DOI=10.1210/jc.83.5.1448;
RA Sunthornthepvarakul T., Likitmaskul S., Ngowngarmratana S.,
RA Angsusingha K., Kitvitayasak S., Scherberg N.H., Refetoff S.;
RT "Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly
RT inherited albumin defect.";
RL J. Clin. Endocrinol. Metab. 83:1448-1454(1998).
RN [65]
RP VARIANT TYR-73, AND MASS SPECTROMETRY.
RC TISSUE=Urine;
RX PubMed=11680902;
RX DOI=10.1002/1615-9861(200101)1:1<93::AID-PROT93>3.3.CO;2-V;
RA Spahr C.S., Davis M.T., McGinley M.D., Robinson J.H., Bures E.J.,
RA Beierle J., Mort J., Courchesne P.L., Chen K., Wahl R.C., Yu W.,
RA Luethy R., Patterson S.D.;
RT "Towards defining the urinary proteome using liquid chromatography-
RT tandem mass spectrometry I. Profiling an unfractionated tryptic
RT digest.";
RL Proteomics 1:93-107(2001).
RN [66]
RP CHARACTERIZATION OF VARIANT KENITRA.
RX PubMed=11168369; DOI=10.1046/j.1432-1033.2001.01899.x;
RA Minchiotti L., Campagnoli M., Rossi A., Cosulich M.E., Monti M.,
RA Pucci P., Kragh-Hansen U., Granel B., Disdier P., Weiller P.J.,
RA Galliano M.;
RT "A nucleotide insertion and frameshift cause albumin Kenitra, an
RT extended and O-glycosylated mutant of human serum albumin with two
RT additional disulfide bridges.";
RL Eur. J. Biochem. 268:344-352(2001).
CC -!- FUNCTION: Serum albumin, the main protein of plasma, has a good
CC binding capacity for water, Ca(2+), Na(+), K(+), fatty acids,
CC hormones, bilirubin and drugs. Its main function is the regulation
CC of the colloidal osmotic pressure of blood. Major zinc transporter
CC in plasma, typically binds about 80% of all plasma zinc.
CC -!- INTERACTION:
CC P02786:TFRC; NbExp=2; IntAct=EBI-714423, EBI-355727;
CC -!- SUBCELLULAR LOCATION: Secreted.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P02768-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P02768-2; Sequence=VSP_021275;
CC -!- TISSUE SPECIFICITY: Plasma.
CC -!- PTM: Kenitra variant is partially O-glycosylated at Thr-620. It
CC has two new disulfide bonds Cys-600 to Cys-602 and Cys-601 to Cys-
CC 606.
CC -!- PTM: Glycated in diabetic patients.
CC -!- PTM: Phosphorylation sites are present in the extracellular
CC medium.
CC -!- PTM: Acetylated on Lys-223 by acetylsalicylic acid.
CC -!- POLYMORPHISM: A variant structure of albumin could lead to
CC increased binding of zinc resulting in an asymptomatic
CC augmentation of zinc concentration in the blood. The sequence
CC shown is that of variant albumin A.
CC -!- DISEASE: Dysalbuminemic hyperthyroxinemia (DH) [MIM:103600]: A
CC disorder characterized by abnormally elevated levels of total
CC serum thyroxine (T4) in euthyroid patients. It is due to abnormal
CC serum albumin that binds T4 with enhanced affinity. Note=The
CC disease is caused by mutations affecting the gene represented in
CC this entry.
CC -!- SIMILARITY: Belongs to the ALB/AFP/VDB family.
CC -!- SIMILARITY: Contains 3 albumin domains.
CC -!- CAUTION: A peptide arising from positions 166 to 174 was
CC originally (PubMed:3087352 and PubMed:2437111) termed neurotensin-
CC related peptide (NRP) or kinetensin and was thought to regulate
CC fat digestion, lipid absorption, and blood flow.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAF22034.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAF69644.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAG35503.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC -!- WEB RESOURCE: Name=Albumin Website;
CC URL="http://www.albumin.org";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Serum albumin entry;
CC URL="http://en.wikipedia.org/wiki/Serum_albumin";
CC -!- WEB RESOURCE: Name=GeneReviews;
CC URL="http://www.ncbi.nlm.nih.gov/sites/GeneTests/lab/gene/ALB";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/alb/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; V00494; CAA23753.1; -; mRNA.
DR EMBL; V00495; CAA23754.1; -; mRNA.
DR EMBL; M12523; AAA98797.1; -; Genomic_DNA.
DR EMBL; M12523; AAA98798.1; -; Genomic_DNA.
DR EMBL; AF190168; AAF01333.1; -; mRNA.
DR EMBL; AF542069; AAN17825.1; -; mRNA.
DR EMBL; A06977; CAA00606.1; -; mRNA.
DR EMBL; AY728024; AAU21642.1; -; mRNA.
DR EMBL; DQ986150; ABJ16448.1; -; mRNA.
DR EMBL; AY544124; AAT11155.1; -; mRNA.
DR EMBL; AY550967; AAT52213.1; -; mRNA.
DR EMBL; AF116645; AAF71067.1; -; mRNA.
DR EMBL; AF118090; AAF22034.1; ALT_INIT; mRNA.
DR EMBL; AF119840; AAF69594.1; -; mRNA.
DR EMBL; AF119890; AAF69644.1; ALT_INIT; mRNA.
DR EMBL; AF130077; AAG35503.1; ALT_INIT; mRNA.
DR EMBL; CR749331; CAH18185.1; -; mRNA.
DR EMBL; EF649953; ABS29264.1; -; Genomic_DNA.
DR EMBL; CH471057; EAX05676.1; -; Genomic_DNA.
DR EMBL; BC014308; AAH14308.1; -; mRNA.
DR EMBL; BC034023; AAH34023.1; -; mRNA.
DR EMBL; BC036003; AAH36003.1; -; mRNA.
DR EMBL; BC041789; AAH41789.1; -; mRNA.
DR EMBL; U22961; AAA64922.1; -; mRNA.
DR EMBL; AY358313; AAQ89947.1; -; mRNA.
DR EMBL; AH002596; AAA51688.1; -; Genomic_DNA.
DR PIR; A93743; ABHUS.
DR RefSeq; NP_000468.1; NM_000477.5.
DR UniGene; Hs.418167; -.
DR UniGene; Hs.592379; -.
DR PDB; 1AO6; X-ray; 2.50 A; A/B=25-609.
DR PDB; 1BJ5; X-ray; 2.50 A; A=25-609.
DR PDB; 1BKE; X-ray; 3.15 A; A=28-608.
DR PDB; 1BM0; X-ray; 2.50 A; A/B=25-609.
DR PDB; 1E78; X-ray; 2.60 A; A/B=25-609.
DR PDB; 1E7A; X-ray; 2.20 A; A/B=25-609.
DR PDB; 1E7B; X-ray; 2.38 A; A/B=25-609.
DR PDB; 1E7C; X-ray; 2.40 A; A=25-609.
DR PDB; 1E7E; X-ray; 2.50 A; A=25-609.
DR PDB; 1E7F; X-ray; 2.43 A; A=25-609.
DR PDB; 1E7G; X-ray; 2.50 A; A=25-609.
DR PDB; 1E7H; X-ray; 2.43 A; A=25-609.
DR PDB; 1E7I; X-ray; 2.70 A; A=25-609.
DR PDB; 1GNI; X-ray; 2.40 A; A=25-609.
DR PDB; 1GNJ; X-ray; 2.60 A; A=25-609.
DR PDB; 1H9Z; X-ray; 2.50 A; A=25-609.
DR PDB; 1HA2; X-ray; 2.50 A; A=25-609.
DR PDB; 1HK1; X-ray; 2.65 A; A=25-609.
DR PDB; 1HK2; X-ray; 2.80 A; A=25-609.
DR PDB; 1HK3; X-ray; 2.80 A; A=25-609.
DR PDB; 1HK4; X-ray; 2.40 A; A=25-609.
DR PDB; 1HK5; X-ray; 2.70 A; A=25-609.
DR PDB; 1N5U; X-ray; 1.90 A; A=25-609.
DR PDB; 1O9X; X-ray; 3.20 A; A=25-609.
DR PDB; 1TF0; X-ray; 2.70 A; A=25-596.
DR PDB; 1UOR; X-ray; 2.80 A; A=25-609.
DR PDB; 1YSX; NMR; -; A=409-609.
DR PDB; 2BX8; X-ray; 2.70 A; A/B=25-609.
DR PDB; 2BXA; X-ray; 2.35 A; A/B=25-609.
DR PDB; 2BXB; X-ray; 3.20 A; A/B=25-609.
DR PDB; 2BXC; X-ray; 3.10 A; A/B=25-609.
DR PDB; 2BXD; X-ray; 3.05 A; A/B=25-609.
DR PDB; 2BXE; X-ray; 2.95 A; A/B=25-609.
DR PDB; 2BXF; X-ray; 2.95 A; A/B=25-609.
DR PDB; 2BXG; X-ray; 2.70 A; A/B=25-609.
DR PDB; 2BXH; X-ray; 2.25 A; A/B=25-609.
DR PDB; 2BXI; X-ray; 2.50 A; A=25-609.
DR PDB; 2BXK; X-ray; 2.40 A; A=25-609.
DR PDB; 2BXL; X-ray; 2.60 A; A=25-609.
DR PDB; 2BXM; X-ray; 2.50 A; A=25-609.
DR PDB; 2BXN; X-ray; 2.65 A; A=25-609.
DR PDB; 2BXO; X-ray; 2.60 A; A=25-609.
DR PDB; 2BXP; X-ray; 2.30 A; A=25-609.
DR PDB; 2BXQ; X-ray; 2.60 A; A=25-609.
DR PDB; 2ESG; X-ray; -; C=25-609.
DR PDB; 2I2Z; X-ray; 2.70 A; A=25-609.
DR PDB; 2I30; X-ray; 2.90 A; A=25-609.
DR PDB; 2VDB; X-ray; 2.52 A; A=30-608.
DR PDB; 2VUE; X-ray; 2.42 A; A/B=25-609.
DR PDB; 2VUF; X-ray; 3.05 A; A/B=25-609.
DR PDB; 2XSI; X-ray; 2.70 A; A=25-609.
DR PDB; 2XVQ; X-ray; 2.90 A; A/B=25-609.
DR PDB; 2XVU; X-ray; 2.60 A; A/B=25-609.
DR PDB; 2XVV; X-ray; 2.40 A; A=25-609.
DR PDB; 2XVW; X-ray; 2.65 A; A=25-609.
DR PDB; 2XW0; X-ray; 2.40 A; A/B=25-609.
DR PDB; 2XW1; X-ray; 2.50 A; A/B=25-609.
DR PDB; 2YDF; X-ray; 2.75 A; A/B=25-609.
DR PDB; 3A73; X-ray; 2.19 A; A/B=25-609.
DR PDB; 3B9L; X-ray; 2.60 A; A=25-609.
DR PDB; 3B9M; X-ray; 2.70 A; A=25-609.
DR PDB; 3CX9; X-ray; 2.80 A; A=27-608.
DR PDB; 3JQZ; X-ray; 3.30 A; A/B=25-609.
DR PDB; 3JRY; X-ray; 2.30 A; A/B=25-609.
DR PDB; 3LU6; X-ray; 2.70 A; A/B=25-609.
DR PDB; 3LU7; X-ray; 2.80 A; A/B=25-609.
DR PDB; 3LU8; X-ray; 2.60 A; A/B=25-609.
DR PDB; 3SQJ; X-ray; 2.05 A; A/B=27-608.
DR PDB; 3TDL; X-ray; 2.60 A; A=25-609.
DR PDB; 3UIV; X-ray; 2.20 A; A/H=25-609.
DR PDB; 4E99; X-ray; 2.30 A; A=25-609.
DR PDB; 4EMX; X-ray; 2.30 A; A/B=25-609.
DR PDB; 4G03; X-ray; 2.22 A; A/B=25-609.
DR PDB; 4G04; X-ray; 2.30 A; A/B=25-609.
DR PDB; 4HGK; X-ray; 3.04 A; A/B=25-609.
DR PDB; 4HGM; X-ray; 2.34 A; B=25-609.
DR PDB; 4IW1; X-ray; 2.56 A; A=25-609.
DR PDB; 4IW2; X-ray; 2.41 A; A=25-609.
DR PDB; 4K2C; X-ray; 3.23 A; A/B=25-609.
DR PDB; 4K71; X-ray; 2.40 A; A/D=25-609.
DR PDB; 4L8U; X-ray; 2.01 A; A=25-609.
DR PDB; 4L9K; X-ray; 2.40 A; A/B=25-609.
DR PDB; 4L9Q; X-ray; 2.70 A; A/B=25-609.
DR PDB; 4LA0; X-ray; 2.40 A; A/B=25-609.
DR PDB; 4LB2; X-ray; 2.80 A; A/B=25-609.
DR PDB; 4LB9; X-ray; 2.70 A; A=25-609.
DR PDBsum; 1AO6; -.
DR PDBsum; 1BJ5; -.
DR PDBsum; 1BKE; -.
DR PDBsum; 1BM0; -.
DR PDBsum; 1E78; -.
DR PDBsum; 1E7A; -.
DR PDBsum; 1E7B; -.
DR PDBsum; 1E7C; -.
DR PDBsum; 1E7E; -.
DR PDBsum; 1E7F; -.
DR PDBsum; 1E7G; -.
DR PDBsum; 1E7H; -.
DR PDBsum; 1E7I; -.
DR PDBsum; 1GNI; -.
DR PDBsum; 1GNJ; -.
DR PDBsum; 1H9Z; -.
DR PDBsum; 1HA2; -.
DR PDBsum; 1HK1; -.
DR PDBsum; 1HK2; -.
DR PDBsum; 1HK3; -.
DR PDBsum; 1HK4; -.
DR PDBsum; 1HK5; -.
DR PDBsum; 1N5U; -.
DR PDBsum; 1O9X; -.
DR PDBsum; 1TF0; -.
DR PDBsum; 1UOR; -.
DR PDBsum; 1YSX; -.
DR PDBsum; 2BX8; -.
DR PDBsum; 2BXA; -.
DR PDBsum; 2BXB; -.
DR PDBsum; 2BXC; -.
DR PDBsum; 2BXD; -.
DR PDBsum; 2BXE; -.
DR PDBsum; 2BXF; -.
DR PDBsum; 2BXG; -.
DR PDBsum; 2BXH; -.
DR PDBsum; 2BXI; -.
DR PDBsum; 2BXK; -.
DR PDBsum; 2BXL; -.
DR PDBsum; 2BXM; -.
DR PDBsum; 2BXN; -.
DR PDBsum; 2BXO; -.
DR PDBsum; 2BXP; -.
DR PDBsum; 2BXQ; -.
DR PDBsum; 2ESG; -.
DR PDBsum; 2I2Z; -.
DR PDBsum; 2I30; -.
DR PDBsum; 2VDB; -.
DR PDBsum; 2VUE; -.
DR PDBsum; 2VUF; -.
DR PDBsum; 2XSI; -.
DR PDBsum; 2XVQ; -.
DR PDBsum; 2XVU; -.
DR PDBsum; 2XVV; -.
DR PDBsum; 2XVW; -.
DR PDBsum; 2XW0; -.
DR PDBsum; 2XW1; -.
DR PDBsum; 2YDF; -.
DR PDBsum; 3A73; -.
DR PDBsum; 3B9L; -.
DR PDBsum; 3B9M; -.
DR PDBsum; 3CX9; -.
DR PDBsum; 3JQZ; -.
DR PDBsum; 3JRY; -.
DR PDBsum; 3LU6; -.
DR PDBsum; 3LU7; -.
DR PDBsum; 3LU8; -.
DR PDBsum; 3SQJ; -.
DR PDBsum; 3TDL; -.
DR PDBsum; 3UIV; -.
DR PDBsum; 4E99; -.
DR PDBsum; 4EMX; -.
DR PDBsum; 4G03; -.
DR PDBsum; 4G04; -.
DR PDBsum; 4HGK; -.
DR PDBsum; 4HGM; -.
DR PDBsum; 4IW1; -.
DR PDBsum; 4IW2; -.
DR PDBsum; 4K2C; -.
DR PDBsum; 4K71; -.
DR PDBsum; 4L8U; -.
DR PDBsum; 4L9K; -.
DR PDBsum; 4L9Q; -.
DR PDBsum; 4LA0; -.
DR PDBsum; 4LB2; -.
DR PDBsum; 4LB9; -.
DR DisProt; DP00515; -.
DR ProteinModelPortal; P02768; -.
DR SMR; P02768; 26-608.
DR DIP; DIP-29902N; -.
DR IntAct; P02768; 154.
DR MINT; MINT-3004222; -.
DR BindingDB; P02768; -.
DR ChEMBL; CHEMBL3253; -.
DR DrugBank; DB01418; Acenocoumarol.
DR DrugBank; DB00459; Acitretin.
DR DrugBank; DB00802; Alfentanil.
DR DrugBank; DB01370; Aluminium.
DR DrugBank; DB00995; Auranofin.
DR DrugBank; DB01402; Bismuth.
DR DrugBank; DB01197; Captopril.
DR DrugBank; DB00958; Carboplatin.
DR DrugBank; DB00456; Cefalotin.
DR DrugBank; DB01327; Cefazolin.
DR DrugBank; DB01328; Cefonicid.
DR DrugBank; DB01329; Cefoperazone.
DR DrugBank; DB01114; Chlorpheniramine.
DR DrugBank; DB00477; Chlorpromazine.
DR DrugBank; DB00537; Ciprofloxacin.
DR DrugBank; DB01068; Clonazepam.
DR DrugBank; DB01147; Cloxacillin.
DR DrugBank; DB00987; Cytarabine.
DR DrugBank; DB01219; Dantrolene.
DR DrugBank; DB00586; Diclofenac.
DR DrugBank; DB00861; Diflunisal.
DR DrugBank; DB01396; Digitoxin.
DR DrugBank; DB00655; Estrone.
DR DrugBank; DB00903; Ethacrynic acid.
DR DrugBank; DB00749; Etodolac.
DR DrugBank; DB00712; Flurbiprofen.
DR DrugBank; DB00743; Gadobenate Dimeglumine.
DR DrugBank; DB01044; Gatifloxacin.
DR DrugBank; DB01120; Gliclazide.
DR DrugBank; DB01159; Halothane.
DR DrugBank; DB00062; Human Serum Albumin.
DR DrugBank; DB00070; Hyaluronidase.
DR DrugBank; DB01050; Ibuprofen.
DR DrugBank; DB01307; Insulin-detemir.
DR DrugBank; DB01308; Insulin-glargine.
DR DrugBank; DB04711; Iodipamide.
DR DrugBank; DB01009; Ketoprofen.
DR DrugBank; DB00848; Levamisole.
DR DrugBank; DB00451; Levothyroxine.
DR DrugBank; DB00279; Liothyronine.
DR DrugBank; DB00784; Mefenamic acid.
DR DrugBank; DB00532; Mephenytoin.
DR DrugBank; DB00563; Methotrexate.
DR DrugBank; DB00540; Nortriptyline.
DR DrugBank; DB00842; Oxazepam.
DR DrugBank; DB01229; Paclitaxel.
DR DrugBank; DB00946; Phenprocoumon.
DR DrugBank; DB01032; Probenecid.
DR DrugBank; DB00818; Propofol.
DR DrugBank; DB00165; Pyridoxine.
DR DrugBank; DB00936; Salicyclic acid.
DR DrugBank; DB01232; Saquinavir.
DR DrugBank; DB00096; Serum albumin.
DR DrugBank; DB00064; Serum albumin iodonated.
DR DrugBank; DB00815; Sodium lauryl sulfate.
DR DrugBank; DB00364; Sucralfate.
DR DrugBank; DB00576; Sulfamethizole.
DR DrugBank; DB00605; Sulindac.
DR DrugBank; DB00870; Suprofen.
DR DrugBank; DB00624; Testosterone.
DR DrugBank; DB00137; Xanthophyll.
DR Allergome; 763; Hom s HSA.
DR PhosphoSite; P02768; -.
DR UniCarbKB; P02768; -.
DR DMDM; 113576; -.
DR DOSAC-COBS-2DPAGE; P02768; -.
DR OGP; P02768; -.
DR REPRODUCTION-2DPAGE; IPI00384697; -.
DR REPRODUCTION-2DPAGE; IPI00745872; -.
DR REPRODUCTION-2DPAGE; P02768; -.
DR SWISS-2DPAGE; P02768; -.
DR UCD-2DPAGE; P02768; -.
DR PaxDb; P02768; -.
DR PRIDE; P02768; -.
DR DNASU; 213; -.
DR Ensembl; ENST00000295897; ENSP00000295897; ENSG00000163631.
DR Ensembl; ENST00000509063; ENSP00000422784; ENSG00000163631.
DR GeneID; 213; -.
DR KEGG; hsa:213; -.
DR UCSC; uc003hgs.4; human.
DR CTD; 213; -.
DR GeneCards; GC04P074259; -.
DR HGNC; HGNC:399; ALB.
DR HPA; CAB006262; -.
DR MIM; 103600; gene+phenotype.
DR neXtProt; NX_P02768; -.
DR Orphanet; 86816; Congenital analbuminemia.
DR Orphanet; 276271; Familial dysalbuminemic hyperthyroxinemia.
DR PharmGKB; PA24690; -.
DR eggNOG; NOG45992; -.
DR HOVERGEN; HBG004207; -.
DR KO; K16141; -.
DR OMA; NCDKSLH; -.
DR OrthoDB; EOG7S4X5C; -.
DR PhylomeDB; P02768; -.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_15518; Transmembrane transport of small molecules.
DR Reactome; REACT_160300; Binding and Uptake of Ligands by Scavenger Receptors.
DR Reactome; REACT_604; Hemostasis.
DR ChiTaRS; ALB; human.
DR EvolutionaryTrace; P02768; -.
DR GeneWiki; Serum_albumin; -.
DR GenomeRNAi; 213; -.
DR NextBio; 862; -.
DR PMAP-CutDB; P02768; -.
DR PRO; PR:P02768; -.
DR ArrayExpress; P02768; -.
DR Bgee; P02768; -.
DR Genevestigator; P02768; -.
DR GO; GO:0005604; C:basement membrane; IEA:Ensembl.
DR GO; GO:0005615; C:extracellular space; IDA:BHF-UCL.
DR GO; GO:0070062; C:extracellular vesicular exosome; IDA:UniProtKB.
DR GO; GO:0031093; C:platelet alpha granule lumen; TAS:Reactome.
DR GO; GO:0043234; C:protein complex; IDA:UniProtKB.
DR GO; GO:0016209; F:antioxidant activity; NAS:UniProtKB.
DR GO; GO:0005507; F:copper ion binding; NAS:UniProtKB.
DR GO; GO:0003677; F:DNA binding; IDA:UniProtKB.
DR GO; GO:0008144; F:drug binding; IDA:UniProtKB.
DR GO; GO:0005504; F:fatty acid binding; IDA:UniProtKB.
DR GO; GO:0030170; F:pyridoxal phosphate binding; IDA:UniProtKB.
DR GO; GO:0015643; F:toxic substance binding; IDA:UniProtKB.
DR GO; GO:0008270; F:zinc ion binding; IEA:Ensembl.
DR GO; GO:0015721; P:bile acid and bile salt transport; TAS:Reactome.
DR GO; GO:0008206; P:bile acid metabolic process; TAS:Reactome.
DR GO; GO:0009267; P:cellular response to starvation; IDA:UniProtKB.
DR GO; GO:0019836; P:hemolysis by symbiont of host erythrocytes; IDA:UniProtKB.
DR GO; GO:0042157; P:lipoprotein metabolic process; TAS:Reactome.
DR GO; GO:0051659; P:maintenance of mitochondrion location; IDA:UniProtKB.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IDA:UniProtKB.
DR GO; GO:0030168; P:platelet activation; TAS:Reactome.
DR GO; GO:0002576; P:platelet degranulation; TAS:Reactome.
DR GO; GO:0046010; P:positive regulation of circadian sleep/wake cycle, non-REM sleep; IEA:Ensembl.
DR GO; GO:0046689; P:response to mercury ion; IEA:Ensembl.
DR GO; GO:0007584; P:response to nutrient; IEA:Ensembl.
DR GO; GO:0010033; P:response to organic substance; IEA:Ensembl.
DR GO; GO:0070541; P:response to platinum ion; IEA:Ensembl.
DR GO; GO:0043252; P:sodium-independent organic anion transport; TAS:Reactome.
DR GO; GO:0055085; P:transmembrane transport; TAS:Reactome.
DR InterPro; IPR000264; ALB/AFP/VDB.
DR InterPro; IPR020858; Serum_albumin-like.
DR InterPro; IPR021177; Serum_albumin/AFP.
DR InterPro; IPR020857; Serum_albumin_CS.
DR InterPro; IPR014760; Serum_albumin_N.
DR Pfam; PF00273; Serum_albumin; 3.
DR PIRSF; PIRSF002520; Serum_albumin_subgroup; 1.
DR PRINTS; PR00802; SERUMALBUMIN.
DR SMART; SM00103; ALBUMIN; 3.
DR SUPFAM; SSF48552; SSF48552; 3.
DR PROSITE; PS00212; ALBUMIN_1; 3.
DR PROSITE; PS51438; ALBUMIN_2; 3.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing;
KW Cleavage on pair of basic residues; Complete proteome; Copper;
KW Direct protein sequencing; Disease mutation; Disulfide bond;
KW Glycation; Glycoprotein; Lipid-binding; Metal-binding; Phosphoprotein;
KW Polymorphism; Reference proteome; Repeat; Secreted; Signal; Zinc.
FT SIGNAL 1 18
FT PROPEP 19 22
FT /FTId=PRO_0000001067.
FT CHAIN 25 609 Serum albumin.
FT /FTId=PRO_0000001068.
FT DOMAIN 19 210 Albumin 1.
FT DOMAIN 211 403 Albumin 2.
FT DOMAIN 404 601 Albumin 3.
FT METAL 27 27 Copper (By similarity).
FT METAL 91 91 Zinc.
FT METAL 123 123 Zinc.
FT METAL 271 271 Zinc.
FT METAL 273 273 Zinc.
FT BINDING 264 264 Bilirubin.
FT SITE 28 28 Not glycated.
FT SITE 44 44 Not glycated.
FT SITE 65 65 Not glycated.
FT SITE 88 88 Not glycated.
FT SITE 97 97 Not glycated.
FT SITE 117 117 Not glycated.
FT SITE 130 130 Not glycated.
FT SITE 160 160 Not glycated.
FT SITE 183 183 Not glycated.
FT SITE 198 198 Not glycated.
FT SITE 205 205 Not glycated.
FT SITE 214 214 Not glycated.
FT SITE 219 219 Not glycated.
FT SITE 223 223 Aspirin-acetylated lysine.
FT SITE 229 229 Not glycated.
FT SITE 236 236 Not glycated.
FT SITE 264 264 Not glycated.
FT SITE 286 286 Not glycated.
FT SITE 298 298 Not glycated.
FT SITE 310 310 Not glycated.
FT SITE 383 383 Not glycated.
FT SITE 396 396 Not glycated.
FT SITE 413 413 Not glycated.
FT SITE 426 426 Not glycated.
FT SITE 438 438 Not glycated.
FT SITE 456 456 Not glycated.
FT SITE 460 460 Not glycated.
FT SITE 490 490 Not glycated.
FT SITE 499 499 Not glycated.
FT SITE 524 524 Not glycated.
FT SITE 543 543 Not glycated.
FT SITE 548 548 Not glycated.
FT SITE 562 562 Not glycated.
FT SITE 565 565 Not glycated.
FT SITE 581 581 Not glycated.
FT SITE 584 584 Not glycated.
FT SITE 588 588 Not glycated.
FT SITE 598 598 Not glycated.
FT MOD_RES 82 82 Phosphoserine.
FT MOD_RES 443 443 Phosphoserine.
FT MOD_RES 444 444 Phosphothreonine.
FT MOD_RES 446 446 Phosphothreonine.
FT CARBOHYD 36 36 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 75 75 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 161 161 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 186 186 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 223 223 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 249 249 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 257 257 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 300 300 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 305 305 N-linked (Glc) (glycation).
FT CARBOHYD 337 337 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 341 341 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 342 342 N-linked (GlcNAc...); in variant Redhill.
FT /FTId=CAR_000226.
FT CARBOHYD 347 347 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 375 375 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 402 402 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 437 437 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 463 463 N-linked (Glc) (glycation).
FT CARBOHYD 468 468 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 518 518 N-linked (GlcNAc...); in variant
FT Casebrook.
FT /FTId=CAR_000069.
FT CARBOHYD 549 549 N-linked (Glc) (glycation).
FT CARBOHYD 558 558 N-linked (Glc) (glycation) (Probable).
FT CARBOHYD 560 560 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 569 569 N-linked (Glc) (glycation); in vitro.
FT CARBOHYD 597 597 N-linked (Glc) (glycation); in vitro.
FT DISULFID 77 86
FT DISULFID 99 115
FT DISULFID 114 125
FT DISULFID 148 193
FT DISULFID 192 201
FT DISULFID 224 270
FT DISULFID 269 277
FT DISULFID 289 303
FT DISULFID 302 313
FT DISULFID 340 385
FT DISULFID 384 393
FT DISULFID 416 462
FT DISULFID 461 472
FT DISULFID 485 501
FT DISULFID 500 511
FT DISULFID 538 583
FT DISULFID 582 591
FT VAR_SEQ 43 234 Missing (in isoform 2).
FT /FTId=VSP_021275.
FT VARIANT 23 23 R -> C (in Redhill/Malmo-I/Tradate;
FT associated with T-344 in Redhill).
FT /FTId=VAR_000499.
FT VARIANT 23 23 R -> H (in Fukuoka-2/Lille/Taipei/Varese/
FT Komagome-3).
FT /FTId=VAR_000500.
FT VARIANT 24 24 R -> L (in Jaffna).
FT /FTId=VAR_000501.
FT VARIANT 24 24 R -> P (in Takefu/Honolulu-1).
FT /FTId=VAR_000502.
FT VARIANT 24 24 R -> Q (in Christchurch/Honolulu-2).
FT /FTId=VAR_000503.
FT VARIANT 25 25 D -> V (in Bleinheim/Iowa city-2).
FT /FTId=VAR_000504.
FT VARIANT 27 27 H -> Q (in Nagasaki-3).
FT /FTId=VAR_000505.
FT VARIANT 27 27 H -> Y (in Larino).
FT /FTId=VAR_000506.
FT VARIANT 73 73 F -> Y.
FT /FTId=VAR_010657.
FT VARIANT 84 84 E -> K (in Torino).
FT /FTId=VAR_000507.
FT VARIANT 87 87 D -> N (in Malmo-95/Dalakarlia).
FT /FTId=VAR_000508.
FT VARIANT 90 90 L -> P (in DH).
FT /FTId=VAR_013011.
FT VARIANT 106 106 E -> K (in Vibo Valentia).
FT /FTId=VAR_000509.
FT VARIANT 121 121 E -> G.
FT /FTId=VAR_014290.
FT VARIANT 138 138 R -> G (in Yanomama-2).
FT /FTId=VAR_000510.
FT VARIANT 143 143 E -> K (in Nagoya).
FT /FTId=VAR_000511.
FT VARIANT 146 146 V -> E (in Tregasio).
FT /FTId=VAR_013012.
FT VARIANT 152 152 H -> R (in Komagome-2).
FT /FTId=VAR_000512.
FT VARIANT 201 201 C -> F (in Hawkes bay).
FT /FTId=VAR_000513.
FT VARIANT 215 215 A -> T (in dbSNP:rs3210154).
FT /FTId=VAR_014291.
FT VARIANT 215 215 A -> V (in dbSNP:rs3204504).
FT /FTId=VAR_014292.
FT VARIANT 220 220 Q -> L (in dbSNP:rs3210163).
FT /FTId=VAR_014293.
FT VARIANT 242 242 R -> H (in DH).
FT /FTId=VAR_000514.
FT VARIANT 242 242 R -> P (in DH).
FT /FTId=VAR_013013.
FT VARIANT 249 249 K -> Q (in Tradate-2).
FT /FTId=VAR_000515.
FT VARIANT 264 264 K -> E (in Herborn).
FT /FTId=VAR_000516.
FT VARIANT 292 292 Q -> R (in Malmo-10).
FT /FTId=VAR_000517.
FT VARIANT 293 293 D -> G (in Nagasaki-1).
FT /FTId=VAR_000518.
FT VARIANT 300 300 K -> N (in Caserta).
FT /FTId=VAR_000519.
FT VARIANT 337 337 K -> N (in Canterbury/New Guinea/
FT Tagliacozzo/Cuneo/Cooperstown).
FT /FTId=VAR_000520.
FT VARIANT 338 338 D -> G (in Bergamo).
FT /FTId=VAR_013014.
FT VARIANT 338 338 D -> V (in Brest).
FT /FTId=VAR_013015.
FT VARIANT 342 342 N -> K (in Malmo-47).
FT /FTId=VAR_000521.
FT VARIANT 344 344 A -> T (in Redhill; associated with C-
FT 23).
FT /FTId=VAR_000522.
FT VARIANT 345 345 E -> K (in Roma).
FT /FTId=VAR_000523.
FT VARIANT 357 357 E -> K (in Sondrio).
FT /FTId=VAR_000524.
FT VARIANT 378 378 E -> K (in Hiroshima-1).
FT /FTId=VAR_000525.
FT VARIANT 382 382 E -> K (in Coari I/Porto Alegre).
FT /FTId=VAR_000526.
FT VARIANT 383 383 K -> N (in Trieste).
FT /FTId=VAR_013016.
FT VARIANT 389 389 D -> H (in Parklands).
FT /FTId=VAR_000527.
FT VARIANT 389 389 D -> V (in Iowa city-1).
FT /FTId=VAR_000528.
FT VARIANT 396 396 K -> E (in Naskapi/Mersin/Komagome-1).
FT /FTId=VAR_000529.
FT VARIANT 399 399 D -> N (in Nagasaki-2).
FT /FTId=VAR_000530.
FT VARIANT 400 400 E -> K (in Tochigi).
FT /FTId=VAR_000531.
FT VARIANT 400 400 E -> Q (in Malmo-5).
FT /FTId=VAR_000532.
FT VARIANT 406 406 E -> K (in Hiroshima-2).
FT /FTId=VAR_000533.
FT VARIANT 420 420 E -> K.
FT /FTId=VAR_014294.
FT VARIANT 434 434 R -> C (in Liprizzi).
FT /FTId=VAR_013017.
FT VARIANT 490 490 K -> E (in dbSNP:rs1063469).
FT /FTId=VAR_014295.
FT VARIANT 503 503 E -> K (in Dublin).
FT /FTId=VAR_000534.
FT VARIANT 518 518 D -> N (in Casebrook).
FT /FTId=VAR_000535.
FT VARIANT 525 525 E -> K (in Manaus-1/Adana/Lambadi/
FT Vancouver).
FT /FTId=VAR_000536.
FT VARIANT 529 529 E -> K (in Ortonovo).
FT /FTId=VAR_000537.
FT VARIANT 557 557 V -> M (in Maddaloni; dbSNP:rs78284052).
FT /FTId=VAR_013018.
FT VARIANT 560 560 K -> E (in Castel di Sangro).
FT /FTId=VAR_000538.
FT VARIANT 565 565 K -> E (in Maku).
FT /FTId=VAR_000539.
FT VARIANT 574 574 D -> A (in Malmo-61).
FT /FTId=VAR_000541.
FT VARIANT 574 574 D -> G (in Mexico).
FT /FTId=VAR_000540.
FT VARIANT 584 584 K -> E (in Church bay).
FT /FTId=VAR_013019.
FT VARIANT 587 587 D -> N (in Fukuoka-1/Paris-2).
FT /FTId=VAR_000542.
FT VARIANT 589 589 E -> K (in Osaka-1).
FT /FTId=VAR_000543.
FT VARIANT 594 594 E -> K (in Osaka-2/Phnom Phen/albumin B/
FT Verona).
FT /FTId=VAR_000544.
FT VARIANT 596 609 GKKLVAASQAALGL -> PTMRIRERK (in Venezia).
FT /FTId=VAR_000547.
FT VARIANT 597 597 K -> E (in Gent/Milano Fast).
FT /FTId=VAR_000545.
FT VARIANT 598 598 K -> N (in Vanves).
FT /FTId=VAR_000546.
FT VARIANT 599 609 LVAASQAALGL -> TCCCKSSCLRLITSHLKASQPTMRIR
FT ERK (in Kenitra).
FT /FTId=VAR_012981.
FT CONFLICT 55 55 L -> P (in Ref. 11; CAH18185).
FT CONFLICT 122 122 R -> S (in Ref. 4; AAF01333).
FT CONFLICT 155 155 E -> Q (in Ref. 18; AA sequence).
FT CONFLICT 174 174 Y -> L (in Ref. 23; AA sequence and 24;
FT AA sequence).
FT CONFLICT 194 194 Q -> E (in Ref. 18; AA sequence).
FT CONFLICT 327 332 PSLAAD -> MFVLLC (in Ref. 10; AAF71067).
FT CONFLICT 405 405 V -> A (in Ref. 10; AAF71067).
FT CONFLICT 409 409 Q -> E (in Ref. 14; AAH14308).
FT CONFLICT 441 441 Q -> E (in Ref. 2; CAA23753).
FT CONFLICT 466 466 E -> G (in Ref. 4; AAF01333).
FT CONFLICT 488 489 HE -> EH (in Ref. 18; AA sequence).
FT CONFLICT 490 490 K -> R (in Ref. 11; CAH18185).
FT CONFLICT 525 525 E -> Q (in Ref. 18; AA sequence).
FT CONFLICT 551 551 T -> A (in Ref. 11; CAH18185).
FT CONFLICT 560 560 K -> R (in Ref. 11; CAH18185).
FT CONFLICT 604 604 Q -> R (in Ref. 5; AAN17825).
FT HELIX 30 38
FT HELIX 40 54
FT STRAND 55 58
FT HELIX 60 79
FT TURN 84 87
FT HELIX 90 99
FT TURN 101 103
FT HELIX 104 108
FT HELIX 109 116
FT HELIX 119 128
FT HELIX 144 153
FT HELIX 155 169
FT STRAND 170 173
FT HELIX 175 192
FT STRAND 195 197
FT HELIX 198 230
FT HELIX 232 246
FT STRAND 248 250
FT HELIX 252 271
FT HELIX 274 289
FT HELIX 290 294
FT HELIX 297 299
FT HELIX 300 303
FT HELIX 307 315
FT HELIX 330 333
FT STRAND 336 338
FT HELIX 339 345
FT HELIX 347 360
FT HELIX 367 384
FT STRAND 387 389
FT HELIX 390 394
FT HELIX 397 422
FT HELIX 424 438
FT STRAND 440 442
FT HELIX 444 461
FT STRAND 462 464
FT HELIX 466 488
FT STRAND 489 491
FT HELIX 495 502
FT TURN 505 507
FT HELIX 508 513
FT STRAND 519 521
FT HELIX 529 531
FT HELIX 535 538
FT HELIX 542 559
FT STRAND 561 563
FT HELIX 565 583
FT STRAND 584 587
FT HELIX 588 590
FT TURN 591 593
FT HELIX 594 606
SQ SEQUENCE 609 AA; 69367 MW; F88FF61DD242E818 CRC64;
MKWVTFISLL FLFSSAYSRG VFRRDAHKSE VAHRFKDLGE ENFKALVLIA FAQYLQQCPF
EDHVKLVNEV TEFAKTCVAD ESAENCDKSL HTLFGDKLCT VATLRETYGE MADCCAKQEP
ERNECFLQHK DDNPNLPRLV RPEVDVMCTA FHDNEETFLK KYLYEIARRH PYFYAPELLF
FAKRYKAAFT ECCQAADKAA CLLPKLDELR DEGKASSAKQ RLKCASLQKF GERAFKAWAV
ARLSQRFPKA EFAEVSKLVT DLTKVHTECC HGDLLECADD RADLAKYICE NQDSISSKLK
ECCEKPLLEK SHCIAEVEND EMPADLPSLA ADFVESKDVC KNYAEAKDVF LGMFLYEYAR
RHPDYSVVLL LRLAKTYETT LEKCCAAADP HECYAKVFDE FKPLVEEPQN LIKQNCELFE
QLGEYKFQNA LLVRYTKKVP QVSTPTLVEV SRNLGKVGSK CCKHPEAKRM PCAEDYLSVV
LNQLCVLHEK TPVSDRVTKC CTESLVNRRP CFSALEVDET YVPKEFNAET FTFHADICTL
SEKERQIKKQ TALVELVKHK PKATKEQLKA VMDDFAAFVE KCCKADDKET CFAEEGKKLV
AASQAALGL
//
MIM
103600
*RECORD*
*FIELD* NO
103600
*FIELD* TI
+103600 ALBUMIN; ALB
DYSALBUMINEMIC HYPERTHYROXINEMIA, INCLUDED;;
HYPERTHYROXINEMIA, DYSALBUMINEMIC, INCLUDED;;
read moreANALBUMINEMIA, INCLUDED;;
BISALBUMINEMIA, INCLUDED
*FIELD* TX
DESCRIPTION
Albumin is a soluble, monomeric protein which comprises about one-half
of the blood serum protein. Albumin functions primarily as a carrier
protein for steroids, fatty acids, and thyroid hormones and plays a role
in stabilizing extracellular fluid volume. Mutations in the ALB gene on
chromosome 4 result in various anomalous proteins.
CLONING
Albumin is a globular unglycosylated serum protein of molecular weight
65,000. The albumin variant first described by Fraser et al. (1959) in a
Welsh family was characterized as a dimer by Jamieson and Ganguly
(1969). The amino acid sequence has been determined in fragments of
serum albumin of man (Dayhoff, 1972). By 1980, at least 2 dozen
electrophoretic variants of serum albumin had been reported but only 2
of them had been characterized with respect to their primary structure:
albumin A (the common form) and albumin B (the variant found mainly in
Europeans).
MAPPING
Weitkamp et al. (1966) concluded that the albumin locus is closely
linked with the GC locus (139200). Using the Naskapi variant, Kaarsalo
et al. (1967) found close linkage of the albumin and GC loci. Work with
somatic cell hybrids between human leukocytes and rat hepatoma cells
suggested that nucleotide phosphorylase and a human serum albumin locus
may be on the same chromosome (Darlington, 1974); however, these were
subsequently assigned to chromosomes 14 and 4, respectively.
Harper and Dugaiczyk (1983) mapped the albumin gene to chromosome 4 by
in situ hybridization. Dextran sulfate was used to enhance labeling, and
their technique permitted G-banding of the chromosomes with Wright's
stain on the same preparations used for autoradiography without
pretreatment. The regional localization (to 4q11-q13) agreed remarkably
with that arrived at by indirect methods. Kao et al. (1982) assigned the
albumin locus to chromosome 4 by using a human albumin cDNA probe in
human/Chinese hamster somatic cell hybrids. The ALB and
alpha-fetoprotein (AFP; 104150) genes are within 50 kb of each other
(Urano et al., 1984) and show strong linkage disequilibrium (Murray et
al., 1984). Magenis et al. (1989) used in situ hybridization to localize
the ALB and AFP genes to orangutan chromosome 3q11-q15 and gorilla
chromosome 3q11-q12 which are considered homologous to 4q11-q13.
EVOLUTION
The characteristic 3-domain structure of albumin and alpha-fetoprotein
has been conserved throughout mammalian evolution. Thus, 35.2% amino
acid homology is found between bovine serum albumin and murine AFP. Ohno
(1981) addressed the vexing question of why this conservation occurs
despite the nonessential nature of serum albumin as indicated by cases
of analbuminemia. Minghetti et al. (1985) found a high rate of both
silent substitutions and effective substitutions with amino acid changes
in serum albumin. Although the rates of effective substitution in amino
acid changes were not as high in albumin as in alpha-fetoprotein, they
were still faster than those of either hemoglobin or cytochrome c. This
high evolutionary change rate for albumin may be consistent with the
fact that inherited analbuminemia produces surprisingly few symptoms
despite the virtually complete absence of albumin.
Vitamin D binding protein (GC; 139200) and serum protease inhibitor are
linked not only in humans, but also in horse, cattle, and sheep in
mammals, and chicken in avian species. Shibata and Abe (1996) added the
Japanese quail to the group.
GENE STRUCTURE
Minghetti et al. (1986) found that the human albumin gene is 16,961
nucleotides long from the putative 'cap' site to the first poly(A)
addition site. It is split into 15 exons which are symmetrically placed
within the 3 domains that are thought to have arisen by triplication of
a single primordial domain.
GENE FUNCTION
Albumin is synthesized in the liver as preproalbumin, which has an
N-terminal peptide that is removed before the nascent protein is
released from the rough endoplasmic reticulum. The product, proalbumin,
is in turn cleaved in the Golgi vesicles to give the secreted albumin.
Pinkert et al. (1987) used transgenic mice to locate a cis-acting DNA
element, an enhancer, important for efficient, tissue-specific
expression of the mouse albumin gene in the adult. Chimeric genes with
up to 12 kb of mouse albumin 5-prime flanking region fused to a human
growth hormone 'reporter' gene were tested. Whereas a region located 8.5
to 10.4 kb upstream of the albumin promoter was essential for high-level
expression in adult liver, the region between -8.5 and 0.3 kb was
dispensable.
Wandzioch and Zaret (2009) investigated how bone morphogenetic protein
(BMP4; 112262), transforming growth factor-beta (TGF-beta; 190180), and
fibroblast growth factor signaling pathways converge on the earliest
genes, among them ALB1, that elicit pancreas and liver induction in
mouse embryos. The inductive network was found to be dynamic; it changed
within hours. Different signals functioned in parallel to induce
different early genes, and 2 permutations of signals induced liver
progenitor domains, which revealed flexibility in cell programming.
Also, the specification of pancreas and liver progenitors was restricted
by the TGF-beta pathway.
GENETIC VARIABILITY
- Protein Variations
Fraser et al. (1959) found, on 2-dimensional electrophoresis (paper
first, followed by starch), an anomalous plasma protein in 6 persons in
2 generations of a family. The electrophoretic properties on paper were
the same in the anomalous albumin and in normal albumin. This
distinguishes the protein from that in bisalbuminemia, as does the fact
that the amount of the anomalous protein is much less than that of the
normal albumin in presumably heterozygous persons. That the same locus
as that which determines bisalbuminemia is involved here is suggested by
the finding of Weitkamp et al. (1967) that the Fraser anomalous albumin
is also linked to the GC locus.
'Alloalbuminemia' is the term suggested by Blumberg et al. (1968) for
the variant albumins. Various alloalbuminemias occur relatively
frequently in various American Indians (Arends et al., 1969). Melartin
and Blumberg (1966) found an electrophoretic variant of albumin in high
frequency in Naskapi Indians of Quebec and in lower frequency in other
North American Indians. Homozygotes were found.
Weitkamp et al. (1967), using 2 electrophoretic systems, compared the
serum albumin variants of 19 unrelated families. Five distinct classes
were found. One class of variants was found only in North American
Indians. The others were found only in persons of European descent.
In Punjab, North India, Kaur et al. (1982) found, by electrophoresis, 4
cases of alloalbuminemia among 550 persons. Two appeared to be new
variants. Another was albumin Naskapi. Since this variant has been found
also in North American Indians and Eti Turks, the authors suggested that
albumin Naskapi existed in a common ancestral population before the
migrations eastward and westward.
In describing a new human albumin variant, albumin Carlisle, Hutchinson
et al. (1986) stated that more than 80 genetically inherited variants of
human albumin were known. Fine et al. (1987) found a frequency of
alloalbuminemia in the French population of 0.0004. There was a high
occurrence of albumin B and of 2 proalbumin variants, Christchurch and
Lille.
- Bisalbuminemia
Bisalbuminemia is an asymptomatic variation in serum albumin.
Heterozygotes have 2 species of albumin, a normal type and one which
migrates abnormally rapidly or slowly on electrophoresis. Acrocyanosis
was present in 2 and probably 3 successive generations of the family
reported by Williams and Martin (1960) but 4 other bisalbuminemic
persons did not show acrocyanosis.
Tarnoky and Lestas (1964) described a 'new' type of bisalbuminemia in 2
sibs and the son of one of them. The usual type was demonstrable by
filter paper electrophoresis. The new type was demonstrable by
electrophoresis on cellulose acetate at pH 8.6, but not on filter paper
or starch gel. The term 'paralbuminemia' was suggested by Earle et al.
(1959) as preferable to 'bisalbuminemia' which is perhaps appropriate
for the heterozygous state only.
A phenocopy of hereditary bisalbuminemia, acquired bisalbuminemia,
occurs with overdose of beta-lactam antibiotics (Arvan et al., 1968) and
with pancreatic pseudocyst associated with pleural or ascitic effusion
(Shashaty and Atamer, 1972). The anomalous albumin is anodal to the
normal albumin in its electrophoretic mobility. Vaysse et al. (1981)
described acquired trisalbuminemia in a patient with familial
bisalbuminemia and pancreatic pseudocyst.
- Proalbumin
Rochu and Fine (1986) described a new method for identifying genetic
variants of human proalbumin. Two genetic variants of proalbumin,
proalbumin Christchurch (Brennan and Carrell, 1978) and proalbumin Lille
(Abdo et al., 1981), have been shown to result from a substitution at 1
of the 2 arginyl residues at the dibasic site at which the normal
propeptide is cleaved. Both of these mutations prevent excision of this
basic propeptide, and thus each of these proalbumin variants has a
slower electrophoretic mobility than that of normal albumin. Two genetic
variants, previously described as albumin Gainesville and albumin
Pollibauer, were shown to be identical with proalbumin Christchurch
(Fine et al., 1983) and proalbumin Lille (Galliano et al., 1984),
respectively.
Arai et al. (1989) found that the 2 types of proalbumins most common in
Europe (Lille type, arginine-to-histidine at position -2; Christchurch
type, arginine-to-glutamic acid at position -1) also occur in Japan. The
clustering of these and of several other amino acid exchanges in certain
regions of the albumin molecule, arising as independent mutations,
suggests that certain sites are hypermutable and/or that mutants
involving certain sites are more subject to selection than mutants
involving others. In a study of 15,581 unrelated children in Hiroshima
and Nagasaki, Arai et al. (1989) found 5 rare albumin variants and
determined the single amino acid substitution in each. All of these were
inherited and therefore unrelated to parental exposure at the time of
the bombing. The 5 substitutions were: Nag-1, asp269-to-gly; Nag-2,
asp375-to-asn; Nag-3, his3-to-gln; Hir-1, glu354-to-lys; and Hir-2,
glu382-to-lys. Two of the substitutions (Nag-1 and Nag-2) had previously
been reported (Takahashi et al., 1987). No instances of proalbumin
variants or of albumin B (glu570-to-lys), which are the most common
Caucasian alloalbumins, were found in the Hiroshima-Nagasaki study. Arai
et al. (1989) found 2 instances of albumin B and 1 example of a variant
proalbumin in Japanese from the vicinity of Tokyo. In a review of all
reported mutations, Arai et al. (1989) noted that 7 independent
substitution sites have been identified in the alloalbumins of diverse
populations in a sequence of only 29 amino acids as compared to a total
of 5 sites (excluding proalbumin variants) reported thus far for the
first 353 amino acids. Such a cluster of substitutions may reflect
vulnerability of the albumin gene to mutation in this region or the ease
of accommodation to structural changes in the affected area of the
protein. Arai et al. (1990) studied the albumin genetic variants that
have been reported in Asian populations and listed a total of 26 point
substitutions in diverse ethnic groups.
In the family reported by Laurell and Nilehn (1966), a 'new' type of
paralbuminemia was associated with connective tissue disorders,
including systemic lupus erythematosus, ruptured knee meniscus,
recurrent dislocation of shoulder, and back pain. The albumin variant
was characterized by a broad band in agarose gel electrophoresis that
indicated the presence of a slow component. A family study showed that
the anomalous albumin was present in 9 of 23 members representing 3
generations. Noticing a similarity of the electrophoretic pattern to
that of an albumin with an arg(-2)-to-cys mutation which they described,
Brennan et al. (1990) obtained plasma from 1 of the original subjects of
Laurell and Nilehn (1966) and demonstrated that it indeed showed the
same mutation that they had found in proalbumin Malmo (103600.0030).
This anomalous albumin occurs in about 1 per 1,000 persons in Sweden.
- Analbuminemia
Analbuminemia, a rare autosomal recessive disorder in which serum
albumin is absent, was first reported by Bennhold et al. (1954) of
Tubingen. See review by Ott (1962). In some reported families
analbuminemia is a completely recessive condition; serum albumin has a
normal level in heterozygotes. The homozygotes have remarkably little
inconvenience attributable to the lack of serum albumin. In the kindreds
of Bennhold et al. (1954) and Boman et al. (1976), heterozygotes showed
intermediate levels of serum albumin. Lyon et al. (1998) reported that
dye-binding albumin methods employed by clinical laboratories typically
found 3 to 18 g/L albumin in serum from analbuminemia patients. As a
consequence, the diagnosis of analbuminemia (albumin level of zero) only
becomes apparent following measurement of albumin by immunoassay or by
electrophoresis.
Kallee (1996) reported 2 sibs with analbuminemia who were followed for
38 years. The female patient received replacement therapy with human
serum albumin. Extreme lipodystrophy developed in this patient by the
fourth decade of life. She had juvenile osteoporosis, which normalized
under albumin replacement. She died from a granulosa cell cancer at age
69. Her brother never received albumin. He suffered from severe
osteoporosis with gibbus formation, and died from a colon carcinoma at
age 59. Both sibs had chronic insufficiency of the crural veins, with
chronic ulcerations of both lower legs but no varicosities of the upper
thighs. Despite high cholesterol values and high levels of several blood
clotting factors, neither of the patients had severe atherosclerosis or
thrombotic events. Kallee (1996) concluded that although patients often
fail to exhibit serious clinical signs apart from pathologic laboratory
findings, analbuminemia can no longer be regarded as a harmless anomaly.
Boman et al. (1976) presented data consistent with linkage of the
analbuminemia locus and the GC locus (139200). Cormode et al. (1975)
found very low plasma tryptophan in a neonate with analbuminemia who was
small for gestational age. Murray et al. (1983) restudied the family
reported by Boman et al. (1976). The proposita showed trace amounts of
immunologically normal serum albumin. With cDNA probes for the albumin
gene, no deletion could be detected. They demonstrated DNA polymorphism
of the albumin gene. In a review, Ruffner and Dugaiczyk (1988) stated
that of 22 reported analbuminemic individuals, 8 were known to be from
consanguineous matings. Dugaiczyk (1989) suggested that some fetal
hydrops may be caused by analbuminemia. The main causes of hydrops
fetalis are thalassemia and fetomaternal incompatibility; instances in
which neither of these can be demonstrated should be investigated for an
albumin defect.
Analbuminemic rats, like analbuminemic humans, are healthy (Nagase et
al., 1979). The use of cDNA probes failed to detect serum albumin gene
transcripts in liver of these analbuminemic rats (Esumi et al., 1980).
Thus, the disorder in the rat and perhaps the human may be the result of
gene deletion. On the other hand, the normal levels of albumin in
heterozygotes may indicate that the mutation is at a regulatory locus
independent of the albumin locus. In the analbuminemic rat, Esumi et al.
(1982) found albumin mRNA precursors in nuclei although such were
missing from the cytoplasm. From this they concluded that analbuminemia
in rats is caused by a unique type of mutation that affects albumin mRNA
maturation. In analbuminemia of the rat, Esumi et al. (1983)
demonstrated that a 7-bp deletion in an intron interferes with mRNA
formation. Shalaby and Shafritz (1990) showed that exon H is skipped in
the Nagase analbuminemic rat as a result of the 7-bp deletion at the
splice donor site of intron H-I. Mendel et al. (1989) could find no
abnormality of thyroxine transport and distribution in Nagase
analbuminemic rats. Murray et al. (1983) found a frequency of DNA
polymorphism in the ALB gene comparable to that in the globin system. No
gross structural rearrangement was found in a case of human
analbuminemia.
- Familial Dysalbuminemic Hyperthyroxinemia
The serum albumin locus on 4q is presumably the site of the mutation
responsible for the condition called by Ruiz et al. (1982) 'familial
dysalbuminemic hyperthyroxinemia.' Ruiz et al. (1982) studied 15
euthyroid patients from 8 families who showed elevated serum thyroxine
and free-thyroxine index, both due to an abnormal serum albumin that
preferentially binds thyroxine. Since there are several different
changes in the albumin molecule that can lead to increased binding of
thyroxine, several types might be expected. Lalloz et al. (1985)
subdivided FDH into 3 types, depending on the coexistence of T3 and rT3
excess with hyperthyroxinemia. Seemingly, the binding of drugs by
albumin and the release of thyroid hormone to the tissues are not
altered in ways that have clinical significance. DeCosimo et al. (1987)
presented evidence indicating that familial dysalbuminemic
hyperthyroxinemia is unusually frequent in Hispanics of Puerto Rican
origin. Yeo et al. (1987) reported the largest kindred with familial
dysalbuminemic hyperthyroxinemia thus far reported. Two of the patients
had mistakenly been treated for hyperthyroidism. Two women with the
disorder were receiving oral contraceptives, which produced an increase
in serum thyroxine-binding globulin (314200). Yeo et al. (1987) pointed
out that the coexistence of acquired high TBG or significant thyroid
malfunction may confound the diagnosis of dysalbuminemic
hyperthyroxinemia. Yabu et al. (1987) described a form of variant
albumin with a markedly enhanced binding activity for
L-3,5,3-prime-triiodothyronine (T3), a somewhat increased activity for
thyroxine (T4), and a normal activity for
3,3-prime,5-prime-triiodothyronine (rT3). The presence of the variant
albumin was recognized in a patient with Graves disease after successful
subtotal thyroidectomy. The findings could be misdiagnosed as T3
toxicosis or peripheral resistance to thyroid hormones. Premachandra et
al. (1988) commented that in patients with familial dysalbuminemic
hyperthyroxinemia, treatment of hypothyroidism with thyroxine has
special considerations because of binding of the drug to the atypical
albumin, and raised the possibility that other forms of drug therapy may
require custom tailoring.
In a large Amish family of Swiss descent in which 22 members had
dysalbuminemic hyperthyroxinemia, Weiss et al. (1995) showed linkage
between the disorder and the ALB gene, using as markers a SacI
polymorphism in the coding sequence of the ALB gene and the GC gene,
located less than 1 cM from the ALB gene (multipoint lod of 5.53 at
theta = 0.0).
Wada et al. (1997) documented 6 members of a Japanese family with the
FDH phenotype. All were heterozygous for a G-to-C transition in the
second nucleotide of codon 218 of the albumin gene, resulting in an
arg218-to-pro substitution (103600.0055). Wada et al. (1997) proposed
the existence of a distinct ethnic phenotype of FDH characterized by
extremely elevated serum total T4 levels and relatively elevated serum
total T3 and rT3 levels in the Japanese.
Petitpas et al. (2003) characterized the structure of the interaction
between thyroxine and albumin. Using crystallographic analyses, they
identified 4 binding sites for thyroxine on albumin distributed in
subdomains IIA, IIIA, and IIIB. Mutations of arg218 within subdomain
IIA--i.e., arg218 to his (R218H; 103600.0041) and arg218 to pro (R218P;
103600.0055)--greatly enhanced the affinity for thyroxine and caused the
elevated serum thyroxine levels associated with FDH. Structural analyses
of these 2 mutants showed that this effect arises because substitution
of arg218, which contacts the hormone bound in subdomain IIA, produces
localized conformational changes to relax steric restrictions on
thyroxine binding at this site. Petitpas et al. (2003) also found that,
although fatty acid binding competes with thyroxine at all 4 sites, it
induces conformational changes that create a fifth hormone-binding site
in the cleft between domains I and III, at least 9 angstroms from
arg218. These structural observations were consistent with binding data
showing that albumin retains a high-affinity site for thyroxine in the
presence of excess fatty acid that is insensitive to FDH mutations.
- Mutation Information
Takahashi et al. (1987) identified the amino acid substitutions in 3
different types of proalbumins designated Gainesville, Taipei, and
Takefu. The first 2 proalbumins were found to be identical to previously
described proalbumins, Christchurch and Lille types, respectively. All
of the variant proalbumins contain a basic propeptide that is not
removed during posttranscriptional processing because of a mutation in
the site of excision, an arg-arg sequence. Takefu resists tryptic
cleavage because of the substitution of proline for arginine at the -1
position. The substitution of glutamine for histidine at position 3 in
the variant albumin Nagasaki-3 decreases metal-binding affinity;
mutations farther down the polypeptide chain do not affect metal-binding
affinity, nor is there any reduction of copper-binding affinity in
albumin from patients with Wilson disease (277900). The variant
proalbumins show a characteristically lowered metal-binding affinity.
Takahashi et al. (1987) reported the amino acid substitution in 4
albumin variants detected by 1-dimensional electrophoresis in population
surveys involving tribal Amerindians and Japanese children. Albumin
Maku, discovered in a Maku Indian woman living among the Yanomama,
showed a substitution of glutamine for lysine at position 541. Albumin
Yanomama-2 appears to represent a true private polymorphism, i.e., it is
the product of an apparently unique allele within a single tribe that
has a frequency well above the 1% allele minimum for a polymorphism. It
has been found only in Yanomama Indians, was present in 491 of 3,504
persons studied, and had the highest frequency of any polypeptide
variant identified in 21 South American Indian tribes. It was found to
have a substitution of glycine for arginine at position 114. This
appears to represent a change from codon CGA to GGA. Albumin Nagasaki-2
showed a substitution of asparagine for aspartic acid at position 375,
corresponding to a single base change in codon GAT to AAT. Albumin
Nagasaki-3 was found to have substitution of glutamine for histidine at
position 3, corresponding with a 1-base change in the codon CAC to
either CAA or CAG.
Takahashi et al. (1987) pointed out that about one-half of the known
mutations in the coding sections in the large albumin gene border an
exonic junction, raising the possibility that hypermutable 'hot spots'
may be clustered there. In Japan, surveys showed that hemoglobin and
albumin variants were of roughly equal frequency and neither protein
appeared exceptionally variable. Since albumin is a much larger protein,
one might expect more genetic variability than in hemoglobin. This might
suggest that selection is relatively active against variants of this
molecule; yet total absence of this protein (analbuminemia) is
consistent with apparently satisfactory health.
Takahashi et al. (1987) tabulated the 13 amino acid substitutions
identified at that time and pointed out that they are unequally
distributed throughout the polypeptide chain. The slower delineation of
the nature of point mutations in albumin variants as compared to
hemoglobin variants can be attributed to 2 primary factors: first,
alloalbumins are not associated with disease or a significant effect on
physiologic function, and most are rare; second, the albumin molecule
consists of a single polypeptide chain with 585 amino acids and 17
disulfide bridges, a circumstance that magnifies the difficulty of
determining the presence of a single substitution.
Madison et al. (1994) provided a tabulation of the molecular changes in
albumin variants. Asymptomatic increases in the concentration of zinc in
the blood, hyperzincemia (194470), may be due to a variant structure of
albumin with consequent increased binding of zinc. If true, this would
be dysalbuminemic hyperzincemia by a mechanism similar to that involved
in dysalbuminemic hyperthyroxinemia.
Minchiotti et al. (2008) provided a detailed review of variants in the
albumin gene and noted that variants are generally benign. Even the rare
condition analbuminemia, which causes edema and hyperlipidemia, does not
appear to be life-threatening. The majority of mutations are detected
upon clinical electrophoretic studies.
*FIELD* AV
.0001
ALBUMIN FUKUOKA 2
ALBUMIN TAIPEI;;
ALBUMIN LILLE;;
ALBUMIN VARESE
ALB, ARG-2HIS
Substitution of histidine for arginine at position -2 was found in
albumin Fukuoka-2 by Arai et al. (1989), in albumin Taipei by Takahashi
et al. (1987), in albumin Lille by Abdo et al. (1981) and Galliano et
al. (1988), and in albumin Varese by Galliano et al. (1990). A
CGT-to-CAT change is responsible for the substitution.
.0002
ALBUMIN HONOLULU 2
PROALBUMIN CHRISTCHURCH;;
PROALBUMIN GAINESVILLE;;
PROALBUMIN FUKUOKA 3
ALB, ARG-1GLN
This albumin has an arg(-1)-to-gln change in the preproprotein (Arai et
al., 1990; Brennan and Carrell, 1978). Brennan and Carrell (1978) found
a family with a circulating variant of proalbumin in members of 4
generations. No clinical abnormality was discernible in any of them. The
variant represents 50% of total albumin and shows an additional
N-terminal sequence, arg-gly-val-phe-arg-gln. Called 'proalbumin
Christchurch,' the variant appears to have a mutation of arginine to
glutamine at the last amino acid of this sequence. Thus, 2 basic amino
acids must be necessary for cleavage of proalbumin in the Golgi
vesicles. Copper binding is expected to be absent in the variant albumin
because of blocking of the high affinity binding site. This is a
situation comparable to Ehlers-Danlos syndrome type VII-A (130060) in
which an amino acid substitution at the site of cleavage of procollagen
results in persistence of procollagen and, in that case, clinically
important abnormalities in collagen fiber formation.
.0003
ALBUMIN HONOLULU 1
PROALBUMIN TAKEFU
ALB, ARG-1PRO
Substitution of proline for arginine at position -1 (Takahashi et al.,
1987).
.0004
ALBUMIN BREMEN
ALBUMIN BLENHEIM;;
ALBUMIN IOWA CITY 2
ALB, ASP1VAL
See Arai et al. (1990) and Brennan et al. (1990). Brennan et al. (1990)
suggested that hypermutability of 2 CpG dinucleotides in the codons for
the diarginyl sequence may account for the frequency of mutations in the
propeptide. Madison et al. (1991) showed that this mutation is caused by
a GAT-to-GTT change.
.0005
ALBUMIN NAGASAKI 3
ALB, HIS3GLN
See Takahashi et al. (1987).
.0006
ALBUMIN YANOMAMA 2
ALB, ARG114GLY
See Takahashi et al. (1987).
.0007
ALBUMIN NAGOYA
ALB, GLU119LYS
See Arai et al. (1990).
.0008
ALBUMIN NAGASAKI 1
ALBUMIN NIIGATA
ALB, ASP269GLY
See Arai et al. (1989).
.0009
ALBUMIN NEW GUINEA
ALBUMIN TAGLIACOZZO;;
ALBUMIN COOPERSTOWN
ALB, LYS313ASN
Huss et al. (1988) described an electrophoretically fast alloalbumin in
a family in New York State and called it albumin Cooperstown. It was
found to have a substitution of asparagine for lysine at residue 313 and
was shown to be the same as albumins found in Italy and in New Zealand.
A change from AAG to AAY is responsible for the substitution; Y = either
T or C. Galliano et al. (1990) found this albumin variant in 49
individuals in the Abruzzo region of Italy.
.0010
ALBUMIN REDHILL
ALB, ALA320THR AND ARG-2CYS
Brennan et al. (1990) characterized albumin Redhill, an albumin variant
that does not bind nickel and has a molecular mass 2.5 kD higher than
normal albumin. Its inability to bind nickel was explained by the
finding of an additional residue of arginine at position -1 of the
mature protein, but this did not explain the molecular basis of the
increase in apparent molecular mass. Further studies showed an
ala320-to-thr change, which introduced an asn-tyr-thr oligosaccharide
attachment sequence centered at asn318 and explained the increase in
molecular mass. DNA sequencing of PCR-amplified genomic DNA encoding the
prepro sequence of albumin indicated an additional mutation at position
-2 from arg to cys. Brennan et al. (1990) proposed that the new
phe-cys-arg sequence (replacing -phe-arg-arg-) in the propeptide serves
as an aberrant signal peptidase cleavage site and that the signal
peptidase cleaves the propeptide of albumin Redhill in the lumen of the
endoplasmic reticulum before it reaches the Golgi vesicles, which is the
site of the diarginyl-specific proalbumin convertase. Thus, albumin
Redhill is longer than normal by 1 amino acid at its NH2-terminus. The
ARG-2CYS mutation is the basis of proalbumin Malmo (103600.0030), a
relatively frequent variant.
.0011
ALBUMIN ROMA
ALB, GLU321LYS
Galliano et al. (1988) demonstrated that albumin Roma has a substitution
of lysine for glutamic acid at position 321. A GAG-to-AAG change is
responsible for the substitution. Galliano et al. (1990) found this
albumin variant in 25 individuals from various parts of Italy.
.0012
ALBUMIN HIROSHIMA 1
ALB, GLU354LYS
See Arai et al. (1989).
.0013
ALBUMIN PORTO ALEGRE 1
ALBUMIN COARI 1
ALB, GLU358LYS
Arai et al. (1989) reported on amino acid substitutions in albumin
variants found in Brazil. A previously unreported amino acid
substitution was found in albumins Coari I and Porto Alegre I
(glu358-to-lys).
.0014
ALBUMIN PARKLANDS
ALB, ASP365HIS
See Brennan (1985).
.0015
ALBUMIN MERSIN
ALBUMIN NASKAPI;;
ALBUMIN MEXICO 1
ALB, LYS372GLU
Franklin et al. (1980) demonstrated apparent identity between the
polymorphic albumin variants Naskapi, found chiefly in the Naskapi
Indians of Quebec, and Mersin, found in the Eti Turks of southeastern
Turkey. They suggested that these were derived from the same mutation
occurring in Asia and spreading with the progenitors of the American
Indians to the North American continent and with Asiatic invaders to
Asia Minor. Takahashi et al. (1987) found that lysine-372 of normal
(common) albumin A was changed to glutamic acid both in albumin Naskapi
and in albumin Mersin. Identity of these albumins may have originated
through descent from a common mid-Asiatic founder of the 2 migrating
ethnic groups, or it may represent identical but independent mutations
of the albumin gene.
.0016
ALBUMIN NAGASAKI 2
ALB, ASP375ASN
See Takahashi et al. (1987) and Arai et al. (1989).
.0017
ALBUMIN TOCHIGI
ALB, GLU376LYS
See Arai et al. (1989).
.0018
ALBUMIN HIROSHIMA 2
ALB, GLU382LYS
See Arai et al. (1989).
.0019
ALBUMIN LAMBADI
ALBUMIN MANAUS-1;;
ALBUMIN VANCOUVER;;
ALBUMIN BIRMINGHAM;;
ALBUMIN ADANA;;
ALBUMIN PORTO ALEGRE 2
ALB, GLU501LYS
Franklin et al. (1980) found a new variant in Eti Turks, which they
termed albumin Adana. By improved methods, Huss et al. (1988) identified
a substitution of lysine for glutamic acid at position 501 in albumins
Vancouver and Birmingham, both from families that migrated from northern
India, and also in albumin Adana from Turkey. This is the first
substitution reported in an alloalbumin originating from the Indian
subcontinent. Albumin Porto Alegre II also contains a glutamic
acid-to-lysine substitution at position 501.
.0020
ALBUMIN MAKU
ALBUMIN ORIXIMINA-1
ALB, LYS541GLU
See Takahashi et al. (1987). The substitution in albumin Oriximina I is
the same as that found in albumin Maku (lysine to glutamic acid at
position 541) (Arai et al., 1989).
.0021
ALBUMIN MEXICO 2
ALB, ASP550GLY
Franklin et al. (1980) showed that albumin Mexico is in fact 2 separate,
electrophoretically similar variants and that albumin Mexico-2 contains
a substitution of glycine for aspartic acid at position 550.
Substitution of aspartic acid-550 by glycine was found in albumin
Mexico-2 from 4 persons of the Pima tribe (Takahashi et al., 1987).
.0022
ALBUMIN FUKUOKA 1
ALB, ASP563ASN
See Arai et al. (1990).
.0023
ALBUMIN OSAKA 1
ALB, GLU565LYS
See Arai et al. (1990).
.0024
ALBUMIN OSAKA 2
ALBUMIN PHNOM PENH;;
ALBUMIN B;;
ALBUMIN OLIPHANT;;
ALBUMIN NAGANO;;
ALBUMIN VERONA B
ALB, GLU570LYS
Arai et al. (1989) identified the amino acid substitution characteristic
of albumin B (glutamic acid-to-lysine at position 570) in alloalbumins
from 6 unrelated persons of 5 different European descents and also in 2
Japanese and 1 Cambodian. A GAG-to-AAG change is responsible for this
substitution. Galliano et al. (1990) found this variant in 103
individuals in the Veneto area of Italy.
.0025
ALBUMIN GHENT
ALBUMIN MILANO FAST
ALB, LYS573GLU
An AAA-to-GAA change is responsible for this substitution. Galliano et
al. (1990) found this variant in 80 individuals from the Lombardy area
of Italy. Homozygotes have been identified.
.0026
ALBUMIN VANVES
ALB, LYS574ASN
See Galliano et al. (1988).
.0027
ANALBUMINEMIA, AMERICAN INDIAN TYPE
ALB, IVS6, A-G, -2
Ruffner and Dugaiczyk (1988) identified a structural defect in the serum
albumin gene of an analbuminemic American Indian girl. Sequence
determination of 1.1 kb of the 5-prime regulatory region and of 6 kb
across exonic regions revealed a single AG-to-GG mutation within the
3-prime splice site of intron 6 in the defective gene of the
analbuminemic person. In an in vitro assay on the RNA transcript, this
mutation caused a defect in out-splicing of the intron 6 sequence and in
the subsequent ligation of the exon 6/exon 7 sequences. Using
polymerase-amplified genomic DNA and allele-specific
oligodeoxynucleotide probes, Ruffner and Dugaiczyk (1988) also showed
that the sequence of this intron 6/exon 7 splice junction was normal in
a different, unrelated analbuminemic person.
.0028
ALBUMIN VENEZIA
ALB, EX14DEL
Minchiotti et al. (1989) described the molecular defect of an
electrophoretically fast alloalbumin named Venezia, found in about 90
seemingly unrelated families in Italy, mainly in the Veneto region. In
heterozygous subjects the total albumin content was in the normal range,
with the variant accounting for about 30% of the total protein. Reduced
stability of the mutant was thought to account for the
lower-than-expected percentage. Minchiotti et al. (1989) found that
albumin Venezia possesses a shortened polypeptide chain, 578 residues
instead of 585, completely variant from residue 572 to the
COOH-terminus: 572 pro-thr-met-arg-ile-arg-578 glu. This extensive
modification can be accounted for by deletion of exon 14 and translation
to the first terminator codon of exon 15, which normally does not code
for protein. The absence of a basic COOH-terminal dipeptide in the
mature molecule can be explained by the probable action of serum
carboxypeptidase N. The low serum level of the variant in heterozygous
subjects suggests that the carboxy-terminus of the molecule is critical
for albumin stability. Galliano et al. (1990) found this variant in 105
individuals, particularly in the region of Veneto in Italy.
.0029
ALBUMIN CASTEL DI SANGRO
ALB, LYS536GLU
An AAG-to-GAG change is responsible for this substitution. Galliano et
al. (1990) found this variant in 1 individual in Italy.
.0030
PROALBUMIN MALMO
PROALBUMIN TRADATE
ALB, ARG-2CYS
In a collaborative effort involving laboratories at Malmo, Sweden;
Bloomington, Indiana; Christchurch, New Zealand; Saitama, Japan; and
Pavia, Italy, Brennan et al. (1990) studied the most common Swedish
albumin variant, which is expressed in plasma as a broadened
electrophoretic band indicative of a slow component at pH 8.6. Present
in about 1 per 1,000 persons in Sweden, it was also found in a family of
Scottish descent from Kaikoura, New Zealand, and in 5 families in
Tradate, Italy. The major variant component was found to be
arginyl-albumin, in which arginine at the -1 position of the propeptide
is still attached to the processed albumin. A minor component with the
amino-terminal sequence of proalbumin was also present as 3 to 6% of the
total albumin. The mutation was found to involve a change of arginine to
cysteine at the -2 position. (In albumin Redhill (103600.0010), the
Malmo mutation is combined with another.) A CGT-to-TGT change is
responsible for the substitution.
.0031
PROALBUMIN JAFFNA
ALB, ARG-1LEU
In 2 members of a Tamil family from Jaffna (northern Sri Lanka),
Galliano et al. (1989) found an electrophoretically slow-moving variant
of serum albumin. Sequence analysis demonstrated that the variant is an
abnormal proalbumin arising from a substitution of leucine for arginine
at position -1, which prevents the proteolytic removal of the N-terminal
hexapeptide and allows the mutated proalbumin to enter the circulation.
.0032
ALBUMIN GE/CT
ALBUMIN CATANIA
ALB, GLN580LYS
This was the fourth albumin variant to be characterized structurally.
Galliano et al. (1986) found a shortened chain with deletion of a
cytosine in codon 580, causing frameshift and termination after amino
acid 582. The COOH-terminal sequence is leu-val-ala-ala-ser-lys-leu-pro.
Galliano et al. (1990) found this mutation in 62 individuals in Sicily.
.0033
ALBUMIN TORINO
ALB, GLU60LYS
Galliano et al. (1990) found a substitution of lysine for glutamic acid
at position 60 resulting from a GAA-to-AAA change in a single Italian
patient.
.0034
ALBUMIN VIBO VALENTIA
ALB, GLU82LYS
In 2 Italian individuals Galliano et al. (1990) found a GAA-to-AAA
change in codon 82 leading to substitution of lysine for glutamic acid.
.0035
ALBUMIN CASEBROOK
ALB, ASP494ASN
In albumin Casebrook, an electrophoretically slow albumin variant with a
relative molecular mass of 2.5 kD higher than normal albumin, Peach and
Brennan (1991) identified substitution of asparagine for aspartic
acid-494. The mutation introduced an asn-glu-thr N-linked
oligosaccharide attachment sequence centered on asn494, which explained
the increase in molecular mass. The mutant albumin was associated with
no apparent pathology and was detected in 2 unrelated individuals of
Anglo-Saxon descent.
.0036
ALBUMIN IOWA CITY 1
ALB, ASP365VAL
In a survey of alloalbumins in patients at 2 major medical centers in
the United States and nearly 20,000 blood donors in Japan, Madison et
al. (1991) identified 2 previously unreported alloalbumin types. In one
type, found in a Caucasian family and designated Iowa City-1, aspartic
acid at position 365 was replaced by valine. This was the second
reported mutation at position 365; see albumin Parklands (103600.0014).
The codon change was GAT-to-GTT. In the second type, found in a Japanese
blood donor, histidine-128 was replaced by arginine (103600.0037). The
codon change was CAT-to-CGT.
.0037
ALBUMIN KOMAGOME 2
ALB, HIS128ARG
See 103600.0036.
.0038
ALBUMIN RUGBY PARK
ALB, IVS13DS, G-C, +1
Peach et al. (1992) found that 3 members of a family were heterozygous
for an electrophoretically fast albumin variant, designated albumin
Rugby Park, which constituted only 8% of total serum albumin.
Isoelectric focusing indicated an increased negative charge on the
C-terminal CNBr peptide. Sequencing of PCR-amplified DNA indicated a
G-to-C transversion at position 1 of the intron 13. The replacement of
the obligate GT sequence by CT at the exon/intron boundary prevented
splicing of intron 13, and translation continued for 21 nucleotides
until a stop codon was reached. The new protein lacked the 14 amino
acids encoded in exon 14, but these were replaced by 7 new residues,
giving a truncated albumin of 578 residues.
.0039
ALBUMIN HERBORN
ALB, LYS240GLU
Minchiotti et al. (1993) found that albumin Herborn, a variant
discovered in Germany, had a point mutation in codon 240 changing AAA
(lys) to GAA (glu). The mutation was in the region implicated in
bilirubin binding, but Minchiotti et al. (1993) found that the binding
of bilirubin and biliverdin to albumin Herborn was not significantly
reduced.
.0040
ANALBUMINEMIA ROMA
ALB, 1-BP INS, AAT267AAAT, FS274TER
Watkins et al. (1994) investigated analbuminemia in an Italian family by
analysis of DNA from a mother and her daughter. The mother, whose
parents were first cousins, was homozygous for the trait and had a serum
albumin value of less than 0.01 g/dl (about 1/500 normal); the daughter
was heterozygous for the trait and had a nearly normal albumin value.
Molecular cloning and sequence analysis showed that the mutation, called
analbuminemia Roma, was a nucleotide insertion in exon 8, producing a
frameshift that led to a premature stop 7 codons downstream. Watkins et
al. (1994) used heteroduplex hybridization and single-strand
conformation polymorphism to compare the DNA of these 2 individuals with
the DNA of 2 unrelated analbuminemic persons, 1 Italian (called Codogno)
and 1 American (patient G.M.) and showed that each patient had a
different mutation. These mutations also differed from the mutation in
the only human case (in an American Indian) previously studied at the
DNA level (103600.0027). Whereas the normal serum albumin gene has 4 A
residues as nucleotides 9156-9159, the Roma allele had 5 A residues
encompassing 9156-9160. The predicted translation product from the Roma
allele would consist of only 273 amino acids instead of the normal 585
amino acid residues found in mature serum albumin. The insertion of the
additional adenine changed codon 267 from AAT (asn) to AAA (lys) and
changed the reading frame in such a way that codon 274 was changed from
AAA (lys) to TAA (stop).
.0041
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, ARG218HIS
In 2 unrelated patients with dysalbuminemic hyperthyroxinemia, Petersen
et al. (1994) identified an arg218-to-his substitution which was caused
by a G (CGC)-to-A (CAG) transition at nucleotide 653. Abnormal affinity
of the albumin from these patients for a thyroxine analog was verified
by an adaptation of the procedure used in routine free T4 measurement.
Both subjects were heterozygous. During the preparation of the
manuscript, a third patient with the same mutation was found, suggesting
that R218H may be the most frequent cause of this disorder. The mutation
created a new HphI restriction site in exon 7 which was used
diagnostically.
Sunthornthepvarakul et al. (1994) identified R218H mutation in affected
members of 8 unrelated families with dysalbuminemic hyperthyroxinemia.
Pohlenz et al. (2001) reported a 5-month-old boy with familial
dysalbuminemic hyperthyroxinemia and congenital hypothyroidism who had a
blood thyrotropin (TSH) level of 479 mU/L but normal T4 and elevated T3
levels. The patient and his euthyroid father and brother all carried the
R218H mutation.
.0042
ALBUMIN LARINO
ALB, HIS3TYR
Madison et al. (1994) stated that of the more than 50 different genetic
variants of human serum albumin that had been characterized by amino
acid or DNA sequence analysis, almost half had been identified in Italy
through a long-term electrophoretic survey of serum. They reported 4
other Italian alloalbumins not previously recorded: Lorino, his3-to-tyr;
Tradate-2, lys225-to-gln (103600.0043); Caserta, lys276-to-asn
(103600.0044); and Bazzano, a carboxyl-terminal variant (103600.0045).
The first 3 had point mutations that produced a single amino acid
substitution; a nucleotide deletion caused a frameshift and an altered
and truncated carboxy-terminal sequence in albumin Bazzano. In these 4
instances, the expression of the alloalbumin was variable, ranging from
10 to 70% of the total albumin, in contrast to the usual 50% each for
the normal and mutant albumin. Madison et al. (1994) commented that the
distribution of point mutations in the albumin gene is nonrandom; most
of the 47 reported point substitutions involved charged amino acid
residues on the surface of the molecule that are not concerned with
ligand-binding sites.
.0043
ALBUMIN TRADATE 2
ALB, LYS225GLN
See 103600.0042. In a patient from Tradate (Lombardy region), Madison et
al. (1994) demonstrated a substitution of glutamine for lysine-225. An
AAA-to-CAA change is responsible for the substitution. Albumin Tradate-2
was present in equimolar ratio with albumin A and had a fast mobility.
.0044
ALBUMIN CASERTA
ALB, LYS276ASN
See 103600.0042. In 3 members of a family from Caserta near Naples,
Madison et al. (1994) demonstrated a substitution of asparagine for
lysine-276. An AAG-to-AAC change is responsible for the substitution.
The alloalbumin was identified by its fast mobility. The 3 subjects were
heterozygous, but the variant/normal ratio was 1.5/1 in the serum of the
mother, whereas it was about 2/1 in both sibs. In all 3 cases, an
increased total albumin content was observed.
.0045
ALBUMIN BAZZANO
ALB, TGC567GC, FS583TER
See 103600.0042. Madison et al. (1994) found albumin Bazzano in several
families from Bazzano, a small town close to Bologna. At pH 8.6 the
variant was much slower than normal and comprised only about 18% of the
total albumin. In SDS/PAGE, the molecular weight of the variant appeared
slightly lower than normal. Sequence analysis revealed deletion of the
thymine nucleotide at position 15332 in the genomic sequence. This led
to a frameshift and a divergent amino acid sequence of 16 residues
beginning at position 567, with early termination after 582. The
extensive modification caused an increase in positive charge, which
explained the unusually slow mobility of the alloalbumin. The normal
termination codon in albumin is 586. Other carboxy-terminal variants are
albumin Venezia (103600.0028), albumin Rugby Park (103600.0038), and
albumin Catania (103600.0032).
.0046
ALBUMIN ASOLA
ALB, TYR140CYS
In 2 members of a family living in Asola in Lombardia, Italy, Minchiotti
et al. (1995) detected a slow migrating variant of human serum albumin
present in lower amounts than the normal protein by routine clinical
electrophoresis at pH 8.6. Isoelectric focusing analysis of CNBr
fragments localized the mutation to fragment CNBr3 (amino acid residues
124-298). Amino acid sequence analysis showed a tyr140-to-cys
substitution, confirmed by DNA sequence analysis, which resulted from a
single transition of TAT to TGT at nucleotide 5074. Despite the presence
of an additional cysteine residue, several lines of evidence indicated
that albumin Asola had no free sulfhydryl group; therefore, Minchiotti
et al. (1995) proposed that the mutant amino acid, cysteine, was
involved in the formation of a new disulfide bond with cys34, the only
free sulfydryl group present in the normal protein.
.0047
ALBUMIN MALMO 95
ALB, ASP63ASN
Carlson et al. (1992) demonstrated that albumin Malmo-95 has a
substitution of asparagine for aspartic acid-63. A GAC-to-AAC change is
responsible for the substitution.
.0048
ALBUMIN HAWKES BAY
ALB, CYS177PHE
Brennan and Fellowes (1993) demonstrated that albumin Hawkes Bay has a
substitution of phenylalanine for cysteine-177. A TGC-to-TTC change is
responsible for the substitution.
.0049
ALBUMIN MALMO 10
ALB, GLN268ARG
Carlson et al. (1992) demonstrated that albumin Malmo-10 has a
substitution of arginine for glutamine-268. A CAA-to-CGA change is
responsible for the substitution.
.0050
ALBUMIN MALMO 47
ALB, ASN318LYS
Carlson et al. (1992) demonstrated that albumin Malmo-47 has a
substitution of lysine for asparagine-318. A change from AAC to AAA or
AAG is responsible for the substitution.
.0051
ALBUMIN SONDRIA
ALB, GLU333LYS
Minchiotti et al. (1992) demonstrated that albumin Sondria has a
substitution of lysine for glutamic acid-333. A GAA-to-AAA change is
responsible for the substitution.
.0052
ALBUMIN MALMO 5
ALB, GLU376ASN
Carlson et al. (1992) demonstrated that albumin Malmo-5 has a
substitution of glutamine for glutamic acid-376. A GAA-to-CAA change is
responsible for the substitution.
.0053
ALBUMIN DUBLIN
ALB, GLU479LYS
Sakamoto et al. (1991) demonstrated that albumin Dublin has a
substitution of lysine for glutamic acid-479. A GAA-to-AAA change is
responsible for the substitution.
.0054
ALBUMIN ORTONOVO
ALB, GLU505LYS
Galliano et al. (1993) demonstrated that albumin Ortonovo has a
substitution of lysine for glutamic acid-505. A GAA-to-AAA change is
responsible for the substitution.
.0055
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, ARG218PRO
Of 8 members of a 3-generation Japanese family, Wada et al. (1997)
documented 6 who had dysalbuminemic hyperthyroxinemia. Serum total T4
levels ranged from 1763 to 2741 nmol/L (normal range, 66-165), serum
total T3 levels ranged from 2.73-5.62 nmol/L (normal range, 1.47-2.95),
and rT3 levels ranged from 1.08 to 2.52 nmol/L (normal range,
0.22-0.60). All affected family members were heterozygous for a G-to-C
transition in the second nucleotide of codon 218 of the albumin gene,
resulting in an arg218-to-pro substitution.
.0056
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, LEU66PRO
Sunthornthepvarakul et al. (1998) reported an abnormal albumin in
members of a Thai family that presented with high serum total T3 but not
T4 when measured by radioimmunoassay. In contrast, total T3 values were
very low when measured by ELISA and chemiluminescence. The subjects did
not have a goiter and were clinically euthyroid. Their serum free T4,
free T3, and TSH levels were normal. Spiking of T3 to affected serum
showed good recovery by radioimmunoassay but very poor recovery by ELISA
and by chemiluminescence. Immunoprecipitation with labeled T3 bound to
albumin showed a high percent of precipitation in affected serum.
T3-binding studies showed that the association constant of serum albumin
in affected subjects, 1.5 x 10(6)M(-1), was 40-fold that of unaffected
relatives, 3.9 x 10(4)M(-1). The authors found a T-to-C (CTT-to-CCT)
transition in the second nucleotide of codon 66, resulting in
replacement of the normal leucine by proline.
.0057
ANALBUMINEMIA
ALB, IVS1DS, G-A, +1
In a male newborn of Iraqi extraction with analbuminemia, Campagnoli et
al. (2002) found a G-to-A substitution at nucleotide 118 in the ALB
gene. The mutation, involving the first base of intron 1, destroyed the
GT dinucleotide consensus sequence found at the 5-prime end of most
intervening sequences and caused defective pre-mRNA splicing. The child
was homozygous; both parents were heterozygous. The infant presented
with low birthweight due to placental infarctions, and mild edema was
noted after 1 week. There was no jaundice and the bilirubin level was
normal. Only minute amounts of albumin were detected.
Hypercholesterolemia developed in spite of total lipid values within the
normal range. At 18 months he was in good general condition, without
edema, and had normal weight and length for his age. The parents, who
were first cousins, had low albumin concentration values: the father 33
g/l and the mother 27 g/l.
*FIELD* SA
Adams (1966); Arai et al. (1989); Arai et al. (1989); Au et al. (1984);
Barlow et al. (1986); Barlow et al. (1982); Bennhold and Kallee (1959);
Brennan and Herbert (1987); Brennan et al. (1990); Dammacco et al.
(1980); Darlington et al. (1974); Dugaiczyk et al. (1982); Efremov
and Braend (1964); Franklin et al. (1980); Galliano et al. (1988);
Hawkins and Dugaiczyk (1982); Huss et al. (1988); Jensen and Faber
(1987); Kueppers et al. (1969); Kurnit et al. (1982); Lalloz et al.
(1983); Lau et al. (1972); Lavareda de Souza et al. (1984); Melartin
(1967); Melartin et al. (1967); Murray et al. (1983); Prager et al.
(1980); Rajatanavin et al. (1982); Rajatanavin et al. (1984); Sanders
and Tarnoky (1979); Sarcione and Aungst (1962); Sargent et al. (1979);
Sarich (1972); Schell et al. (1978); Schell and Blumberg (1977);
Silverberg and Premachandra (1982); Swain et al. (1980); Takahashi
et al. (1987); Takahashi et al. (1987); Vanzetti et al. (1979); Weitkamp
(1978); Weitkamp and Buck (1972); Weitkamp and Chagnon (1968); Weitkamp
et al. (1969); Weitkamp et al. (1970); Weitkamp et al. (1968); Weitkamp
et al. (1973); Wieme (1960); Yabu et al. (1985); Ying et al. (1981)
*FIELD* RF
1. Abdo, Y.; Rousseaux, J.; Dautrevaux, M.: Proalbumin Lille, a new
variant of human serum albumin. FEBS Lett. 131: 286-288, 1981.
2. Adams, M. S.: Genetic diversity in serum albumin. J. Med. Genet. 3:
198-202, 1966.
3. Arai, K.; Huss, K.; Madison, J.; Putnam, F. W.; Salzano, F. M.;
Franco, M. H. L. P.; Santos, S. E. B.; Freitas, M. J. M.: Amino acid
substitutions in albumin variants found in Brazil. Proc. Nat. Acad.
Sci. 86: 1821-1825, 1989.
4. Arai, K.; Ishioka, N.; Huss, K.; Madison, J.; Putnam, F. W.: Identical
structural changes in inherited albumin variants from different populations. Proc.
Nat. Acad. Sci. 86: 434-438, 1989.
5. Arai, K.; Madison, J.; Huss, K.; Ishioka, N.; Satoh, C.; Fujita,
M.; Neel, J. V.; Sakurabayashi, I.; Putnam, F. W.: Point substitutions
in Japanese alloalbumins. Proc. Nat. Acad. Sci. 86: 6092-6096, 1989.
6. Arai, K.; Madison, J.; Shimizu, A.; Putnam, F. W.: Point substitutions
in albumin genetic variants from Asia. Proc. Nat. Acad. Sci. 87:
497-501, 1990.
7. Arends, T.; Gallango, M. L.; Layrisse, M.; Wilbert, J.; Heinen,
H. D.: Albumin Warao: new type of human alloalbuminemia. Blood 33:
414-420, 1969.
8. Arvan, D.; Blumberg, B.; Melartin, L.: Transient bisalbuminemia
induced by drugs. Clin. Chim. Acta 22: 211-218, 1968.
9. Au, H. Y. N.; Brand, S.; Hutchinson, D. W.; Matejtschuk, P.: Albumins
Warwick 1 and Warwick 2, two human albumin variants. IRCS Med. Sci. 12:
56-57, 1984.
10. Barlow, J. W.; Csicsmann, J. M.; Meinhold, H.; Lim, C.-F.; Stockigt,
J. R.: Familial dysalbuminaemic hyperthyroxinaemia: studies of albumin
binding and implications for hormone action. Clin. Endocr. 24: 39-47,
1986.
11. Barlow, J. W.; Csicsmann, J. M.; White, E. L.; Funder, J. W.;
Stockigt, J. R.: Familial euthyroid thyroxine excess: characterization
of abnormal intermediate affinity thyroxine binding to albumin. J.
Clin. Endocr. Metab. 55: 244-250, 1982.
12. Bennhold, H.; Kallee, E.: Comparative studies on the half-life
of I(131) labelled albumins and nonradioactive human serum albumin
in a case of analbuminemia. J. Clin. Invest. 38: 863-872, 1959.
13. Bennhold, H.; Peters, H.; Roth, E.: Ueber einen Fall von kompletter
Analbuminaemie ohne wesentliche klinische Krankheitszeichen. Verh.
Dtsch. Ges. Inn. Med. 60: 630-634, 1954.
14. Blumberg, B. S.; Martin, J. R.; Melartin, L.: Alloalbuminemia:
albumin Naskapi in Indians of the Ungava. JAMA 203: 180-185, 1968.
15. Boman, H.; Hermodson, M.; Hammond, C. A.; Motulsky, A. G.: Analbuminemia
in an American Indian girl. Clin. Genet. 9: 513-526, 1976.
16. Brennan, S. O.: The molecular abnormality of albumin Parklands:
365 asp-to-his. Biochim. Biophys. Acta 830: 320-324, 1985.
17. Brennan, S. O.; Arai, K.; Madison, J.; Laurell, C.-B.; Galliano,
M.; Watkins, S.; Peach, R.; Myles, T.; George, P.; Putnam, F. W.:
Hypermutability of CpG dinucleotides in the propeptide-encoding sequence
of the human albumin gene. Proc. Nat. Acad. Sci. 87: 3909-3913,
1990.
18. Brennan, S. O.; Carrell, R. W.: A circulating variant of human
proalbumin. Nature 274: 908-909, 1978.
19. Brennan, S. O.; Fellowes, A. P.: Albumin Hawkes Bay; a low level
variant caused by loss of a sulphydryl group at position 177. Biochim.
Biophys. Acta 1182: 46-50, 1993.
20. Brennan, S. O.; Herbert, P.: Albumin Canterbury (313 lys-to-asn):
a point mutation in the second domain of serum albumin. Biochim.
Biophys. Acta 912: 191-197, 1987.
21. Brennan, S. O.; Myles, T.; Peach, R. J.; Donaldson, D.; George,
P. M.: Albumin Redhill (-1 arg, ala320-to-thr): a glycoprotein variant
of human serum albumin whose precursor has an aberrant signal peptidase
cleavage site. Proc. Nat. Acad. Sci. 87: 26-30, 1990.
22. Campagnoli, M.; Rossi, A.; Palmqvist, L.; Flisberg, A.; Niklasson,
A.; Minchotti, L.; Galliano, M.: A novel splicing mutation causes
an undescribed type of analbuminemia. Biochim. Biophys. Acta 1586:
43-49, 2002.
23. Carlson, J.; Sakamoto, Y.; Laurell, C.-B.; Madison, J.; Watkins,
S.; Putnam, F. W.: Alloalbuminemia in Sweden: structural study and
phenotypic distribution of nine albumin variants. Proc. Nat. Acad.
Sci. 89: 8225-8229, 1992.
24. Cormode, E. J.; Lyster, D. M.; Israels, S.: Analbuminemia in
a neonate. J. Pediat. 86: 862-867, 1975.
25. Dammacco, F.; Miglietta, A.; D'Addabbo, A.; Fratello, A.; Moschetta,
R.; Bonomo, L.: Analbuminemia: report of a case and review of the
literature. Vox Sang. 39: 153-161, 1980.
26. Darlington, G.: Personal Communication. New Haven, Conn. and
New York, N. Y. 9/17/1974.
27. Darlington, G. J.; Bernhard, H. P.; Ruddle, F. H.: Human serum
albumin phenotype activation in mouse hepatoma-human leukocyte cell
hybrids. Science 185: 859-862, 1974.
28. Dayhoff, M. O.: Serum albumin. Atlas of Protein Sequence and
Structure. Washington, D. C.: National Biomedical Research Foundation
(pub.) 5: 1972. P. D316.
29. DeCosimo, D. R.; Fang, S.-L.; Braverman, L. E.: Prevalence of
familial dysalbuminemic hyperthyroxinemia in Hispanics. (Letter) Ann.
Intern. Med. 107: 780-781, 1987.
30. Dugaiczyk, A.: Personal Communication. Riverside, Calif. 4/29/1989.
31. Dugaiczyk, A.; Law, S. W.; Dennison, O. E.: Nucleotide sequence
and the encoded amino acids of human serum albumin mRNA. Proc. Nat.
Acad. Sci. 79: 71-75, 1982.
32. Earle, D. P.; Hutt, M. P.; Schmid, K.; Gitlin, D.: Observations
on double albumin: a genetically transmitted serum protein anomaly. J.
Clin. Invest. 38: 1412-1420, 1959.
33. Efremov, G. D.; Braend, M.: Serum albumin: polymorphism in man. Science 146:
1679-1680, 1964.
34. Esumi, H.; Okui, M.; Sato, S.; Sugimura, T.; Nagase, S.: Absence
of albumin mRNA in the liver of analbuminemic rats. Proc. Nat. Acad.
Sci. 77: 3215-3219, 1980.
35. Esumi, H.; Takahashi, Y.; Sato, S.; Nagase, S.; Sugimura, T.:
A seven-base-pair deletion in an intron of the albumin gene of analbuminemic
rats. Proc. Nat. Acad. Sci. 80: 95-99, 1983.
36. Esumi, H.; Takahashi, Y.; Sekiya, T.; Sato, S.; Nagase, S.; Sugimura,
T.: Presence of albumin mRNA precursors in nuclei of analbuminemic
rat liver lacking cytoplasmic albumin mRNA. Proc. Nat. Acad. Sci. 79:
734-738, 1982.
37. Fine, J. M.; Abdo, Y.; Rochu, D.; Rousseaux, J.; Dautrevaux, M.
: Identification of the human albumin variant 'Gainesville' with proalbumin
'Christchurch'. Blood Transf. Immunohemat. 26: 341-346, 1983.
38. Fine, J. M.; Marneux, M.; Rochu, D.: Human albumin genetic variants:
an attempt at a classification of European allotypes. Am. J. Hum.
Genet. 40: 278-286, 1987.
39. Franklin, S. G.; Wolf, S. I.; Ozdemir, Y.; Yuregir, G. T.; Isbir,
T.; Blumberg, B. S.: Albumin Naskapi variant in North American Indians
and Eti Turks. Proc. Nat. Acad. Sci. 77: 5480-5482, 1980.
40. Franklin, S. G.; Wolf, S. I.; Zweidler, A.; Blumberg, B. S.:
Localization of the amino acid substitution site in a new variant
of human serum albumin, albumin Mexico-2. Proc. Nat. Acad. Sci. 77:
2505-2509, 1980.
41. Fraser, G. R.; Harris, H.; Robson, E. B.: A new genetically determined
plasma-protein in man. Lancet 279: 1023-1024, 1959. Note: Originally
Volume I.
42. Galliano, M.; Minchiotti, L.; Ferri, G.; Iadarola, P.; Zapponi,
M. C.; Fine, J. M.: Structural characterization of the human albumin
variant 'Pollibauer'. Blood Transf. Immunohemat. 27: 597-602, 1984.
43. Galliano, M.; Minchiotti, L.; Iadarola, P.; Ferri, G.; Zapponi,
M. C.; Castellani, A. A.: The amino acid substitution in albumin
Roma: 321 glu-to-lys. FEBS Lett. 233: 100-104, 1988.
44. Galliano, M.; Minchiotti, L.; Iadarola, P.; Porta, F.; Stoppini,
M.; Zapponi, M. C.; Ferri, G.; Castellani, A. A.: Genetic variants
of human serum albumin. Prog. Med. Lab. 2: 475-477, 1988.
45. Galliano, M.; Minchiotti, L.; Iadarola, P.; Stoppini, M.; Giagnoni,
P.; Watkins, S.; Madison, J.; Putnam, F. W.: Protein and DNA sequence
analysis of a 'private' genetic variant: albumin Ortonovo (glu505-to-lys). Biochim.
Biophys. Acta 1225: 27-32, 1993.
46. Galliano, M.; Minchiotti, L.; Iadarola, P.; Zapponi, M. C.; Ferri,
G.; Castellani, A. A.: Structural characterization of a chain termination
mutant of human serum albumin. J. Biol. Chem. 261: 4283-4287, 1986.
47. Galliano, M.; Minchiotti, L.; Porta, F.; Rossi, A.; Ferri, G.;
Madison, J.; Watkins, S.; Putnam, F. W.: Mutations in genetic variants
of human serum albumin found in Italy. Proc. Nat. Acad. Sci. 87:
8721-8725, 1990.
48. Galliano, M.; Minchiotti, L.; Stoppini, M.; Tarnoky, A. L.: A
new proalbumin variant: albumin Jaffna (-1 arg-to-leu). FEBS Lett. 255:
295-299, 1989.
49. Harper, M. E.; Dugaiczyk, A.: Linkage of the evolutionarily-related
serum albumin and alpha-fetoprotein genes within q11-22 of human chromosome
4. Am. J. Hum. Genet. 35: 565-572, 1983.
50. Hawkins, J. W.; Dugaiczyk, A.: The human serum albumin gene:
structure of a unique locus. Gene 19: 55-58, 1982.
51. Huss, K.; Madison, J.; Ishioka, N.; Takahashi, N.; Arai, K.; Putnam,
F. W.: The same substitution, glutamic acid-to-lysine at position
501, occurs in three alloalbumins of Asiatic origin: albumins Vancouver,
Birmingham, and Adana. Proc. Nat. Acad. Sci. 85: 6692-6696, 1988.
52. Huss, K.; Putnam, F. W.; Takahashi, N.; Takahashi, Y.; Weaver,
G. A.; Peters, T., Jr.: Albumin Cooperstown: a serum albumin variant
with the same (313 lys-to-asn) mutation found in albumins in Italy
and New Zealand. Clin. Chem. 34: 183-187, 1988.
53. Hutchinson, D. W.; Matejtschuk, P.; Lord, C.: Albumin Carlisle:
occurrence and properties of a new human albumin variant. IRCS Med.
Sci. 14: 1095-1096, 1986.
54. Jamieson, G. A.; Ganguly, P.: Studies on a genetically determined
albumin dimer. Biochem. Genet. 3: 403-416, 1969.
55. Jensen, I. W.; Faber, J.: Familial dysalbuminemic hyperthyroxinemia. Acta
Med. Scand. 221: 469-473, 1987.
56. Kaarsalo, E.; Melartin, L.; Blumberg, B. S.: Autosomal linkage
between the albumin and GC loci in humans. Science 158: 123-125,
1967.
57. Kallee, E.: Bennhold's analbuminemia: a follow-up study of the
first two cases (1953-1992). J. Lab. Clin. Med. 127: 470-480, 1996.
58. Kao, F.-T.; Hawkins, J. W.; Law, M. L.; Dugaiczyk, A.: Assignment
of the structural gene coding for albumin to human chromosome 4. Hum.
Genet. 62: 337-341, 1982.
59. Kaur, H.; Franklin, S. G.; Shrivastava, P. K.; Blumberg, B. S.
: Alloalbuminemia in North India. Am. J. Hum. Genet. 34: 972-979,
1982.
60. Kueppers, F.; Holland, P. V.; Weitkamp, L. R.: Albumin Santa
Ana: a new inherited variant. Hum. Hered. 19: 378-384, 1969.
61. Kurnit, D. M.; Philipp, B. W.; Bruns, G. A. P.: Confirmation
of the mapping assignment of human serum albumin to chromosome 4 using
a cloned human albumin gene. Cytogenet. Cell Genet. 34: 282-288,
1982.
62. Lalloz, M. R. A.; Byfield, P. G. H.; Himsworth, R. L.: Hyperthyroxinaemia:
abnormal binding of T4 by an inherited albumin variant. Clin. Endocr. 18:
11-24, 1983.
63. Lalloz, M. R. A.; Byfield, P. G. H.; Himsworth, R. L.: A new
and distinctive albumin variant with increased affinities for both
triiodothyronines and causing hyperthyroxinaemia. Clin. Endocr. 22:
521-529, 1985.
64. Lau, T. J.; Sunderman, F. W., Jr.; Weitkamp, L. R.; Agarwal, S.
S.; Sutnick, A. I.; Blumberg, B. S.; De Jimenez, R. B. C.: Albumin
Cartago: a 'new' slow-moving alloalbumin. Am. J. Clin. Path. 57:
247-251, 1972.
65. Laurell, C. B.; Nilehn, J. E.: A new type of inherited serum
albumin anomaly. J. Clin. Invest. 45: 1935-1945, 1966.
66. Lavareda de Souza, S.; Frain, M.; Mornet, E.; Sala-Trepat, J.
M.; Lucotte, G.: Polymorphisms of human albumin gene after DNA restriction
by HaeIII endonuclease. Hum. Genet. 67: 48-51, 1984.
67. Lyon, A. W.; Meinert, P.; Bruce, G. A.; Laxdal, V. A.; Salkie,
M. L.: Influence of methodology on the detection and diagnosis of
congenital analbuminemia. Clin. Chem. 44: 2365-2367, 1998.
68. Madison, J.; Arai, K.; Sakamoto, Y.; Feld, R. D.; Kyle, R. A.;
Watkins, S.; Davis, E.; Matsuda, Y.; Amaki, I.; Putnam, F. W.: Genetic
variants of serum albumin in Americans and Japanese. Proc. Nat. Acad.
Sci. 88: 9853-9857, 1991.
69. Madison, J.; Galliano, M.; Watkins, S.; Minchiotti, L.; Porta,
F.; Rossi, A.; Putnam, F. W.: Genetic variants of human serum albumin
in Italy: point mutants and a carboxyl-terminal variant. Proc. Nat.
Acad. Sci. 91: 6476-6480, 1994.
70. Magenis, R. E.; Luo, X. Y.; Dugaiczyk, A.; Ryan, S. C.; Oosterhuis,
J. E.: Chromosomal localization of the albumin and alpha-fetoprotein
genes in the orangutan (Pongo pygmaeus) and gorilla (Gorilla gorilla).
(Abstract) Cytogenet. Cell Genet. 51: 1037 only, 1989.
71. Melartin, L.: Albumin polymorphism in man: studies on albumin
variants in North American native populations. Acta Path. Microbiol.
Scand. 191 (suppl.): 1-50, 1967.
72. Melartin, L.; Blumberg, B. S.: Albumin Naskapi: a new variant
of serum albumin. Science 153: 1664-1666, 1966.
73. Melartin, L.; Blumberg, B. S.; Lisker, R.: Albumin Mexico, a
new variant of serum albumin. Nature 215: 1288-1289, 1967.
74. Mendel, C. M.; Cavalieri, R. R.; Gavin, L. A.; Pettersson, T.;
Inoue, M.: Thyroxine transport and distribution in Nagase analbuminemic
rats. J. Clin. Invest. 83: 143-148, 1989.
75. Minchiotti, L.; Galliano, M.; Iadarola, P.; Meloni, M. L.; Ferri,
G.; Porta, F.; Castellani, A. A.: The molecular defect in a COOH-terminal-modified
and shortened mutant of human serum albumin. J. Biol. Chem. 264:
3385-3389, 1989.
76. Minchiotti, L.; Galliano, M.; Kragh-Hansen, U.; Peters, T., Jr.
: Mutations and polymorphisms of the gene of the major human blood
protein, serum albumin. Hum. Mutat. 29: 1007-1016, 2008.
77. Minchiotti, L.; Galliano, M.; Kragh-Hansen, U.; Watkins, S.; Madison,
J.; Putnam, F. W.: A genetic variant of albumin (albumin Asola; tyr140-to-cys)
with no free -SH group but with an additional disulfide bridge. Europ.
J. Biochem. 228: 155-159, 1995.
78. Minchiotti, L.; Galliano, M.; Stoppini, M.; Ferri, G.; Crespeau,
H.; Rochu, D.; Porta, F.: Two alloalbumins with identical electrophoretic
mobility are produced by differently charged amino acid substitutions. Biochim.
Biophys. Acta 1119: 232-238, 1992.
79. Minchiotti, L.; Galliano, M.; Zapponi, M. C.; Tenni, R.: The
structural characterization and bilirubin-binding properties of albumin
Herborn, a lys240-to-glu albumin mutant. Europ. J. Biochem. 214:
437-444, 1993.
80. Minghetti, P. P.; Law, S. W.; Dugaiczyk, A.: The rate of molecular
evolution of alpha-fetoprotein approaches that of pseudogenes. Molec.
Biol. Evol. 2: 347-358, 1985.
81. Minghetti, P. P.; Ruffner, D. E.; Kuang, W.-J.; Dennison, O. E.;
Hawkins, J. W.; Beattie, W. G.; Dugaiczyk, A.: Molecular structure
of the human albumin gene is revealed by nucleotide sequence within
q11-22 of chromosome 4. J. Biol. Chem. 261: 6747-6757, 1986.
82. Murray, J. C.; Demopulos, C. M.; Lawn, R. M.; Motulsky, A. G.
: Molecular genetics of human serum albumin: restriction enzyme fragment
length polymorphisms and analbuminemia. Proc. Nat. Acad. Sci. 80:
5951-5955, 1983.
83. Murray, J. C.; Demopulos, C. M.; Lawn, R. M.; Motulsky, A. G.
: Restriction endonuclease study of analbuminemia and polymorphisms
at the albumin locus. (Abstract) Clin. Res. 31: 456A only, 1983.
84. Murray, J. C.; Mills, K. A.; Demopulos, C. M.; Hornung, S.; Motulsky,
A. G.: Linkage disequilibrium and evolutionary relationships of DNA
variants (restriction enzyme fragment length polymorphisms) at the
serum albumin locus. Proc. Nat. Acad. Sci. 81: 3486-3490, 1984.
85. Nagase, S.; Shimamune, K.; Shumiya, S.: Albumin-deficient rat
mutant. Science 205: 590-591, 1979.
86. Ohno, S.: Original domain for the serum albumin family arose
from repeated sequences. Proc. Nat. Acad. Sci. 78: 7657-7661, 1981.
87. Ott, H.: Analbuminemia.In: Linneweh, F.: Erbliche Stoffwechselkrankheiten.
Munich: Urban und Schwarzenberg (pub.) 1962. P. 44.
88. Peach, R. J.; Brennan, S. O.: Structural characterization of
a glycoprotein variant of human serum albumin: albumin Casebrook (494
asp-to-asn). Biochim. Biophys. Acta 1097: 49-54, 1991.
89. Peach, R. J.; Fellowes, A. P.; Brennan, S. O.; George, P. M.:
Albumin Rugby Park: a truncated albumin variant caused by a G-to-C
splice-site mutation in intron 13. Biochim. Biophys. Acta 1180:
107-110, 1992.
90. Petersen, C. E.; Scottolini, A. G.; Cody, L. R.; Mandel, M.; Reimer,
N.; Bhagavan, N. V.: A point mutation in the human serum albumin
gene results in familial dysalbuminaemic hyperthyroxinaemia. J. Med.
Genet. 31: 355-359, 1994.
91. Petitpas, I.; Petersen, C. E.; Ha, C.-E.; Bhattacharya, A. A.;
Zunszain, P. A.; Ghuman, J.; Bhagavan, N. V.; Curry, S.: Structural
basis of albumin-thyroxine interactions and familial dysalbuminemic
hyperthyroxinemia. Proc. Nat. Acad. Sci. 100: 6440-6445, 2003.
92. Pinkert, C. A.; Ornitz, D. M.; Brinster, R. L.; Palmiter, R. D.
: An albumin enhancer located 10 kb upstream functions along with
its promoter to direct efficient, liver-specific expression in transgenic
mice. Genes Dev. 1: 268-276, 1987.
93. Pohlenz, J.; Sadow, P. M.; Koffler, T.; Schonberger, W.; Weiss,
R. E.; Refetoff, S.: Congenital hypothyroidism in a child with unsuspected
familial dysalbuminemic hyperthyroxinemia caused by a mutation (R218H)
in the human albumin gene. J. Pediat. 139: 887-891, 2001.
94. Prager, E. M.; Wilson, A. C.; Lowenstein, J. M.; Sarich, V. M.
: Mammoth albumin. Science 209: 287-289, 1980.
95. Premachandra, B. N.; Wolfe, B.; Williams, I. K.: Coexistence
of familial dysalbuminemic hyperthyroxinemia with familial hypercholesterolemia
and multiple lipoprotein type hyperlipidemia. Am. J. Med. 84: 345-351,
1988.
96. Rajatanavin, R.; Fournier, L.; DeCosimo, D.; Abreau, C.; Braverman,
L. E.: Elevated serum free thyroxine by thyroxine analog radioimmunoassays
in euthyroid patients with familial dysalbuminemic hyperthyroxinemia. Ann.
Intern. Med. 97: 865-866, 1982.
97. Rajatanavin, R.; Young, R. A.; Braverman, L. E.: Effect of chloride
on serum thyroxine binding in familial dysalbuminemic hyperthyroxinemia. J.
Clin. Endocr. Metab. 58: 388-391, 1984.
98. Rochu, D.; Fine, J. M.: New method for identifying genetic variants
of human proalbumin. Clin. Chem. 32: 2063-2065, 1986.
99. Ruffner, D. E.; Dugaiczyk, A.: Splicing mutation in human hereditary
analbuminemia. Proc. Nat. Acad. Sci. 85: 2125-2129, 1988.
100. Ruiz, M.; Rajatanavin, R.; Young, R. A.; Taylor, C.; Brown, R.;
Braverman, L. E.; Ingbar, S. H.: Familial dysalbuminemic hyperthyroxinemia:
a syndrome that can be confused with thyrotoxicosis. New Eng. J.
Med. 306: 635-639, 1982.
101. Sakamoto, Y.; Davis, E.; Madison, J.; Watkins, S.; McLaughlin,
H.; Leahy, D. T.; Putnam, F. W.: Purification and structural study
of two albumin variants in an Irish population. Clin. Chim. Acta 204:
179-188, 1991. Note: Erratum: Clin. Chim. Acta 205: 155 only, 1992.
102. Sanders, G. T. B.; Tarnoky, A. L.: Albumin Amsterdam: a new
European albumin variant. IRCS Med. Sci. 7: 581 only, 1979.
103. Sarcione, E. J.; Aungst, C. W.: Studies in bisalbuminemia: binding
properties of the two albumins. Blood 20: 156-164, 1962.
104. Sargent, T. D.; Wu, J.-R.; Sala-Trepat, J. M.; Wallace, R. B.;
Reyes, A. A.; Bonner, J.: The rat serum albumin gene: analysis of
cloned sequences. Proc. Nat. Acad. Sci. 76: 3256-3260, 1979.
105. Sarich, V. M.: Generation time and albumin evolution. Biochem.
Genet. 7: 205-212, 1972.
106. Schell, L. M.; Agarwal, S. S.; Blumberg, B. S.; Levy, H.; Bennett,
H.; Laughlin, W. S.; Martin, J. P.: Distribution of albumin variants
Naskapi and Mexico among Aleuts, Frobisher Bay Eskimos, and Micmac,
Naskapi, Mohawk, Omaha and Apache Indians. Am. J. Phys. Anthrop. 49:
111-118, 1978.
107. Schell, L. M.; Blumberg, B. S.: The genetics of human serum
albumin.In: Rosenoer, V. M.; Oratz, M.; Rothschild, M. A.: Albumin
Structure, Function and Uses. Oxford: Pergamon Press (pub.) 1977.
Pp. 113-141.
108. Shalaby, F.; Shafritz, D. A.: Exon skipping during splicing
of albumin mRNA precursors in Nagase analbuminemic rats. Proc. Nat.
Acad. Sci. 87: 2652-2656, 1990.
109. Shashaty, G.; Atamer, M.: Acquired bisalbuminemia with hyperamylasemia. Digest.
Dis. 17: 59-67, 1972.
110. Shibata, T.; Abe, T.: Linkage between the loci for serum albumin
and vitamin D binding protein (GC) in the Japanese quail. Animal
Genet. 27: 195-197, 1996.
111. Silverberg, J. D. H.; Premachandra, B. N.: Familial hyperthyroxinemia
due to abnormal thyroid hormone binding. Ann. Intern. Med. 96: 183-186,
1982.
112. Sunthornthepvarakul, T.; Angkeow, P.; Weiss, R. E.; Hayashi,
Y.; Refetoff, S.: An identical missense mutation in the albumin gene
results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated
families. Biochem. Biophys. Res. Commun. 202: 781-787, 1994.
113. Sunthornthepvarakul, T.; Likitmaskul, S.; Ngowngarmratana, S.;
Angsusingha, K.; Kitvitayasak, S.; Scherberg, N. H.; Refetoff, S.
: Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly
inherited albumin defect. J. Clin. Endocr. Metab. 83: 1448-1454,
1998.
114. Swain, B. K.; Talukder, G.; Sharma, A.: Bisalbuminaemia: reports
from Calcutta. Biomedicine 33: 172-173, 1980.
115. Takahashi, N.; Takahashi, Y.; Blumberg, B. S.; Putnam, F. W.
: Amino acid substitutions in genetic variants of human serum albumin
and in sequences inferred from molecular cloning. Proc. Nat. Acad.
Sci. 84: 4413-4417, 1987.
116. Takahashi, N.; Takahashi, Y.; Isobe, T.; Putnam, F. W.; Fujita,
M.; Satoh, C.; Neel, J. V.: Amino acid substitutions in inherited
albumin variants from Amerindian and Japanese populations. Proc.
Nat. Acad. Sci. 84: 8001-8005, 1987.
117. Takahashi, N.; Takahashi, Y.; Putnam, F. W.: Structural changes
and metal binding by proalbumins and other amino-terminal genetic
variants of human serum albumin. Proc. Nat. Acad. Sci. 84: 7403-7407,
1987.
118. Tarnoky, A. L.; Lestas, A. N.: A new type of bisalbuminaemia. Clin.
Chim. Acta 9: 551-558, 1964.
119. Urano, Y.; Sakai, M.; Watanabe, K.; Tamaoki, T.: Tandem arrangement
of the albumin and alpha-fetoprotein genes in the human genome. Gene 32:
255-261, 1984.
120. Vanzetti, G.; Porta, F.; Prencipe, L.; Scherini, A.; Fraccaro,
M.: A homozygote for a serum albumin variant of the fast type. Hum.
Genet. 46: 5-9, 1979.
121. Vaysse, J.; Pilardeau, P.; Garnier, M.: Trisalbuminemia. (Letter) New
Eng. J. Med. 305: 833-834, 1981.
122. Wada, N.; Chiba, H.; Shimizu, C.; Kijima, H.; Kubo, M.; Koike
T.: A novel missense mutation in codon 218 of the albumin gene in
a distinct phenotype of familial dysalbuminemic hyperthyroxinemia
in a Japanese kindred. J. Clin. Endocr. Metab. 82: 3246-3250, 1997.
123. Wandzioch, E.; Zaret, K. S.: Dynamic signaling network for the
specification of embryonic pancreas and liver progenitors. Science 324:
1707-1710, 2009.
124. Watkins, S.; Madison, J.; Galliano, M.; Minchiotti, L.; Putnam,
F. W.: A nucleotide insertion and frameshift cause analbuminemia
in an Italian family. Proc. Nat. Acad. Sci. 91: 2275-2279, 1994.
125. Weiss, R. E.; Sunthornthepvarakul, T.; Angkeow, P.; Marcus-Bagley,
D.; Cox, N.; Alper, C. A.; Refetoff, S.: Linkage of familial dysalbuminemic
hyperthyroxinemia to the albumin gene in a large Amish kindred. J.
Clin. Endocr. Metab. 80: 116-121, 1995.
126. Weitkamp, L. R.: Comparative gene mapping: linkage between the
albumin and Gc loci in the horse. (Abstract) Am. J. Hum. Genet. 30:
128A only, 1978.
127. Weitkamp, L. R.; Buck, A. A.: Phenotype frequencies for four
serum proteins in Afghanistan: two 'new' albumin variants. Humangenetik 15:
335-340, 1972.
128. Weitkamp, L. R.; Chagnon, N. A.: Albumin Maku: a new variant
of human serum albumin. Nature 217: 759-760, 1968.
129. Weitkamp, L. R.; Franglen, G.; Rokala, D. A.; Polesky, H. F.;
Simpson, N. E.; Sunderman, F. W., Jr.; Bell, H. E.; Saave, J.; Lisker,
R.; Bohls, S. W.: An electrophoretic comparison of human serum albumin
variants: eight distinguishable types. Hum. Hered. 19: 159-169,
1969.
130. Weitkamp, L. R.; Renwick, J. H.; Berger, J. P.; Shreffler, D.
C.; Drachmann, O.; Wuhrmann, F.; Braend, M.; Franglen, G.: Additional
data and summary for albumin-GC linkage in man. Hum. Hered. 20:
1-7, 1970.
131. Weitkamp, L. R.; Robson, E. B.; Shreffler, D. C.; Corney, G.
: An unusual human serum albumin variant: further data on genetic
linkage between loci for human serum albumin and group-specific component
(GC). Am. J. Hum. Genet. 20: 392-397, 1968.
132. Weitkamp, L. R.; Rucknagel, D. L.; Gershowitz, H.: Genetic linkage
between structural loci for albumin and group specific component (GC). Am.
J. Hum. Genet. 18: 559-571, 1966.
133. Weitkamp, L. R.; Salzano, F. M.; Neel, J. V.; Porta, F.; Geerdink,
R. A.; Tarnoky, A. L.: Human serum albumin: twenty-three genetic
variants and their population distribution. Ann. Hum. Genet. 36:
381-392, 1973.
134. Weitkamp, L. R.; Shreffler, D. C.; Robbins, J. L.; Drachmann,
O.; Adner, P. L.; Weime, R. J.; Simon, N. M.; Cooke, K. B.; Sandor,
G.; Wuhrmann, F.; Braend, M.; Tarnoky, A. L.: An electrophoretic
comparison of serum albumin variants from nineteen unrelated families. Acta
Genet. Statist. Med. 17: 399-405, 1967.
135. Wieme, R. J.: On the presence of two albumins in certain normal
human sera and its genetic determination. Clin. Chim. Acta 5: 443-445,
1960.
136. Williams, D. I.; Martin, N. H.: Bisalbuminemia with curious
acrocyanotic skin changes (two cases). Proc. Roy. Soc. Med. 53:
566-568, 1960.
137. Yabu, Y.; Amir, S. M.; Ruiz, M.; Braverman, L. E.; Ingbar, S.
H.: Heterogeneity of thyroxine binding by serum albumins in normal
subjects and patients with familial dysalbuminemic hyperthyroxinemia. J.
Clin. Endocr. Metab. 60: 451-459, 1985.
138. Yabu, Y.; Miyai, K.; Kobayashi, A.; Miki, K.; Doi, K.; Takamatsu,
J.; Mozai, T.; Matsuzuka, F.; Kuma, K.: A new type of albumin with
predominantly increased binding affinity for 3,3-prime,5-triiodothyronine
in a patient with Graves' disease. J. Endocr. Invest. 10: 163-169,
1987.
139. Yeo, P. P. B.; Yabu, Y.; Etzkorn, J. R.; Rajatanavin, R.; Braverman,
L. E.; Ingbar, S. H.: A four generation study of dysalbuminemic hyperthyroxinemia:
diagnosis in the presence of an acquired excess of thyroxine-binding
globulin. J. Endocr. Invest. 10: 33-38, 1987.
140. Ying, Q.; Liang, Z.; Wu, H.; Wang, L.: The gene frequency of
serum albumin variants in Chinese and the electrophoretic characterization
of several serum albumin variants. Scientia Sin. 24: 1597-1602,
1981.
*FIELD* CN
Cassandra L. Kniffin - updated: 9/3/2009
Ada Hamosh - updated: 7/9/2009
Carol A. Bocchini - updated: 7/9/2008
Victor A. McKusick - updated: 6/25/2003
Victor A. McKusick - updated: 6/5/2003
Victor A. McKusick - updated: 2/15/2002
Ada Hamosh - updated: 1/29/2002
Ada Hamosh - updated: 2/10/2000
John A. Phillips, III - updated: 7/16/1998
John A. Phillips, III - updated: 12/25/1997
Jon B. Obray - updated: 8/27/1996
Stylianos E. Antonarakis - updated: 7/25/1996
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
terry: 06/06/2012
terry: 3/23/2010
wwang: 9/15/2009
ckniffin: 9/3/2009
alopez: 7/16/2009
terry: 7/9/2009
terry: 6/3/2009
terry: 1/7/2009
terry: 11/21/2008
terry: 8/15/2008
carol: 7/9/2008
wwang: 8/22/2007
carol: 3/17/2004
tkritzer: 6/26/2003
tkritzer: 6/25/2003
carol: 6/6/2003
tkritzer: 6/5/2003
cwells: 3/6/2002
cwells: 2/21/2002
terry: 2/15/2002
alopez: 1/31/2002
terry: 1/29/2002
carol: 6/14/2001
carol: 2/10/2000
carol: 8/3/1998
dholmes: 7/17/1998
dholmes: 7/16/1998
dkim: 6/26/1998
alopez: 1/23/1998
alopez: 8/5/1997
alopez: 7/31/1997
terry: 5/6/1997
terry: 10/28/1996
terry: 10/22/1996
carol: 8/27/1996
joanna: 8/26/1996
carol: 8/13/1996
carol: 7/27/1996
carol: 7/25/1996
mark: 6/27/1995
jason: 7/13/1994
davew: 8/10/1994
terry: 6/3/1995
carol: 8/30/1994
warfield: 4/7/1994
*RECORD*
*FIELD* NO
103600
*FIELD* TI
+103600 ALBUMIN; ALB
DYSALBUMINEMIC HYPERTHYROXINEMIA, INCLUDED;;
HYPERTHYROXINEMIA, DYSALBUMINEMIC, INCLUDED;;
read moreANALBUMINEMIA, INCLUDED;;
BISALBUMINEMIA, INCLUDED
*FIELD* TX
DESCRIPTION
Albumin is a soluble, monomeric protein which comprises about one-half
of the blood serum protein. Albumin functions primarily as a carrier
protein for steroids, fatty acids, and thyroid hormones and plays a role
in stabilizing extracellular fluid volume. Mutations in the ALB gene on
chromosome 4 result in various anomalous proteins.
CLONING
Albumin is a globular unglycosylated serum protein of molecular weight
65,000. The albumin variant first described by Fraser et al. (1959) in a
Welsh family was characterized as a dimer by Jamieson and Ganguly
(1969). The amino acid sequence has been determined in fragments of
serum albumin of man (Dayhoff, 1972). By 1980, at least 2 dozen
electrophoretic variants of serum albumin had been reported but only 2
of them had been characterized with respect to their primary structure:
albumin A (the common form) and albumin B (the variant found mainly in
Europeans).
MAPPING
Weitkamp et al. (1966) concluded that the albumin locus is closely
linked with the GC locus (139200). Using the Naskapi variant, Kaarsalo
et al. (1967) found close linkage of the albumin and GC loci. Work with
somatic cell hybrids between human leukocytes and rat hepatoma cells
suggested that nucleotide phosphorylase and a human serum albumin locus
may be on the same chromosome (Darlington, 1974); however, these were
subsequently assigned to chromosomes 14 and 4, respectively.
Harper and Dugaiczyk (1983) mapped the albumin gene to chromosome 4 by
in situ hybridization. Dextran sulfate was used to enhance labeling, and
their technique permitted G-banding of the chromosomes with Wright's
stain on the same preparations used for autoradiography without
pretreatment. The regional localization (to 4q11-q13) agreed remarkably
with that arrived at by indirect methods. Kao et al. (1982) assigned the
albumin locus to chromosome 4 by using a human albumin cDNA probe in
human/Chinese hamster somatic cell hybrids. The ALB and
alpha-fetoprotein (AFP; 104150) genes are within 50 kb of each other
(Urano et al., 1984) and show strong linkage disequilibrium (Murray et
al., 1984). Magenis et al. (1989) used in situ hybridization to localize
the ALB and AFP genes to orangutan chromosome 3q11-q15 and gorilla
chromosome 3q11-q12 which are considered homologous to 4q11-q13.
EVOLUTION
The characteristic 3-domain structure of albumin and alpha-fetoprotein
has been conserved throughout mammalian evolution. Thus, 35.2% amino
acid homology is found between bovine serum albumin and murine AFP. Ohno
(1981) addressed the vexing question of why this conservation occurs
despite the nonessential nature of serum albumin as indicated by cases
of analbuminemia. Minghetti et al. (1985) found a high rate of both
silent substitutions and effective substitutions with amino acid changes
in serum albumin. Although the rates of effective substitution in amino
acid changes were not as high in albumin as in alpha-fetoprotein, they
were still faster than those of either hemoglobin or cytochrome c. This
high evolutionary change rate for albumin may be consistent with the
fact that inherited analbuminemia produces surprisingly few symptoms
despite the virtually complete absence of albumin.
Vitamin D binding protein (GC; 139200) and serum protease inhibitor are
linked not only in humans, but also in horse, cattle, and sheep in
mammals, and chicken in avian species. Shibata and Abe (1996) added the
Japanese quail to the group.
GENE STRUCTURE
Minghetti et al. (1986) found that the human albumin gene is 16,961
nucleotides long from the putative 'cap' site to the first poly(A)
addition site. It is split into 15 exons which are symmetrically placed
within the 3 domains that are thought to have arisen by triplication of
a single primordial domain.
GENE FUNCTION
Albumin is synthesized in the liver as preproalbumin, which has an
N-terminal peptide that is removed before the nascent protein is
released from the rough endoplasmic reticulum. The product, proalbumin,
is in turn cleaved in the Golgi vesicles to give the secreted albumin.
Pinkert et al. (1987) used transgenic mice to locate a cis-acting DNA
element, an enhancer, important for efficient, tissue-specific
expression of the mouse albumin gene in the adult. Chimeric genes with
up to 12 kb of mouse albumin 5-prime flanking region fused to a human
growth hormone 'reporter' gene were tested. Whereas a region located 8.5
to 10.4 kb upstream of the albumin promoter was essential for high-level
expression in adult liver, the region between -8.5 and 0.3 kb was
dispensable.
Wandzioch and Zaret (2009) investigated how bone morphogenetic protein
(BMP4; 112262), transforming growth factor-beta (TGF-beta; 190180), and
fibroblast growth factor signaling pathways converge on the earliest
genes, among them ALB1, that elicit pancreas and liver induction in
mouse embryos. The inductive network was found to be dynamic; it changed
within hours. Different signals functioned in parallel to induce
different early genes, and 2 permutations of signals induced liver
progenitor domains, which revealed flexibility in cell programming.
Also, the specification of pancreas and liver progenitors was restricted
by the TGF-beta pathway.
GENETIC VARIABILITY
- Protein Variations
Fraser et al. (1959) found, on 2-dimensional electrophoresis (paper
first, followed by starch), an anomalous plasma protein in 6 persons in
2 generations of a family. The electrophoretic properties on paper were
the same in the anomalous albumin and in normal albumin. This
distinguishes the protein from that in bisalbuminemia, as does the fact
that the amount of the anomalous protein is much less than that of the
normal albumin in presumably heterozygous persons. That the same locus
as that which determines bisalbuminemia is involved here is suggested by
the finding of Weitkamp et al. (1967) that the Fraser anomalous albumin
is also linked to the GC locus.
'Alloalbuminemia' is the term suggested by Blumberg et al. (1968) for
the variant albumins. Various alloalbuminemias occur relatively
frequently in various American Indians (Arends et al., 1969). Melartin
and Blumberg (1966) found an electrophoretic variant of albumin in high
frequency in Naskapi Indians of Quebec and in lower frequency in other
North American Indians. Homozygotes were found.
Weitkamp et al. (1967), using 2 electrophoretic systems, compared the
serum albumin variants of 19 unrelated families. Five distinct classes
were found. One class of variants was found only in North American
Indians. The others were found only in persons of European descent.
In Punjab, North India, Kaur et al. (1982) found, by electrophoresis, 4
cases of alloalbuminemia among 550 persons. Two appeared to be new
variants. Another was albumin Naskapi. Since this variant has been found
also in North American Indians and Eti Turks, the authors suggested that
albumin Naskapi existed in a common ancestral population before the
migrations eastward and westward.
In describing a new human albumin variant, albumin Carlisle, Hutchinson
et al. (1986) stated that more than 80 genetically inherited variants of
human albumin were known. Fine et al. (1987) found a frequency of
alloalbuminemia in the French population of 0.0004. There was a high
occurrence of albumin B and of 2 proalbumin variants, Christchurch and
Lille.
- Bisalbuminemia
Bisalbuminemia is an asymptomatic variation in serum albumin.
Heterozygotes have 2 species of albumin, a normal type and one which
migrates abnormally rapidly or slowly on electrophoresis. Acrocyanosis
was present in 2 and probably 3 successive generations of the family
reported by Williams and Martin (1960) but 4 other bisalbuminemic
persons did not show acrocyanosis.
Tarnoky and Lestas (1964) described a 'new' type of bisalbuminemia in 2
sibs and the son of one of them. The usual type was demonstrable by
filter paper electrophoresis. The new type was demonstrable by
electrophoresis on cellulose acetate at pH 8.6, but not on filter paper
or starch gel. The term 'paralbuminemia' was suggested by Earle et al.
(1959) as preferable to 'bisalbuminemia' which is perhaps appropriate
for the heterozygous state only.
A phenocopy of hereditary bisalbuminemia, acquired bisalbuminemia,
occurs with overdose of beta-lactam antibiotics (Arvan et al., 1968) and
with pancreatic pseudocyst associated with pleural or ascitic effusion
(Shashaty and Atamer, 1972). The anomalous albumin is anodal to the
normal albumin in its electrophoretic mobility. Vaysse et al. (1981)
described acquired trisalbuminemia in a patient with familial
bisalbuminemia and pancreatic pseudocyst.
- Proalbumin
Rochu and Fine (1986) described a new method for identifying genetic
variants of human proalbumin. Two genetic variants of proalbumin,
proalbumin Christchurch (Brennan and Carrell, 1978) and proalbumin Lille
(Abdo et al., 1981), have been shown to result from a substitution at 1
of the 2 arginyl residues at the dibasic site at which the normal
propeptide is cleaved. Both of these mutations prevent excision of this
basic propeptide, and thus each of these proalbumin variants has a
slower electrophoretic mobility than that of normal albumin. Two genetic
variants, previously described as albumin Gainesville and albumin
Pollibauer, were shown to be identical with proalbumin Christchurch
(Fine et al., 1983) and proalbumin Lille (Galliano et al., 1984),
respectively.
Arai et al. (1989) found that the 2 types of proalbumins most common in
Europe (Lille type, arginine-to-histidine at position -2; Christchurch
type, arginine-to-glutamic acid at position -1) also occur in Japan. The
clustering of these and of several other amino acid exchanges in certain
regions of the albumin molecule, arising as independent mutations,
suggests that certain sites are hypermutable and/or that mutants
involving certain sites are more subject to selection than mutants
involving others. In a study of 15,581 unrelated children in Hiroshima
and Nagasaki, Arai et al. (1989) found 5 rare albumin variants and
determined the single amino acid substitution in each. All of these were
inherited and therefore unrelated to parental exposure at the time of
the bombing. The 5 substitutions were: Nag-1, asp269-to-gly; Nag-2,
asp375-to-asn; Nag-3, his3-to-gln; Hir-1, glu354-to-lys; and Hir-2,
glu382-to-lys. Two of the substitutions (Nag-1 and Nag-2) had previously
been reported (Takahashi et al., 1987). No instances of proalbumin
variants or of albumin B (glu570-to-lys), which are the most common
Caucasian alloalbumins, were found in the Hiroshima-Nagasaki study. Arai
et al. (1989) found 2 instances of albumin B and 1 example of a variant
proalbumin in Japanese from the vicinity of Tokyo. In a review of all
reported mutations, Arai et al. (1989) noted that 7 independent
substitution sites have been identified in the alloalbumins of diverse
populations in a sequence of only 29 amino acids as compared to a total
of 5 sites (excluding proalbumin variants) reported thus far for the
first 353 amino acids. Such a cluster of substitutions may reflect
vulnerability of the albumin gene to mutation in this region or the ease
of accommodation to structural changes in the affected area of the
protein. Arai et al. (1990) studied the albumin genetic variants that
have been reported in Asian populations and listed a total of 26 point
substitutions in diverse ethnic groups.
In the family reported by Laurell and Nilehn (1966), a 'new' type of
paralbuminemia was associated with connective tissue disorders,
including systemic lupus erythematosus, ruptured knee meniscus,
recurrent dislocation of shoulder, and back pain. The albumin variant
was characterized by a broad band in agarose gel electrophoresis that
indicated the presence of a slow component. A family study showed that
the anomalous albumin was present in 9 of 23 members representing 3
generations. Noticing a similarity of the electrophoretic pattern to
that of an albumin with an arg(-2)-to-cys mutation which they described,
Brennan et al. (1990) obtained plasma from 1 of the original subjects of
Laurell and Nilehn (1966) and demonstrated that it indeed showed the
same mutation that they had found in proalbumin Malmo (103600.0030).
This anomalous albumin occurs in about 1 per 1,000 persons in Sweden.
- Analbuminemia
Analbuminemia, a rare autosomal recessive disorder in which serum
albumin is absent, was first reported by Bennhold et al. (1954) of
Tubingen. See review by Ott (1962). In some reported families
analbuminemia is a completely recessive condition; serum albumin has a
normal level in heterozygotes. The homozygotes have remarkably little
inconvenience attributable to the lack of serum albumin. In the kindreds
of Bennhold et al. (1954) and Boman et al. (1976), heterozygotes showed
intermediate levels of serum albumin. Lyon et al. (1998) reported that
dye-binding albumin methods employed by clinical laboratories typically
found 3 to 18 g/L albumin in serum from analbuminemia patients. As a
consequence, the diagnosis of analbuminemia (albumin level of zero) only
becomes apparent following measurement of albumin by immunoassay or by
electrophoresis.
Kallee (1996) reported 2 sibs with analbuminemia who were followed for
38 years. The female patient received replacement therapy with human
serum albumin. Extreme lipodystrophy developed in this patient by the
fourth decade of life. She had juvenile osteoporosis, which normalized
under albumin replacement. She died from a granulosa cell cancer at age
69. Her brother never received albumin. He suffered from severe
osteoporosis with gibbus formation, and died from a colon carcinoma at
age 59. Both sibs had chronic insufficiency of the crural veins, with
chronic ulcerations of both lower legs but no varicosities of the upper
thighs. Despite high cholesterol values and high levels of several blood
clotting factors, neither of the patients had severe atherosclerosis or
thrombotic events. Kallee (1996) concluded that although patients often
fail to exhibit serious clinical signs apart from pathologic laboratory
findings, analbuminemia can no longer be regarded as a harmless anomaly.
Boman et al. (1976) presented data consistent with linkage of the
analbuminemia locus and the GC locus (139200). Cormode et al. (1975)
found very low plasma tryptophan in a neonate with analbuminemia who was
small for gestational age. Murray et al. (1983) restudied the family
reported by Boman et al. (1976). The proposita showed trace amounts of
immunologically normal serum albumin. With cDNA probes for the albumin
gene, no deletion could be detected. They demonstrated DNA polymorphism
of the albumin gene. In a review, Ruffner and Dugaiczyk (1988) stated
that of 22 reported analbuminemic individuals, 8 were known to be from
consanguineous matings. Dugaiczyk (1989) suggested that some fetal
hydrops may be caused by analbuminemia. The main causes of hydrops
fetalis are thalassemia and fetomaternal incompatibility; instances in
which neither of these can be demonstrated should be investigated for an
albumin defect.
Analbuminemic rats, like analbuminemic humans, are healthy (Nagase et
al., 1979). The use of cDNA probes failed to detect serum albumin gene
transcripts in liver of these analbuminemic rats (Esumi et al., 1980).
Thus, the disorder in the rat and perhaps the human may be the result of
gene deletion. On the other hand, the normal levels of albumin in
heterozygotes may indicate that the mutation is at a regulatory locus
independent of the albumin locus. In the analbuminemic rat, Esumi et al.
(1982) found albumin mRNA precursors in nuclei although such were
missing from the cytoplasm. From this they concluded that analbuminemia
in rats is caused by a unique type of mutation that affects albumin mRNA
maturation. In analbuminemia of the rat, Esumi et al. (1983)
demonstrated that a 7-bp deletion in an intron interferes with mRNA
formation. Shalaby and Shafritz (1990) showed that exon H is skipped in
the Nagase analbuminemic rat as a result of the 7-bp deletion at the
splice donor site of intron H-I. Mendel et al. (1989) could find no
abnormality of thyroxine transport and distribution in Nagase
analbuminemic rats. Murray et al. (1983) found a frequency of DNA
polymorphism in the ALB gene comparable to that in the globin system. No
gross structural rearrangement was found in a case of human
analbuminemia.
- Familial Dysalbuminemic Hyperthyroxinemia
The serum albumin locus on 4q is presumably the site of the mutation
responsible for the condition called by Ruiz et al. (1982) 'familial
dysalbuminemic hyperthyroxinemia.' Ruiz et al. (1982) studied 15
euthyroid patients from 8 families who showed elevated serum thyroxine
and free-thyroxine index, both due to an abnormal serum albumin that
preferentially binds thyroxine. Since there are several different
changes in the albumin molecule that can lead to increased binding of
thyroxine, several types might be expected. Lalloz et al. (1985)
subdivided FDH into 3 types, depending on the coexistence of T3 and rT3
excess with hyperthyroxinemia. Seemingly, the binding of drugs by
albumin and the release of thyroid hormone to the tissues are not
altered in ways that have clinical significance. DeCosimo et al. (1987)
presented evidence indicating that familial dysalbuminemic
hyperthyroxinemia is unusually frequent in Hispanics of Puerto Rican
origin. Yeo et al. (1987) reported the largest kindred with familial
dysalbuminemic hyperthyroxinemia thus far reported. Two of the patients
had mistakenly been treated for hyperthyroidism. Two women with the
disorder were receiving oral contraceptives, which produced an increase
in serum thyroxine-binding globulin (314200). Yeo et al. (1987) pointed
out that the coexistence of acquired high TBG or significant thyroid
malfunction may confound the diagnosis of dysalbuminemic
hyperthyroxinemia. Yabu et al. (1987) described a form of variant
albumin with a markedly enhanced binding activity for
L-3,5,3-prime-triiodothyronine (T3), a somewhat increased activity for
thyroxine (T4), and a normal activity for
3,3-prime,5-prime-triiodothyronine (rT3). The presence of the variant
albumin was recognized in a patient with Graves disease after successful
subtotal thyroidectomy. The findings could be misdiagnosed as T3
toxicosis or peripheral resistance to thyroid hormones. Premachandra et
al. (1988) commented that in patients with familial dysalbuminemic
hyperthyroxinemia, treatment of hypothyroidism with thyroxine has
special considerations because of binding of the drug to the atypical
albumin, and raised the possibility that other forms of drug therapy may
require custom tailoring.
In a large Amish family of Swiss descent in which 22 members had
dysalbuminemic hyperthyroxinemia, Weiss et al. (1995) showed linkage
between the disorder and the ALB gene, using as markers a SacI
polymorphism in the coding sequence of the ALB gene and the GC gene,
located less than 1 cM from the ALB gene (multipoint lod of 5.53 at
theta = 0.0).
Wada et al. (1997) documented 6 members of a Japanese family with the
FDH phenotype. All were heterozygous for a G-to-C transition in the
second nucleotide of codon 218 of the albumin gene, resulting in an
arg218-to-pro substitution (103600.0055). Wada et al. (1997) proposed
the existence of a distinct ethnic phenotype of FDH characterized by
extremely elevated serum total T4 levels and relatively elevated serum
total T3 and rT3 levels in the Japanese.
Petitpas et al. (2003) characterized the structure of the interaction
between thyroxine and albumin. Using crystallographic analyses, they
identified 4 binding sites for thyroxine on albumin distributed in
subdomains IIA, IIIA, and IIIB. Mutations of arg218 within subdomain
IIA--i.e., arg218 to his (R218H; 103600.0041) and arg218 to pro (R218P;
103600.0055)--greatly enhanced the affinity for thyroxine and caused the
elevated serum thyroxine levels associated with FDH. Structural analyses
of these 2 mutants showed that this effect arises because substitution
of arg218, which contacts the hormone bound in subdomain IIA, produces
localized conformational changes to relax steric restrictions on
thyroxine binding at this site. Petitpas et al. (2003) also found that,
although fatty acid binding competes with thyroxine at all 4 sites, it
induces conformational changes that create a fifth hormone-binding site
in the cleft between domains I and III, at least 9 angstroms from
arg218. These structural observations were consistent with binding data
showing that albumin retains a high-affinity site for thyroxine in the
presence of excess fatty acid that is insensitive to FDH mutations.
- Mutation Information
Takahashi et al. (1987) identified the amino acid substitutions in 3
different types of proalbumins designated Gainesville, Taipei, and
Takefu. The first 2 proalbumins were found to be identical to previously
described proalbumins, Christchurch and Lille types, respectively. All
of the variant proalbumins contain a basic propeptide that is not
removed during posttranscriptional processing because of a mutation in
the site of excision, an arg-arg sequence. Takefu resists tryptic
cleavage because of the substitution of proline for arginine at the -1
position. The substitution of glutamine for histidine at position 3 in
the variant albumin Nagasaki-3 decreases metal-binding affinity;
mutations farther down the polypeptide chain do not affect metal-binding
affinity, nor is there any reduction of copper-binding affinity in
albumin from patients with Wilson disease (277900). The variant
proalbumins show a characteristically lowered metal-binding affinity.
Takahashi et al. (1987) reported the amino acid substitution in 4
albumin variants detected by 1-dimensional electrophoresis in population
surveys involving tribal Amerindians and Japanese children. Albumin
Maku, discovered in a Maku Indian woman living among the Yanomama,
showed a substitution of glutamine for lysine at position 541. Albumin
Yanomama-2 appears to represent a true private polymorphism, i.e., it is
the product of an apparently unique allele within a single tribe that
has a frequency well above the 1% allele minimum for a polymorphism. It
has been found only in Yanomama Indians, was present in 491 of 3,504
persons studied, and had the highest frequency of any polypeptide
variant identified in 21 South American Indian tribes. It was found to
have a substitution of glycine for arginine at position 114. This
appears to represent a change from codon CGA to GGA. Albumin Nagasaki-2
showed a substitution of asparagine for aspartic acid at position 375,
corresponding to a single base change in codon GAT to AAT. Albumin
Nagasaki-3 was found to have substitution of glutamine for histidine at
position 3, corresponding with a 1-base change in the codon CAC to
either CAA or CAG.
Takahashi et al. (1987) pointed out that about one-half of the known
mutations in the coding sections in the large albumin gene border an
exonic junction, raising the possibility that hypermutable 'hot spots'
may be clustered there. In Japan, surveys showed that hemoglobin and
albumin variants were of roughly equal frequency and neither protein
appeared exceptionally variable. Since albumin is a much larger protein,
one might expect more genetic variability than in hemoglobin. This might
suggest that selection is relatively active against variants of this
molecule; yet total absence of this protein (analbuminemia) is
consistent with apparently satisfactory health.
Takahashi et al. (1987) tabulated the 13 amino acid substitutions
identified at that time and pointed out that they are unequally
distributed throughout the polypeptide chain. The slower delineation of
the nature of point mutations in albumin variants as compared to
hemoglobin variants can be attributed to 2 primary factors: first,
alloalbumins are not associated with disease or a significant effect on
physiologic function, and most are rare; second, the albumin molecule
consists of a single polypeptide chain with 585 amino acids and 17
disulfide bridges, a circumstance that magnifies the difficulty of
determining the presence of a single substitution.
Madison et al. (1994) provided a tabulation of the molecular changes in
albumin variants. Asymptomatic increases in the concentration of zinc in
the blood, hyperzincemia (194470), may be due to a variant structure of
albumin with consequent increased binding of zinc. If true, this would
be dysalbuminemic hyperzincemia by a mechanism similar to that involved
in dysalbuminemic hyperthyroxinemia.
Minchiotti et al. (2008) provided a detailed review of variants in the
albumin gene and noted that variants are generally benign. Even the rare
condition analbuminemia, which causes edema and hyperlipidemia, does not
appear to be life-threatening. The majority of mutations are detected
upon clinical electrophoretic studies.
*FIELD* AV
.0001
ALBUMIN FUKUOKA 2
ALBUMIN TAIPEI;;
ALBUMIN LILLE;;
ALBUMIN VARESE
ALB, ARG-2HIS
Substitution of histidine for arginine at position -2 was found in
albumin Fukuoka-2 by Arai et al. (1989), in albumin Taipei by Takahashi
et al. (1987), in albumin Lille by Abdo et al. (1981) and Galliano et
al. (1988), and in albumin Varese by Galliano et al. (1990). A
CGT-to-CAT change is responsible for the substitution.
.0002
ALBUMIN HONOLULU 2
PROALBUMIN CHRISTCHURCH;;
PROALBUMIN GAINESVILLE;;
PROALBUMIN FUKUOKA 3
ALB, ARG-1GLN
This albumin has an arg(-1)-to-gln change in the preproprotein (Arai et
al., 1990; Brennan and Carrell, 1978). Brennan and Carrell (1978) found
a family with a circulating variant of proalbumin in members of 4
generations. No clinical abnormality was discernible in any of them. The
variant represents 50% of total albumin and shows an additional
N-terminal sequence, arg-gly-val-phe-arg-gln. Called 'proalbumin
Christchurch,' the variant appears to have a mutation of arginine to
glutamine at the last amino acid of this sequence. Thus, 2 basic amino
acids must be necessary for cleavage of proalbumin in the Golgi
vesicles. Copper binding is expected to be absent in the variant albumin
because of blocking of the high affinity binding site. This is a
situation comparable to Ehlers-Danlos syndrome type VII-A (130060) in
which an amino acid substitution at the site of cleavage of procollagen
results in persistence of procollagen and, in that case, clinically
important abnormalities in collagen fiber formation.
.0003
ALBUMIN HONOLULU 1
PROALBUMIN TAKEFU
ALB, ARG-1PRO
Substitution of proline for arginine at position -1 (Takahashi et al.,
1987).
.0004
ALBUMIN BREMEN
ALBUMIN BLENHEIM;;
ALBUMIN IOWA CITY 2
ALB, ASP1VAL
See Arai et al. (1990) and Brennan et al. (1990). Brennan et al. (1990)
suggested that hypermutability of 2 CpG dinucleotides in the codons for
the diarginyl sequence may account for the frequency of mutations in the
propeptide. Madison et al. (1991) showed that this mutation is caused by
a GAT-to-GTT change.
.0005
ALBUMIN NAGASAKI 3
ALB, HIS3GLN
See Takahashi et al. (1987).
.0006
ALBUMIN YANOMAMA 2
ALB, ARG114GLY
See Takahashi et al. (1987).
.0007
ALBUMIN NAGOYA
ALB, GLU119LYS
See Arai et al. (1990).
.0008
ALBUMIN NAGASAKI 1
ALBUMIN NIIGATA
ALB, ASP269GLY
See Arai et al. (1989).
.0009
ALBUMIN NEW GUINEA
ALBUMIN TAGLIACOZZO;;
ALBUMIN COOPERSTOWN
ALB, LYS313ASN
Huss et al. (1988) described an electrophoretically fast alloalbumin in
a family in New York State and called it albumin Cooperstown. It was
found to have a substitution of asparagine for lysine at residue 313 and
was shown to be the same as albumins found in Italy and in New Zealand.
A change from AAG to AAY is responsible for the substitution; Y = either
T or C. Galliano et al. (1990) found this albumin variant in 49
individuals in the Abruzzo region of Italy.
.0010
ALBUMIN REDHILL
ALB, ALA320THR AND ARG-2CYS
Brennan et al. (1990) characterized albumin Redhill, an albumin variant
that does not bind nickel and has a molecular mass 2.5 kD higher than
normal albumin. Its inability to bind nickel was explained by the
finding of an additional residue of arginine at position -1 of the
mature protein, but this did not explain the molecular basis of the
increase in apparent molecular mass. Further studies showed an
ala320-to-thr change, which introduced an asn-tyr-thr oligosaccharide
attachment sequence centered at asn318 and explained the increase in
molecular mass. DNA sequencing of PCR-amplified genomic DNA encoding the
prepro sequence of albumin indicated an additional mutation at position
-2 from arg to cys. Brennan et al. (1990) proposed that the new
phe-cys-arg sequence (replacing -phe-arg-arg-) in the propeptide serves
as an aberrant signal peptidase cleavage site and that the signal
peptidase cleaves the propeptide of albumin Redhill in the lumen of the
endoplasmic reticulum before it reaches the Golgi vesicles, which is the
site of the diarginyl-specific proalbumin convertase. Thus, albumin
Redhill is longer than normal by 1 amino acid at its NH2-terminus. The
ARG-2CYS mutation is the basis of proalbumin Malmo (103600.0030), a
relatively frequent variant.
.0011
ALBUMIN ROMA
ALB, GLU321LYS
Galliano et al. (1988) demonstrated that albumin Roma has a substitution
of lysine for glutamic acid at position 321. A GAG-to-AAG change is
responsible for the substitution. Galliano et al. (1990) found this
albumin variant in 25 individuals from various parts of Italy.
.0012
ALBUMIN HIROSHIMA 1
ALB, GLU354LYS
See Arai et al. (1989).
.0013
ALBUMIN PORTO ALEGRE 1
ALBUMIN COARI 1
ALB, GLU358LYS
Arai et al. (1989) reported on amino acid substitutions in albumin
variants found in Brazil. A previously unreported amino acid
substitution was found in albumins Coari I and Porto Alegre I
(glu358-to-lys).
.0014
ALBUMIN PARKLANDS
ALB, ASP365HIS
See Brennan (1985).
.0015
ALBUMIN MERSIN
ALBUMIN NASKAPI;;
ALBUMIN MEXICO 1
ALB, LYS372GLU
Franklin et al. (1980) demonstrated apparent identity between the
polymorphic albumin variants Naskapi, found chiefly in the Naskapi
Indians of Quebec, and Mersin, found in the Eti Turks of southeastern
Turkey. They suggested that these were derived from the same mutation
occurring in Asia and spreading with the progenitors of the American
Indians to the North American continent and with Asiatic invaders to
Asia Minor. Takahashi et al. (1987) found that lysine-372 of normal
(common) albumin A was changed to glutamic acid both in albumin Naskapi
and in albumin Mersin. Identity of these albumins may have originated
through descent from a common mid-Asiatic founder of the 2 migrating
ethnic groups, or it may represent identical but independent mutations
of the albumin gene.
.0016
ALBUMIN NAGASAKI 2
ALB, ASP375ASN
See Takahashi et al. (1987) and Arai et al. (1989).
.0017
ALBUMIN TOCHIGI
ALB, GLU376LYS
See Arai et al. (1989).
.0018
ALBUMIN HIROSHIMA 2
ALB, GLU382LYS
See Arai et al. (1989).
.0019
ALBUMIN LAMBADI
ALBUMIN MANAUS-1;;
ALBUMIN VANCOUVER;;
ALBUMIN BIRMINGHAM;;
ALBUMIN ADANA;;
ALBUMIN PORTO ALEGRE 2
ALB, GLU501LYS
Franklin et al. (1980) found a new variant in Eti Turks, which they
termed albumin Adana. By improved methods, Huss et al. (1988) identified
a substitution of lysine for glutamic acid at position 501 in albumins
Vancouver and Birmingham, both from families that migrated from northern
India, and also in albumin Adana from Turkey. This is the first
substitution reported in an alloalbumin originating from the Indian
subcontinent. Albumin Porto Alegre II also contains a glutamic
acid-to-lysine substitution at position 501.
.0020
ALBUMIN MAKU
ALBUMIN ORIXIMINA-1
ALB, LYS541GLU
See Takahashi et al. (1987). The substitution in albumin Oriximina I is
the same as that found in albumin Maku (lysine to glutamic acid at
position 541) (Arai et al., 1989).
.0021
ALBUMIN MEXICO 2
ALB, ASP550GLY
Franklin et al. (1980) showed that albumin Mexico is in fact 2 separate,
electrophoretically similar variants and that albumin Mexico-2 contains
a substitution of glycine for aspartic acid at position 550.
Substitution of aspartic acid-550 by glycine was found in albumin
Mexico-2 from 4 persons of the Pima tribe (Takahashi et al., 1987).
.0022
ALBUMIN FUKUOKA 1
ALB, ASP563ASN
See Arai et al. (1990).
.0023
ALBUMIN OSAKA 1
ALB, GLU565LYS
See Arai et al. (1990).
.0024
ALBUMIN OSAKA 2
ALBUMIN PHNOM PENH;;
ALBUMIN B;;
ALBUMIN OLIPHANT;;
ALBUMIN NAGANO;;
ALBUMIN VERONA B
ALB, GLU570LYS
Arai et al. (1989) identified the amino acid substitution characteristic
of albumin B (glutamic acid-to-lysine at position 570) in alloalbumins
from 6 unrelated persons of 5 different European descents and also in 2
Japanese and 1 Cambodian. A GAG-to-AAG change is responsible for this
substitution. Galliano et al. (1990) found this variant in 103
individuals in the Veneto area of Italy.
.0025
ALBUMIN GHENT
ALBUMIN MILANO FAST
ALB, LYS573GLU
An AAA-to-GAA change is responsible for this substitution. Galliano et
al. (1990) found this variant in 80 individuals from the Lombardy area
of Italy. Homozygotes have been identified.
.0026
ALBUMIN VANVES
ALB, LYS574ASN
See Galliano et al. (1988).
.0027
ANALBUMINEMIA, AMERICAN INDIAN TYPE
ALB, IVS6, A-G, -2
Ruffner and Dugaiczyk (1988) identified a structural defect in the serum
albumin gene of an analbuminemic American Indian girl. Sequence
determination of 1.1 kb of the 5-prime regulatory region and of 6 kb
across exonic regions revealed a single AG-to-GG mutation within the
3-prime splice site of intron 6 in the defective gene of the
analbuminemic person. In an in vitro assay on the RNA transcript, this
mutation caused a defect in out-splicing of the intron 6 sequence and in
the subsequent ligation of the exon 6/exon 7 sequences. Using
polymerase-amplified genomic DNA and allele-specific
oligodeoxynucleotide probes, Ruffner and Dugaiczyk (1988) also showed
that the sequence of this intron 6/exon 7 splice junction was normal in
a different, unrelated analbuminemic person.
.0028
ALBUMIN VENEZIA
ALB, EX14DEL
Minchiotti et al. (1989) described the molecular defect of an
electrophoretically fast alloalbumin named Venezia, found in about 90
seemingly unrelated families in Italy, mainly in the Veneto region. In
heterozygous subjects the total albumin content was in the normal range,
with the variant accounting for about 30% of the total protein. Reduced
stability of the mutant was thought to account for the
lower-than-expected percentage. Minchiotti et al. (1989) found that
albumin Venezia possesses a shortened polypeptide chain, 578 residues
instead of 585, completely variant from residue 572 to the
COOH-terminus: 572 pro-thr-met-arg-ile-arg-578 glu. This extensive
modification can be accounted for by deletion of exon 14 and translation
to the first terminator codon of exon 15, which normally does not code
for protein. The absence of a basic COOH-terminal dipeptide in the
mature molecule can be explained by the probable action of serum
carboxypeptidase N. The low serum level of the variant in heterozygous
subjects suggests that the carboxy-terminus of the molecule is critical
for albumin stability. Galliano et al. (1990) found this variant in 105
individuals, particularly in the region of Veneto in Italy.
.0029
ALBUMIN CASTEL DI SANGRO
ALB, LYS536GLU
An AAG-to-GAG change is responsible for this substitution. Galliano et
al. (1990) found this variant in 1 individual in Italy.
.0030
PROALBUMIN MALMO
PROALBUMIN TRADATE
ALB, ARG-2CYS
In a collaborative effort involving laboratories at Malmo, Sweden;
Bloomington, Indiana; Christchurch, New Zealand; Saitama, Japan; and
Pavia, Italy, Brennan et al. (1990) studied the most common Swedish
albumin variant, which is expressed in plasma as a broadened
electrophoretic band indicative of a slow component at pH 8.6. Present
in about 1 per 1,000 persons in Sweden, it was also found in a family of
Scottish descent from Kaikoura, New Zealand, and in 5 families in
Tradate, Italy. The major variant component was found to be
arginyl-albumin, in which arginine at the -1 position of the propeptide
is still attached to the processed albumin. A minor component with the
amino-terminal sequence of proalbumin was also present as 3 to 6% of the
total albumin. The mutation was found to involve a change of arginine to
cysteine at the -2 position. (In albumin Redhill (103600.0010), the
Malmo mutation is combined with another.) A CGT-to-TGT change is
responsible for the substitution.
.0031
PROALBUMIN JAFFNA
ALB, ARG-1LEU
In 2 members of a Tamil family from Jaffna (northern Sri Lanka),
Galliano et al. (1989) found an electrophoretically slow-moving variant
of serum albumin. Sequence analysis demonstrated that the variant is an
abnormal proalbumin arising from a substitution of leucine for arginine
at position -1, which prevents the proteolytic removal of the N-terminal
hexapeptide and allows the mutated proalbumin to enter the circulation.
.0032
ALBUMIN GE/CT
ALBUMIN CATANIA
ALB, GLN580LYS
This was the fourth albumin variant to be characterized structurally.
Galliano et al. (1986) found a shortened chain with deletion of a
cytosine in codon 580, causing frameshift and termination after amino
acid 582. The COOH-terminal sequence is leu-val-ala-ala-ser-lys-leu-pro.
Galliano et al. (1990) found this mutation in 62 individuals in Sicily.
.0033
ALBUMIN TORINO
ALB, GLU60LYS
Galliano et al. (1990) found a substitution of lysine for glutamic acid
at position 60 resulting from a GAA-to-AAA change in a single Italian
patient.
.0034
ALBUMIN VIBO VALENTIA
ALB, GLU82LYS
In 2 Italian individuals Galliano et al. (1990) found a GAA-to-AAA
change in codon 82 leading to substitution of lysine for glutamic acid.
.0035
ALBUMIN CASEBROOK
ALB, ASP494ASN
In albumin Casebrook, an electrophoretically slow albumin variant with a
relative molecular mass of 2.5 kD higher than normal albumin, Peach and
Brennan (1991) identified substitution of asparagine for aspartic
acid-494. The mutation introduced an asn-glu-thr N-linked
oligosaccharide attachment sequence centered on asn494, which explained
the increase in molecular mass. The mutant albumin was associated with
no apparent pathology and was detected in 2 unrelated individuals of
Anglo-Saxon descent.
.0036
ALBUMIN IOWA CITY 1
ALB, ASP365VAL
In a survey of alloalbumins in patients at 2 major medical centers in
the United States and nearly 20,000 blood donors in Japan, Madison et
al. (1991) identified 2 previously unreported alloalbumin types. In one
type, found in a Caucasian family and designated Iowa City-1, aspartic
acid at position 365 was replaced by valine. This was the second
reported mutation at position 365; see albumin Parklands (103600.0014).
The codon change was GAT-to-GTT. In the second type, found in a Japanese
blood donor, histidine-128 was replaced by arginine (103600.0037). The
codon change was CAT-to-CGT.
.0037
ALBUMIN KOMAGOME 2
ALB, HIS128ARG
See 103600.0036.
.0038
ALBUMIN RUGBY PARK
ALB, IVS13DS, G-C, +1
Peach et al. (1992) found that 3 members of a family were heterozygous
for an electrophoretically fast albumin variant, designated albumin
Rugby Park, which constituted only 8% of total serum albumin.
Isoelectric focusing indicated an increased negative charge on the
C-terminal CNBr peptide. Sequencing of PCR-amplified DNA indicated a
G-to-C transversion at position 1 of the intron 13. The replacement of
the obligate GT sequence by CT at the exon/intron boundary prevented
splicing of intron 13, and translation continued for 21 nucleotides
until a stop codon was reached. The new protein lacked the 14 amino
acids encoded in exon 14, but these were replaced by 7 new residues,
giving a truncated albumin of 578 residues.
.0039
ALBUMIN HERBORN
ALB, LYS240GLU
Minchiotti et al. (1993) found that albumin Herborn, a variant
discovered in Germany, had a point mutation in codon 240 changing AAA
(lys) to GAA (glu). The mutation was in the region implicated in
bilirubin binding, but Minchiotti et al. (1993) found that the binding
of bilirubin and biliverdin to albumin Herborn was not significantly
reduced.
.0040
ANALBUMINEMIA ROMA
ALB, 1-BP INS, AAT267AAAT, FS274TER
Watkins et al. (1994) investigated analbuminemia in an Italian family by
analysis of DNA from a mother and her daughter. The mother, whose
parents were first cousins, was homozygous for the trait and had a serum
albumin value of less than 0.01 g/dl (about 1/500 normal); the daughter
was heterozygous for the trait and had a nearly normal albumin value.
Molecular cloning and sequence analysis showed that the mutation, called
analbuminemia Roma, was a nucleotide insertion in exon 8, producing a
frameshift that led to a premature stop 7 codons downstream. Watkins et
al. (1994) used heteroduplex hybridization and single-strand
conformation polymorphism to compare the DNA of these 2 individuals with
the DNA of 2 unrelated analbuminemic persons, 1 Italian (called Codogno)
and 1 American (patient G.M.) and showed that each patient had a
different mutation. These mutations also differed from the mutation in
the only human case (in an American Indian) previously studied at the
DNA level (103600.0027). Whereas the normal serum albumin gene has 4 A
residues as nucleotides 9156-9159, the Roma allele had 5 A residues
encompassing 9156-9160. The predicted translation product from the Roma
allele would consist of only 273 amino acids instead of the normal 585
amino acid residues found in mature serum albumin. The insertion of the
additional adenine changed codon 267 from AAT (asn) to AAA (lys) and
changed the reading frame in such a way that codon 274 was changed from
AAA (lys) to TAA (stop).
.0041
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, ARG218HIS
In 2 unrelated patients with dysalbuminemic hyperthyroxinemia, Petersen
et al. (1994) identified an arg218-to-his substitution which was caused
by a G (CGC)-to-A (CAG) transition at nucleotide 653. Abnormal affinity
of the albumin from these patients for a thyroxine analog was verified
by an adaptation of the procedure used in routine free T4 measurement.
Both subjects were heterozygous. During the preparation of the
manuscript, a third patient with the same mutation was found, suggesting
that R218H may be the most frequent cause of this disorder. The mutation
created a new HphI restriction site in exon 7 which was used
diagnostically.
Sunthornthepvarakul et al. (1994) identified R218H mutation in affected
members of 8 unrelated families with dysalbuminemic hyperthyroxinemia.
Pohlenz et al. (2001) reported a 5-month-old boy with familial
dysalbuminemic hyperthyroxinemia and congenital hypothyroidism who had a
blood thyrotropin (TSH) level of 479 mU/L but normal T4 and elevated T3
levels. The patient and his euthyroid father and brother all carried the
R218H mutation.
.0042
ALBUMIN LARINO
ALB, HIS3TYR
Madison et al. (1994) stated that of the more than 50 different genetic
variants of human serum albumin that had been characterized by amino
acid or DNA sequence analysis, almost half had been identified in Italy
through a long-term electrophoretic survey of serum. They reported 4
other Italian alloalbumins not previously recorded: Lorino, his3-to-tyr;
Tradate-2, lys225-to-gln (103600.0043); Caserta, lys276-to-asn
(103600.0044); and Bazzano, a carboxyl-terminal variant (103600.0045).
The first 3 had point mutations that produced a single amino acid
substitution; a nucleotide deletion caused a frameshift and an altered
and truncated carboxy-terminal sequence in albumin Bazzano. In these 4
instances, the expression of the alloalbumin was variable, ranging from
10 to 70% of the total albumin, in contrast to the usual 50% each for
the normal and mutant albumin. Madison et al. (1994) commented that the
distribution of point mutations in the albumin gene is nonrandom; most
of the 47 reported point substitutions involved charged amino acid
residues on the surface of the molecule that are not concerned with
ligand-binding sites.
.0043
ALBUMIN TRADATE 2
ALB, LYS225GLN
See 103600.0042. In a patient from Tradate (Lombardy region), Madison et
al. (1994) demonstrated a substitution of glutamine for lysine-225. An
AAA-to-CAA change is responsible for the substitution. Albumin Tradate-2
was present in equimolar ratio with albumin A and had a fast mobility.
.0044
ALBUMIN CASERTA
ALB, LYS276ASN
See 103600.0042. In 3 members of a family from Caserta near Naples,
Madison et al. (1994) demonstrated a substitution of asparagine for
lysine-276. An AAG-to-AAC change is responsible for the substitution.
The alloalbumin was identified by its fast mobility. The 3 subjects were
heterozygous, but the variant/normal ratio was 1.5/1 in the serum of the
mother, whereas it was about 2/1 in both sibs. In all 3 cases, an
increased total albumin content was observed.
.0045
ALBUMIN BAZZANO
ALB, TGC567GC, FS583TER
See 103600.0042. Madison et al. (1994) found albumin Bazzano in several
families from Bazzano, a small town close to Bologna. At pH 8.6 the
variant was much slower than normal and comprised only about 18% of the
total albumin. In SDS/PAGE, the molecular weight of the variant appeared
slightly lower than normal. Sequence analysis revealed deletion of the
thymine nucleotide at position 15332 in the genomic sequence. This led
to a frameshift and a divergent amino acid sequence of 16 residues
beginning at position 567, with early termination after 582. The
extensive modification caused an increase in positive charge, which
explained the unusually slow mobility of the alloalbumin. The normal
termination codon in albumin is 586. Other carboxy-terminal variants are
albumin Venezia (103600.0028), albumin Rugby Park (103600.0038), and
albumin Catania (103600.0032).
.0046
ALBUMIN ASOLA
ALB, TYR140CYS
In 2 members of a family living in Asola in Lombardia, Italy, Minchiotti
et al. (1995) detected a slow migrating variant of human serum albumin
present in lower amounts than the normal protein by routine clinical
electrophoresis at pH 8.6. Isoelectric focusing analysis of CNBr
fragments localized the mutation to fragment CNBr3 (amino acid residues
124-298). Amino acid sequence analysis showed a tyr140-to-cys
substitution, confirmed by DNA sequence analysis, which resulted from a
single transition of TAT to TGT at nucleotide 5074. Despite the presence
of an additional cysteine residue, several lines of evidence indicated
that albumin Asola had no free sulfhydryl group; therefore, Minchiotti
et al. (1995) proposed that the mutant amino acid, cysteine, was
involved in the formation of a new disulfide bond with cys34, the only
free sulfydryl group present in the normal protein.
.0047
ALBUMIN MALMO 95
ALB, ASP63ASN
Carlson et al. (1992) demonstrated that albumin Malmo-95 has a
substitution of asparagine for aspartic acid-63. A GAC-to-AAC change is
responsible for the substitution.
.0048
ALBUMIN HAWKES BAY
ALB, CYS177PHE
Brennan and Fellowes (1993) demonstrated that albumin Hawkes Bay has a
substitution of phenylalanine for cysteine-177. A TGC-to-TTC change is
responsible for the substitution.
.0049
ALBUMIN MALMO 10
ALB, GLN268ARG
Carlson et al. (1992) demonstrated that albumin Malmo-10 has a
substitution of arginine for glutamine-268. A CAA-to-CGA change is
responsible for the substitution.
.0050
ALBUMIN MALMO 47
ALB, ASN318LYS
Carlson et al. (1992) demonstrated that albumin Malmo-47 has a
substitution of lysine for asparagine-318. A change from AAC to AAA or
AAG is responsible for the substitution.
.0051
ALBUMIN SONDRIA
ALB, GLU333LYS
Minchiotti et al. (1992) demonstrated that albumin Sondria has a
substitution of lysine for glutamic acid-333. A GAA-to-AAA change is
responsible for the substitution.
.0052
ALBUMIN MALMO 5
ALB, GLU376ASN
Carlson et al. (1992) demonstrated that albumin Malmo-5 has a
substitution of glutamine for glutamic acid-376. A GAA-to-CAA change is
responsible for the substitution.
.0053
ALBUMIN DUBLIN
ALB, GLU479LYS
Sakamoto et al. (1991) demonstrated that albumin Dublin has a
substitution of lysine for glutamic acid-479. A GAA-to-AAA change is
responsible for the substitution.
.0054
ALBUMIN ORTONOVO
ALB, GLU505LYS
Galliano et al. (1993) demonstrated that albumin Ortonovo has a
substitution of lysine for glutamic acid-505. A GAA-to-AAA change is
responsible for the substitution.
.0055
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, ARG218PRO
Of 8 members of a 3-generation Japanese family, Wada et al. (1997)
documented 6 who had dysalbuminemic hyperthyroxinemia. Serum total T4
levels ranged from 1763 to 2741 nmol/L (normal range, 66-165), serum
total T3 levels ranged from 2.73-5.62 nmol/L (normal range, 1.47-2.95),
and rT3 levels ranged from 1.08 to 2.52 nmol/L (normal range,
0.22-0.60). All affected family members were heterozygous for a G-to-C
transition in the second nucleotide of codon 218 of the albumin gene,
resulting in an arg218-to-pro substitution.
.0056
DYSALBUMINEMIC HYPERTHYROXINEMIA
ALB, LEU66PRO
Sunthornthepvarakul et al. (1998) reported an abnormal albumin in
members of a Thai family that presented with high serum total T3 but not
T4 when measured by radioimmunoassay. In contrast, total T3 values were
very low when measured by ELISA and chemiluminescence. The subjects did
not have a goiter and were clinically euthyroid. Their serum free T4,
free T3, and TSH levels were normal. Spiking of T3 to affected serum
showed good recovery by radioimmunoassay but very poor recovery by ELISA
and by chemiluminescence. Immunoprecipitation with labeled T3 bound to
albumin showed a high percent of precipitation in affected serum.
T3-binding studies showed that the association constant of serum albumin
in affected subjects, 1.5 x 10(6)M(-1), was 40-fold that of unaffected
relatives, 3.9 x 10(4)M(-1). The authors found a T-to-C (CTT-to-CCT)
transition in the second nucleotide of codon 66, resulting in
replacement of the normal leucine by proline.
.0057
ANALBUMINEMIA
ALB, IVS1DS, G-A, +1
In a male newborn of Iraqi extraction with analbuminemia, Campagnoli et
al. (2002) found a G-to-A substitution at nucleotide 118 in the ALB
gene. The mutation, involving the first base of intron 1, destroyed the
GT dinucleotide consensus sequence found at the 5-prime end of most
intervening sequences and caused defective pre-mRNA splicing. The child
was homozygous; both parents were heterozygous. The infant presented
with low birthweight due to placental infarctions, and mild edema was
noted after 1 week. There was no jaundice and the bilirubin level was
normal. Only minute amounts of albumin were detected.
Hypercholesterolemia developed in spite of total lipid values within the
normal range. At 18 months he was in good general condition, without
edema, and had normal weight and length for his age. The parents, who
were first cousins, had low albumin concentration values: the father 33
g/l and the mother 27 g/l.
*FIELD* SA
Adams (1966); Arai et al. (1989); Arai et al. (1989); Au et al. (1984);
Barlow et al. (1986); Barlow et al. (1982); Bennhold and Kallee (1959);
Brennan and Herbert (1987); Brennan et al. (1990); Dammacco et al.
(1980); Darlington et al. (1974); Dugaiczyk et al. (1982); Efremov
and Braend (1964); Franklin et al. (1980); Galliano et al. (1988);
Hawkins and Dugaiczyk (1982); Huss et al. (1988); Jensen and Faber
(1987); Kueppers et al. (1969); Kurnit et al. (1982); Lalloz et al.
(1983); Lau et al. (1972); Lavareda de Souza et al. (1984); Melartin
(1967); Melartin et al. (1967); Murray et al. (1983); Prager et al.
(1980); Rajatanavin et al. (1982); Rajatanavin et al. (1984); Sanders
and Tarnoky (1979); Sarcione and Aungst (1962); Sargent et al. (1979);
Sarich (1972); Schell et al. (1978); Schell and Blumberg (1977);
Silverberg and Premachandra (1982); Swain et al. (1980); Takahashi
et al. (1987); Takahashi et al. (1987); Vanzetti et al. (1979); Weitkamp
(1978); Weitkamp and Buck (1972); Weitkamp and Chagnon (1968); Weitkamp
et al. (1969); Weitkamp et al. (1970); Weitkamp et al. (1968); Weitkamp
et al. (1973); Wieme (1960); Yabu et al. (1985); Ying et al. (1981)
*FIELD* RF
1. Abdo, Y.; Rousseaux, J.; Dautrevaux, M.: Proalbumin Lille, a new
variant of human serum albumin. FEBS Lett. 131: 286-288, 1981.
2. Adams, M. S.: Genetic diversity in serum albumin. J. Med. Genet. 3:
198-202, 1966.
3. Arai, K.; Huss, K.; Madison, J.; Putnam, F. W.; Salzano, F. M.;
Franco, M. H. L. P.; Santos, S. E. B.; Freitas, M. J. M.: Amino acid
substitutions in albumin variants found in Brazil. Proc. Nat. Acad.
Sci. 86: 1821-1825, 1989.
4. Arai, K.; Ishioka, N.; Huss, K.; Madison, J.; Putnam, F. W.: Identical
structural changes in inherited albumin variants from different populations. Proc.
Nat. Acad. Sci. 86: 434-438, 1989.
5. Arai, K.; Madison, J.; Huss, K.; Ishioka, N.; Satoh, C.; Fujita,
M.; Neel, J. V.; Sakurabayashi, I.; Putnam, F. W.: Point substitutions
in Japanese alloalbumins. Proc. Nat. Acad. Sci. 86: 6092-6096, 1989.
6. Arai, K.; Madison, J.; Shimizu, A.; Putnam, F. W.: Point substitutions
in albumin genetic variants from Asia. Proc. Nat. Acad. Sci. 87:
497-501, 1990.
7. Arends, T.; Gallango, M. L.; Layrisse, M.; Wilbert, J.; Heinen,
H. D.: Albumin Warao: new type of human alloalbuminemia. Blood 33:
414-420, 1969.
8. Arvan, D.; Blumberg, B.; Melartin, L.: Transient bisalbuminemia
induced by drugs. Clin. Chim. Acta 22: 211-218, 1968.
9. Au, H. Y. N.; Brand, S.; Hutchinson, D. W.; Matejtschuk, P.: Albumins
Warwick 1 and Warwick 2, two human albumin variants. IRCS Med. Sci. 12:
56-57, 1984.
10. Barlow, J. W.; Csicsmann, J. M.; Meinhold, H.; Lim, C.-F.; Stockigt,
J. R.: Familial dysalbuminaemic hyperthyroxinaemia: studies of albumin
binding and implications for hormone action. Clin. Endocr. 24: 39-47,
1986.
11. Barlow, J. W.; Csicsmann, J. M.; White, E. L.; Funder, J. W.;
Stockigt, J. R.: Familial euthyroid thyroxine excess: characterization
of abnormal intermediate affinity thyroxine binding to albumin. J.
Clin. Endocr. Metab. 55: 244-250, 1982.
12. Bennhold, H.; Kallee, E.: Comparative studies on the half-life
of I(131) labelled albumins and nonradioactive human serum albumin
in a case of analbuminemia. J. Clin. Invest. 38: 863-872, 1959.
13. Bennhold, H.; Peters, H.; Roth, E.: Ueber einen Fall von kompletter
Analbuminaemie ohne wesentliche klinische Krankheitszeichen. Verh.
Dtsch. Ges. Inn. Med. 60: 630-634, 1954.
14. Blumberg, B. S.; Martin, J. R.; Melartin, L.: Alloalbuminemia:
albumin Naskapi in Indians of the Ungava. JAMA 203: 180-185, 1968.
15. Boman, H.; Hermodson, M.; Hammond, C. A.; Motulsky, A. G.: Analbuminemia
in an American Indian girl. Clin. Genet. 9: 513-526, 1976.
16. Brennan, S. O.: The molecular abnormality of albumin Parklands:
365 asp-to-his. Biochim. Biophys. Acta 830: 320-324, 1985.
17. Brennan, S. O.; Arai, K.; Madison, J.; Laurell, C.-B.; Galliano,
M.; Watkins, S.; Peach, R.; Myles, T.; George, P.; Putnam, F. W.:
Hypermutability of CpG dinucleotides in the propeptide-encoding sequence
of the human albumin gene. Proc. Nat. Acad. Sci. 87: 3909-3913,
1990.
18. Brennan, S. O.; Carrell, R. W.: A circulating variant of human
proalbumin. Nature 274: 908-909, 1978.
19. Brennan, S. O.; Fellowes, A. P.: Albumin Hawkes Bay; a low level
variant caused by loss of a sulphydryl group at position 177. Biochim.
Biophys. Acta 1182: 46-50, 1993.
20. Brennan, S. O.; Herbert, P.: Albumin Canterbury (313 lys-to-asn):
a point mutation in the second domain of serum albumin. Biochim.
Biophys. Acta 912: 191-197, 1987.
21. Brennan, S. O.; Myles, T.; Peach, R. J.; Donaldson, D.; George,
P. M.: Albumin Redhill (-1 arg, ala320-to-thr): a glycoprotein variant
of human serum albumin whose precursor has an aberrant signal peptidase
cleavage site. Proc. Nat. Acad. Sci. 87: 26-30, 1990.
22. Campagnoli, M.; Rossi, A.; Palmqvist, L.; Flisberg, A.; Niklasson,
A.; Minchotti, L.; Galliano, M.: A novel splicing mutation causes
an undescribed type of analbuminemia. Biochim. Biophys. Acta 1586:
43-49, 2002.
23. Carlson, J.; Sakamoto, Y.; Laurell, C.-B.; Madison, J.; Watkins,
S.; Putnam, F. W.: Alloalbuminemia in Sweden: structural study and
phenotypic distribution of nine albumin variants. Proc. Nat. Acad.
Sci. 89: 8225-8229, 1992.
24. Cormode, E. J.; Lyster, D. M.; Israels, S.: Analbuminemia in
a neonate. J. Pediat. 86: 862-867, 1975.
25. Dammacco, F.; Miglietta, A.; D'Addabbo, A.; Fratello, A.; Moschetta,
R.; Bonomo, L.: Analbuminemia: report of a case and review of the
literature. Vox Sang. 39: 153-161, 1980.
26. Darlington, G.: Personal Communication. New Haven, Conn. and
New York, N. Y. 9/17/1974.
27. Darlington, G. J.; Bernhard, H. P.; Ruddle, F. H.: Human serum
albumin phenotype activation in mouse hepatoma-human leukocyte cell
hybrids. Science 185: 859-862, 1974.
28. Dayhoff, M. O.: Serum albumin. Atlas of Protein Sequence and
Structure. Washington, D. C.: National Biomedical Research Foundation
(pub.) 5: 1972. P. D316.
29. DeCosimo, D. R.; Fang, S.-L.; Braverman, L. E.: Prevalence of
familial dysalbuminemic hyperthyroxinemia in Hispanics. (Letter) Ann.
Intern. Med. 107: 780-781, 1987.
30. Dugaiczyk, A.: Personal Communication. Riverside, Calif. 4/29/1989.
31. Dugaiczyk, A.; Law, S. W.; Dennison, O. E.: Nucleotide sequence
and the encoded amino acids of human serum albumin mRNA. Proc. Nat.
Acad. Sci. 79: 71-75, 1982.
32. Earle, D. P.; Hutt, M. P.; Schmid, K.; Gitlin, D.: Observations
on double albumin: a genetically transmitted serum protein anomaly. J.
Clin. Invest. 38: 1412-1420, 1959.
33. Efremov, G. D.; Braend, M.: Serum albumin: polymorphism in man. Science 146:
1679-1680, 1964.
34. Esumi, H.; Okui, M.; Sato, S.; Sugimura, T.; Nagase, S.: Absence
of albumin mRNA in the liver of analbuminemic rats. Proc. Nat. Acad.
Sci. 77: 3215-3219, 1980.
35. Esumi, H.; Takahashi, Y.; Sato, S.; Nagase, S.; Sugimura, T.:
A seven-base-pair deletion in an intron of the albumin gene of analbuminemic
rats. Proc. Nat. Acad. Sci. 80: 95-99, 1983.
36. Esumi, H.; Takahashi, Y.; Sekiya, T.; Sato, S.; Nagase, S.; Sugimura,
T.: Presence of albumin mRNA precursors in nuclei of analbuminemic
rat liver lacking cytoplasmic albumin mRNA. Proc. Nat. Acad. Sci. 79:
734-738, 1982.
37. Fine, J. M.; Abdo, Y.; Rochu, D.; Rousseaux, J.; Dautrevaux, M.
: Identification of the human albumin variant 'Gainesville' with proalbumin
'Christchurch'. Blood Transf. Immunohemat. 26: 341-346, 1983.
38. Fine, J. M.; Marneux, M.; Rochu, D.: Human albumin genetic variants:
an attempt at a classification of European allotypes. Am. J. Hum.
Genet. 40: 278-286, 1987.
39. Franklin, S. G.; Wolf, S. I.; Ozdemir, Y.; Yuregir, G. T.; Isbir,
T.; Blumberg, B. S.: Albumin Naskapi variant in North American Indians
and Eti Turks. Proc. Nat. Acad. Sci. 77: 5480-5482, 1980.
40. Franklin, S. G.; Wolf, S. I.; Zweidler, A.; Blumberg, B. S.:
Localization of the amino acid substitution site in a new variant
of human serum albumin, albumin Mexico-2. Proc. Nat. Acad. Sci. 77:
2505-2509, 1980.
41. Fraser, G. R.; Harris, H.; Robson, E. B.: A new genetically determined
plasma-protein in man. Lancet 279: 1023-1024, 1959. Note: Originally
Volume I.
42. Galliano, M.; Minchiotti, L.; Ferri, G.; Iadarola, P.; Zapponi,
M. C.; Fine, J. M.: Structural characterization of the human albumin
variant 'Pollibauer'. Blood Transf. Immunohemat. 27: 597-602, 1984.
43. Galliano, M.; Minchiotti, L.; Iadarola, P.; Ferri, G.; Zapponi,
M. C.; Castellani, A. A.: The amino acid substitution in albumin
Roma: 321 glu-to-lys. FEBS Lett. 233: 100-104, 1988.
44. Galliano, M.; Minchiotti, L.; Iadarola, P.; Porta, F.; Stoppini,
M.; Zapponi, M. C.; Ferri, G.; Castellani, A. A.: Genetic variants
of human serum albumin. Prog. Med. Lab. 2: 475-477, 1988.
45. Galliano, M.; Minchiotti, L.; Iadarola, P.; Stoppini, M.; Giagnoni,
P.; Watkins, S.; Madison, J.; Putnam, F. W.: Protein and DNA sequence
analysis of a 'private' genetic variant: albumin Ortonovo (glu505-to-lys). Biochim.
Biophys. Acta 1225: 27-32, 1993.
46. Galliano, M.; Minchiotti, L.; Iadarola, P.; Zapponi, M. C.; Ferri,
G.; Castellani, A. A.: Structural characterization of a chain termination
mutant of human serum albumin. J. Biol. Chem. 261: 4283-4287, 1986.
47. Galliano, M.; Minchiotti, L.; Porta, F.; Rossi, A.; Ferri, G.;
Madison, J.; Watkins, S.; Putnam, F. W.: Mutations in genetic variants
of human serum albumin found in Italy. Proc. Nat. Acad. Sci. 87:
8721-8725, 1990.
48. Galliano, M.; Minchiotti, L.; Stoppini, M.; Tarnoky, A. L.: A
new proalbumin variant: albumin Jaffna (-1 arg-to-leu). FEBS Lett. 255:
295-299, 1989.
49. Harper, M. E.; Dugaiczyk, A.: Linkage of the evolutionarily-related
serum albumin and alpha-fetoprotein genes within q11-22 of human chromosome
4. Am. J. Hum. Genet. 35: 565-572, 1983.
50. Hawkins, J. W.; Dugaiczyk, A.: The human serum albumin gene:
structure of a unique locus. Gene 19: 55-58, 1982.
51. Huss, K.; Madison, J.; Ishioka, N.; Takahashi, N.; Arai, K.; Putnam,
F. W.: The same substitution, glutamic acid-to-lysine at position
501, occurs in three alloalbumins of Asiatic origin: albumins Vancouver,
Birmingham, and Adana. Proc. Nat. Acad. Sci. 85: 6692-6696, 1988.
52. Huss, K.; Putnam, F. W.; Takahashi, N.; Takahashi, Y.; Weaver,
G. A.; Peters, T., Jr.: Albumin Cooperstown: a serum albumin variant
with the same (313 lys-to-asn) mutation found in albumins in Italy
and New Zealand. Clin. Chem. 34: 183-187, 1988.
53. Hutchinson, D. W.; Matejtschuk, P.; Lord, C.: Albumin Carlisle:
occurrence and properties of a new human albumin variant. IRCS Med.
Sci. 14: 1095-1096, 1986.
54. Jamieson, G. A.; Ganguly, P.: Studies on a genetically determined
albumin dimer. Biochem. Genet. 3: 403-416, 1969.
55. Jensen, I. W.; Faber, J.: Familial dysalbuminemic hyperthyroxinemia. Acta
Med. Scand. 221: 469-473, 1987.
56. Kaarsalo, E.; Melartin, L.; Blumberg, B. S.: Autosomal linkage
between the albumin and GC loci in humans. Science 158: 123-125,
1967.
57. Kallee, E.: Bennhold's analbuminemia: a follow-up study of the
first two cases (1953-1992). J. Lab. Clin. Med. 127: 470-480, 1996.
58. Kao, F.-T.; Hawkins, J. W.; Law, M. L.; Dugaiczyk, A.: Assignment
of the structural gene coding for albumin to human chromosome 4. Hum.
Genet. 62: 337-341, 1982.
59. Kaur, H.; Franklin, S. G.; Shrivastava, P. K.; Blumberg, B. S.
: Alloalbuminemia in North India. Am. J. Hum. Genet. 34: 972-979,
1982.
60. Kueppers, F.; Holland, P. V.; Weitkamp, L. R.: Albumin Santa
Ana: a new inherited variant. Hum. Hered. 19: 378-384, 1969.
61. Kurnit, D. M.; Philipp, B. W.; Bruns, G. A. P.: Confirmation
of the mapping assignment of human serum albumin to chromosome 4 using
a cloned human albumin gene. Cytogenet. Cell Genet. 34: 282-288,
1982.
62. Lalloz, M. R. A.; Byfield, P. G. H.; Himsworth, R. L.: Hyperthyroxinaemia:
abnormal binding of T4 by an inherited albumin variant. Clin. Endocr. 18:
11-24, 1983.
63. Lalloz, M. R. A.; Byfield, P. G. H.; Himsworth, R. L.: A new
and distinctive albumin variant with increased affinities for both
triiodothyronines and causing hyperthyroxinaemia. Clin. Endocr. 22:
521-529, 1985.
64. Lau, T. J.; Sunderman, F. W., Jr.; Weitkamp, L. R.; Agarwal, S.
S.; Sutnick, A. I.; Blumberg, B. S.; De Jimenez, R. B. C.: Albumin
Cartago: a 'new' slow-moving alloalbumin. Am. J. Clin. Path. 57:
247-251, 1972.
65. Laurell, C. B.; Nilehn, J. E.: A new type of inherited serum
albumin anomaly. J. Clin. Invest. 45: 1935-1945, 1966.
66. Lavareda de Souza, S.; Frain, M.; Mornet, E.; Sala-Trepat, J.
M.; Lucotte, G.: Polymorphisms of human albumin gene after DNA restriction
by HaeIII endonuclease. Hum. Genet. 67: 48-51, 1984.
67. Lyon, A. W.; Meinert, P.; Bruce, G. A.; Laxdal, V. A.; Salkie,
M. L.: Influence of methodology on the detection and diagnosis of
congenital analbuminemia. Clin. Chem. 44: 2365-2367, 1998.
68. Madison, J.; Arai, K.; Sakamoto, Y.; Feld, R. D.; Kyle, R. A.;
Watkins, S.; Davis, E.; Matsuda, Y.; Amaki, I.; Putnam, F. W.: Genetic
variants of serum albumin in Americans and Japanese. Proc. Nat. Acad.
Sci. 88: 9853-9857, 1991.
69. Madison, J.; Galliano, M.; Watkins, S.; Minchiotti, L.; Porta,
F.; Rossi, A.; Putnam, F. W.: Genetic variants of human serum albumin
in Italy: point mutants and a carboxyl-terminal variant. Proc. Nat.
Acad. Sci. 91: 6476-6480, 1994.
70. Magenis, R. E.; Luo, X. Y.; Dugaiczyk, A.; Ryan, S. C.; Oosterhuis,
J. E.: Chromosomal localization of the albumin and alpha-fetoprotein
genes in the orangutan (Pongo pygmaeus) and gorilla (Gorilla gorilla).
(Abstract) Cytogenet. Cell Genet. 51: 1037 only, 1989.
71. Melartin, L.: Albumin polymorphism in man: studies on albumin
variants in North American native populations. Acta Path. Microbiol.
Scand. 191 (suppl.): 1-50, 1967.
72. Melartin, L.; Blumberg, B. S.: Albumin Naskapi: a new variant
of serum albumin. Science 153: 1664-1666, 1966.
73. Melartin, L.; Blumberg, B. S.; Lisker, R.: Albumin Mexico, a
new variant of serum albumin. Nature 215: 1288-1289, 1967.
74. Mendel, C. M.; Cavalieri, R. R.; Gavin, L. A.; Pettersson, T.;
Inoue, M.: Thyroxine transport and distribution in Nagase analbuminemic
rats. J. Clin. Invest. 83: 143-148, 1989.
75. Minchiotti, L.; Galliano, M.; Iadarola, P.; Meloni, M. L.; Ferri,
G.; Porta, F.; Castellani, A. A.: The molecular defect in a COOH-terminal-modified
and shortened mutant of human serum albumin. J. Biol. Chem. 264:
3385-3389, 1989.
76. Minchiotti, L.; Galliano, M.; Kragh-Hansen, U.; Peters, T., Jr.
: Mutations and polymorphisms of the gene of the major human blood
protein, serum albumin. Hum. Mutat. 29: 1007-1016, 2008.
77. Minchiotti, L.; Galliano, M.; Kragh-Hansen, U.; Watkins, S.; Madison,
J.; Putnam, F. W.: A genetic variant of albumin (albumin Asola; tyr140-to-cys)
with no free -SH group but with an additional disulfide bridge. Europ.
J. Biochem. 228: 155-159, 1995.
78. Minchiotti, L.; Galliano, M.; Stoppini, M.; Ferri, G.; Crespeau,
H.; Rochu, D.; Porta, F.: Two alloalbumins with identical electrophoretic
mobility are produced by differently charged amino acid substitutions. Biochim.
Biophys. Acta 1119: 232-238, 1992.
79. Minchiotti, L.; Galliano, M.; Zapponi, M. C.; Tenni, R.: The
structural characterization and bilirubin-binding properties of albumin
Herborn, a lys240-to-glu albumin mutant. Europ. J. Biochem. 214:
437-444, 1993.
80. Minghetti, P. P.; Law, S. W.; Dugaiczyk, A.: The rate of molecular
evolution of alpha-fetoprotein approaches that of pseudogenes. Molec.
Biol. Evol. 2: 347-358, 1985.
81. Minghetti, P. P.; Ruffner, D. E.; Kuang, W.-J.; Dennison, O. E.;
Hawkins, J. W.; Beattie, W. G.; Dugaiczyk, A.: Molecular structure
of the human albumin gene is revealed by nucleotide sequence within
q11-22 of chromosome 4. J. Biol. Chem. 261: 6747-6757, 1986.
82. Murray, J. C.; Demopulos, C. M.; Lawn, R. M.; Motulsky, A. G.
: Molecular genetics of human serum albumin: restriction enzyme fragment
length polymorphisms and analbuminemia. Proc. Nat. Acad. Sci. 80:
5951-5955, 1983.
83. Murray, J. C.; Demopulos, C. M.; Lawn, R. M.; Motulsky, A. G.
: Restriction endonuclease study of analbuminemia and polymorphisms
at the albumin locus. (Abstract) Clin. Res. 31: 456A only, 1983.
84. Murray, J. C.; Mills, K. A.; Demopulos, C. M.; Hornung, S.; Motulsky,
A. G.: Linkage disequilibrium and evolutionary relationships of DNA
variants (restriction enzyme fragment length polymorphisms) at the
serum albumin locus. Proc. Nat. Acad. Sci. 81: 3486-3490, 1984.
85. Nagase, S.; Shimamune, K.; Shumiya, S.: Albumin-deficient rat
mutant. Science 205: 590-591, 1979.
86. Ohno, S.: Original domain for the serum albumin family arose
from repeated sequences. Proc. Nat. Acad. Sci. 78: 7657-7661, 1981.
87. Ott, H.: Analbuminemia.In: Linneweh, F.: Erbliche Stoffwechselkrankheiten.
Munich: Urban und Schwarzenberg (pub.) 1962. P. 44.
88. Peach, R. J.; Brennan, S. O.: Structural characterization of
a glycoprotein variant of human serum albumin: albumin Casebrook (494
asp-to-asn). Biochim. Biophys. Acta 1097: 49-54, 1991.
89. Peach, R. J.; Fellowes, A. P.; Brennan, S. O.; George, P. M.:
Albumin Rugby Park: a truncated albumin variant caused by a G-to-C
splice-site mutation in intron 13. Biochim. Biophys. Acta 1180:
107-110, 1992.
90. Petersen, C. E.; Scottolini, A. G.; Cody, L. R.; Mandel, M.; Reimer,
N.; Bhagavan, N. V.: A point mutation in the human serum albumin
gene results in familial dysalbuminaemic hyperthyroxinaemia. J. Med.
Genet. 31: 355-359, 1994.
91. Petitpas, I.; Petersen, C. E.; Ha, C.-E.; Bhattacharya, A. A.;
Zunszain, P. A.; Ghuman, J.; Bhagavan, N. V.; Curry, S.: Structural
basis of albumin-thyroxine interactions and familial dysalbuminemic
hyperthyroxinemia. Proc. Nat. Acad. Sci. 100: 6440-6445, 2003.
92. Pinkert, C. A.; Ornitz, D. M.; Brinster, R. L.; Palmiter, R. D.
: An albumin enhancer located 10 kb upstream functions along with
its promoter to direct efficient, liver-specific expression in transgenic
mice. Genes Dev. 1: 268-276, 1987.
93. Pohlenz, J.; Sadow, P. M.; Koffler, T.; Schonberger, W.; Weiss,
R. E.; Refetoff, S.: Congenital hypothyroidism in a child with unsuspected
familial dysalbuminemic hyperthyroxinemia caused by a mutation (R218H)
in the human albumin gene. J. Pediat. 139: 887-891, 2001.
94. Prager, E. M.; Wilson, A. C.; Lowenstein, J. M.; Sarich, V. M.
: Mammoth albumin. Science 209: 287-289, 1980.
95. Premachandra, B. N.; Wolfe, B.; Williams, I. K.: Coexistence
of familial dysalbuminemic hyperthyroxinemia with familial hypercholesterolemia
and multiple lipoprotein type hyperlipidemia. Am. J. Med. 84: 345-351,
1988.
96. Rajatanavin, R.; Fournier, L.; DeCosimo, D.; Abreau, C.; Braverman,
L. E.: Elevated serum free thyroxine by thyroxine analog radioimmunoassays
in euthyroid patients with familial dysalbuminemic hyperthyroxinemia. Ann.
Intern. Med. 97: 865-866, 1982.
97. Rajatanavin, R.; Young, R. A.; Braverman, L. E.: Effect of chloride
on serum thyroxine binding in familial dysalbuminemic hyperthyroxinemia. J.
Clin. Endocr. Metab. 58: 388-391, 1984.
98. Rochu, D.; Fine, J. M.: New method for identifying genetic variants
of human proalbumin. Clin. Chem. 32: 2063-2065, 1986.
99. Ruffner, D. E.; Dugaiczyk, A.: Splicing mutation in human hereditary
analbuminemia. Proc. Nat. Acad. Sci. 85: 2125-2129, 1988.
100. Ruiz, M.; Rajatanavin, R.; Young, R. A.; Taylor, C.; Brown, R.;
Braverman, L. E.; Ingbar, S. H.: Familial dysalbuminemic hyperthyroxinemia:
a syndrome that can be confused with thyrotoxicosis. New Eng. J.
Med. 306: 635-639, 1982.
101. Sakamoto, Y.; Davis, E.; Madison, J.; Watkins, S.; McLaughlin,
H.; Leahy, D. T.; Putnam, F. W.: Purification and structural study
of two albumin variants in an Irish population. Clin. Chim. Acta 204:
179-188, 1991. Note: Erratum: Clin. Chim. Acta 205: 155 only, 1992.
102. Sanders, G. T. B.; Tarnoky, A. L.: Albumin Amsterdam: a new
European albumin variant. IRCS Med. Sci. 7: 581 only, 1979.
103. Sarcione, E. J.; Aungst, C. W.: Studies in bisalbuminemia: binding
properties of the two albumins. Blood 20: 156-164, 1962.
104. Sargent, T. D.; Wu, J.-R.; Sala-Trepat, J. M.; Wallace, R. B.;
Reyes, A. A.; Bonner, J.: The rat serum albumin gene: analysis of
cloned sequences. Proc. Nat. Acad. Sci. 76: 3256-3260, 1979.
105. Sarich, V. M.: Generation time and albumin evolution. Biochem.
Genet. 7: 205-212, 1972.
106. Schell, L. M.; Agarwal, S. S.; Blumberg, B. S.; Levy, H.; Bennett,
H.; Laughlin, W. S.; Martin, J. P.: Distribution of albumin variants
Naskapi and Mexico among Aleuts, Frobisher Bay Eskimos, and Micmac,
Naskapi, Mohawk, Omaha and Apache Indians. Am. J. Phys. Anthrop. 49:
111-118, 1978.
107. Schell, L. M.; Blumberg, B. S.: The genetics of human serum
albumin.In: Rosenoer, V. M.; Oratz, M.; Rothschild, M. A.: Albumin
Structure, Function and Uses. Oxford: Pergamon Press (pub.) 1977.
Pp. 113-141.
108. Shalaby, F.; Shafritz, D. A.: Exon skipping during splicing
of albumin mRNA precursors in Nagase analbuminemic rats. Proc. Nat.
Acad. Sci. 87: 2652-2656, 1990.
109. Shashaty, G.; Atamer, M.: Acquired bisalbuminemia with hyperamylasemia. Digest.
Dis. 17: 59-67, 1972.
110. Shibata, T.; Abe, T.: Linkage between the loci for serum albumin
and vitamin D binding protein (GC) in the Japanese quail. Animal
Genet. 27: 195-197, 1996.
111. Silverberg, J. D. H.; Premachandra, B. N.: Familial hyperthyroxinemia
due to abnormal thyroid hormone binding. Ann. Intern. Med. 96: 183-186,
1982.
112. Sunthornthepvarakul, T.; Angkeow, P.; Weiss, R. E.; Hayashi,
Y.; Refetoff, S.: An identical missense mutation in the albumin gene
results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated
families. Biochem. Biophys. Res. Commun. 202: 781-787, 1994.
113. Sunthornthepvarakul, T.; Likitmaskul, S.; Ngowngarmratana, S.;
Angsusingha, K.; Kitvitayasak, S.; Scherberg, N. H.; Refetoff, S.
: Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly
inherited albumin defect. J. Clin. Endocr. Metab. 83: 1448-1454,
1998.
114. Swain, B. K.; Talukder, G.; Sharma, A.: Bisalbuminaemia: reports
from Calcutta. Biomedicine 33: 172-173, 1980.
115. Takahashi, N.; Takahashi, Y.; Blumberg, B. S.; Putnam, F. W.
: Amino acid substitutions in genetic variants of human serum albumin
and in sequences inferred from molecular cloning. Proc. Nat. Acad.
Sci. 84: 4413-4417, 1987.
116. Takahashi, N.; Takahashi, Y.; Isobe, T.; Putnam, F. W.; Fujita,
M.; Satoh, C.; Neel, J. V.: Amino acid substitutions in inherited
albumin variants from Amerindian and Japanese populations. Proc.
Nat. Acad. Sci. 84: 8001-8005, 1987.
117. Takahashi, N.; Takahashi, Y.; Putnam, F. W.: Structural changes
and metal binding by proalbumins and other amino-terminal genetic
variants of human serum albumin. Proc. Nat. Acad. Sci. 84: 7403-7407,
1987.
118. Tarnoky, A. L.; Lestas, A. N.: A new type of bisalbuminaemia. Clin.
Chim. Acta 9: 551-558, 1964.
119. Urano, Y.; Sakai, M.; Watanabe, K.; Tamaoki, T.: Tandem arrangement
of the albumin and alpha-fetoprotein genes in the human genome. Gene 32:
255-261, 1984.
120. Vanzetti, G.; Porta, F.; Prencipe, L.; Scherini, A.; Fraccaro,
M.: A homozygote for a serum albumin variant of the fast type. Hum.
Genet. 46: 5-9, 1979.
121. Vaysse, J.; Pilardeau, P.; Garnier, M.: Trisalbuminemia. (Letter) New
Eng. J. Med. 305: 833-834, 1981.
122. Wada, N.; Chiba, H.; Shimizu, C.; Kijima, H.; Kubo, M.; Koike
T.: A novel missense mutation in codon 218 of the albumin gene in
a distinct phenotype of familial dysalbuminemic hyperthyroxinemia
in a Japanese kindred. J. Clin. Endocr. Metab. 82: 3246-3250, 1997.
123. Wandzioch, E.; Zaret, K. S.: Dynamic signaling network for the
specification of embryonic pancreas and liver progenitors. Science 324:
1707-1710, 2009.
124. Watkins, S.; Madison, J.; Galliano, M.; Minchiotti, L.; Putnam,
F. W.: A nucleotide insertion and frameshift cause analbuminemia
in an Italian family. Proc. Nat. Acad. Sci. 91: 2275-2279, 1994.
125. Weiss, R. E.; Sunthornthepvarakul, T.; Angkeow, P.; Marcus-Bagley,
D.; Cox, N.; Alper, C. A.; Refetoff, S.: Linkage of familial dysalbuminemic
hyperthyroxinemia to the albumin gene in a large Amish kindred. J.
Clin. Endocr. Metab. 80: 116-121, 1995.
126. Weitkamp, L. R.: Comparative gene mapping: linkage between the
albumin and Gc loci in the horse. (Abstract) Am. J. Hum. Genet. 30:
128A only, 1978.
127. Weitkamp, L. R.; Buck, A. A.: Phenotype frequencies for four
serum proteins in Afghanistan: two 'new' albumin variants. Humangenetik 15:
335-340, 1972.
128. Weitkamp, L. R.; Chagnon, N. A.: Albumin Maku: a new variant
of human serum albumin. Nature 217: 759-760, 1968.
129. Weitkamp, L. R.; Franglen, G.; Rokala, D. A.; Polesky, H. F.;
Simpson, N. E.; Sunderman, F. W., Jr.; Bell, H. E.; Saave, J.; Lisker,
R.; Bohls, S. W.: An electrophoretic comparison of human serum albumin
variants: eight distinguishable types. Hum. Hered. 19: 159-169,
1969.
130. Weitkamp, L. R.; Renwick, J. H.; Berger, J. P.; Shreffler, D.
C.; Drachmann, O.; Wuhrmann, F.; Braend, M.; Franglen, G.: Additional
data and summary for albumin-GC linkage in man. Hum. Hered. 20:
1-7, 1970.
131. Weitkamp, L. R.; Robson, E. B.; Shreffler, D. C.; Corney, G.
: An unusual human serum albumin variant: further data on genetic
linkage between loci for human serum albumin and group-specific component
(GC). Am. J. Hum. Genet. 20: 392-397, 1968.
132. Weitkamp, L. R.; Rucknagel, D. L.; Gershowitz, H.: Genetic linkage
between structural loci for albumin and group specific component (GC). Am.
J. Hum. Genet. 18: 559-571, 1966.
133. Weitkamp, L. R.; Salzano, F. M.; Neel, J. V.; Porta, F.; Geerdink,
R. A.; Tarnoky, A. L.: Human serum albumin: twenty-three genetic
variants and their population distribution. Ann. Hum. Genet. 36:
381-392, 1973.
134. Weitkamp, L. R.; Shreffler, D. C.; Robbins, J. L.; Drachmann,
O.; Adner, P. L.; Weime, R. J.; Simon, N. M.; Cooke, K. B.; Sandor,
G.; Wuhrmann, F.; Braend, M.; Tarnoky, A. L.: An electrophoretic
comparison of serum albumin variants from nineteen unrelated families. Acta
Genet. Statist. Med. 17: 399-405, 1967.
135. Wieme, R. J.: On the presence of two albumins in certain normal
human sera and its genetic determination. Clin. Chim. Acta 5: 443-445,
1960.
136. Williams, D. I.; Martin, N. H.: Bisalbuminemia with curious
acrocyanotic skin changes (two cases). Proc. Roy. Soc. Med. 53:
566-568, 1960.
137. Yabu, Y.; Amir, S. M.; Ruiz, M.; Braverman, L. E.; Ingbar, S.
H.: Heterogeneity of thyroxine binding by serum albumins in normal
subjects and patients with familial dysalbuminemic hyperthyroxinemia. J.
Clin. Endocr. Metab. 60: 451-459, 1985.
138. Yabu, Y.; Miyai, K.; Kobayashi, A.; Miki, K.; Doi, K.; Takamatsu,
J.; Mozai, T.; Matsuzuka, F.; Kuma, K.: A new type of albumin with
predominantly increased binding affinity for 3,3-prime,5-triiodothyronine
in a patient with Graves' disease. J. Endocr. Invest. 10: 163-169,
1987.
139. Yeo, P. P. B.; Yabu, Y.; Etzkorn, J. R.; Rajatanavin, R.; Braverman,
L. E.; Ingbar, S. H.: A four generation study of dysalbuminemic hyperthyroxinemia:
diagnosis in the presence of an acquired excess of thyroxine-binding
globulin. J. Endocr. Invest. 10: 33-38, 1987.
140. Ying, Q.; Liang, Z.; Wu, H.; Wang, L.: The gene frequency of
serum albumin variants in Chinese and the electrophoretic characterization
of several serum albumin variants. Scientia Sin. 24: 1597-1602,
1981.
*FIELD* CN
Cassandra L. Kniffin - updated: 9/3/2009
Ada Hamosh - updated: 7/9/2009
Carol A. Bocchini - updated: 7/9/2008
Victor A. McKusick - updated: 6/25/2003
Victor A. McKusick - updated: 6/5/2003
Victor A. McKusick - updated: 2/15/2002
Ada Hamosh - updated: 1/29/2002
Ada Hamosh - updated: 2/10/2000
John A. Phillips, III - updated: 7/16/1998
John A. Phillips, III - updated: 12/25/1997
Jon B. Obray - updated: 8/27/1996
Stylianos E. Antonarakis - updated: 7/25/1996
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
terry: 06/06/2012
terry: 3/23/2010
wwang: 9/15/2009
ckniffin: 9/3/2009
alopez: 7/16/2009
terry: 7/9/2009
terry: 6/3/2009
terry: 1/7/2009
terry: 11/21/2008
terry: 8/15/2008
carol: 7/9/2008
wwang: 8/22/2007
carol: 3/17/2004
tkritzer: 6/26/2003
tkritzer: 6/25/2003
carol: 6/6/2003
tkritzer: 6/5/2003
cwells: 3/6/2002
cwells: 2/21/2002
terry: 2/15/2002
alopez: 1/31/2002
terry: 1/29/2002
carol: 6/14/2001
carol: 2/10/2000
carol: 8/3/1998
dholmes: 7/17/1998
dholmes: 7/16/1998
dkim: 6/26/1998
alopez: 1/23/1998
alopez: 8/5/1997
alopez: 7/31/1997
terry: 5/6/1997
terry: 10/28/1996
terry: 10/22/1996
carol: 8/27/1996
joanna: 8/26/1996
carol: 8/13/1996
carol: 7/27/1996
carol: 7/25/1996
mark: 6/27/1995
jason: 7/13/1994
davew: 8/10/1994
terry: 6/3/1995
carol: 8/30/1994
warfield: 4/7/1994