Full text data of AMY1A
AMY1A
(AMY1)
[Confidence: low (only semi-automatic identification from reviews)]
Alpha-amylase 1; 3.2.1.1 (1,4-alpha-D-glucan glucanohydrolase 1; Salivary alpha-amylase; Flags: Precursor)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Alpha-amylase 1; 3.2.1.1 (1,4-alpha-D-glucan glucanohydrolase 1; Salivary alpha-amylase; Flags: Precursor)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P04745
ID AMY1_HUMAN Reviewed; 511 AA.
AC P04745; A6NJS5; A8K8H6; Q13763; Q5T083;
DT 13-AUG-1987, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-FEB-1996, sequence version 2.
DT 22-JAN-2014, entry version 163.
DE RecName: Full=Alpha-amylase 1;
DE EC=3.2.1.1;
DE AltName: Full=1,4-alpha-D-glucan glucanohydrolase 1;
DE AltName: Full=Salivary alpha-amylase;
DE Flags: Precursor;
GN Name=AMY1A; Synonyms=AMY1;
GN and
GN Name=AMY1B; Synonyms=AMY1;
GN and
GN Name=AMY1C; Synonyms=AMY1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=2423416; DOI=10.1016/0378-1119(86)90110-1;
RA Nishide T., Nakamura Y., Emi M., Yamamoto T., Ogawa M., Mori T.,
RA Matsubara K.;
RT "Primary structure of human salivary alpha-amylase gene.";
RL Gene 41:299-304(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=6610603; DOI=10.1016/0378-1119(84)90265-8;
RA Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S.,
RA Matsubara K.;
RT "Corrected sequences of cDNAs for human salivary and pancreatic alpha-
RT amylases.";
RL Gene 28:263-270(1984).
RN [3]
RP ERRATUM, AND SEQUENCE REVISION.
RA Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S.,
RA Matsubara K.;
RL Gene 50:371-372(1986).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thyroid;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-56 AND 408-448.
RX PubMed=2452973;
RA Gumucio D.L., Wiebauer K., Caldwell R.M., Samuelson L.C.,
RA Meisler M.H.;
RT "Concerted evolution of human amylase genes.";
RL Mol. Cell. Biol. 8:1197-1205(1988).
RN [8]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-293 AND 450-511.
RX PubMed=2442579;
RA Handy D.E., Larsen S.H., Karn R.C., Hodes M.E.;
RT "Identification of a human salivary amylase gene. Partial sequence of
RT genomic DNA suggests a mode of regulation different from that of
RT mouse, Amy1.";
RL Mol. Biol. Med. 4:145-155(1987).
RN [9]
RP POST-TRANSLATIONAL MODIFICATIONS.
RX PubMed=1710976; DOI=10.1002/elps.1150120114;
RA Bank R.A., Hettema E.H., Arwert F., Amerongen A.V., Pronk J.C.;
RT "Electrophoretic characterization of posttranslational modifications
RT of human parotid salivary alpha-amylase.";
RL Electrophoresis 12:74-79(1991).
RN [10]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-427, AND MASS
RP SPECTROMETRY.
RC TISSUE=Saliva;
RX PubMed=16740002; DOI=10.1021/pr050492k;
RA Ramachandran P., Boontheung P., Xie Y., Sondej M., Wong D.T.,
RA Loo J.A.;
RT "Identification of N-linked glycoproteins in human saliva by
RT glycoprotein capture and mass spectrometry.";
RL J. Proteome Res. 5:1493-1503(2006).
RN [11]
RP X-RAY CRYSTALLOGRAPHY (1.6 ANGSTROMS).
RX PubMed=15299664; DOI=10.1107/S0907444995014119;
RA Ramasubbu N., Paloth V., Luo Y., Brayer G.D., Levine M.J.;
RT "Structure of human salivary alpha-amylase at 1.6-A resolution:
RT implications for its role in the oral cavity.";
RL Acta Crystallogr. D 52:435-446(1996).
RN [12]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF WILD-TYPE AND MUTANT
RP 321-GLY--ALA-325 DEL.
RX PubMed=12527308; DOI=10.1016/S0022-2836(02)01326-8;
RA Ramasubbu N., Ragunath C., Mishra P.J.;
RT "Probing the role of a mobile loop in substrate binding and enzyme
RT activity of human salivary amylase.";
RL J. Mol. Biol. 325:1061-1076(2003).
CC -!- CATALYTIC ACTIVITY: Endohydrolysis of (1->4)-alpha-D-glucosidic
CC linkages in polysaccharides containing three or more (1->4)-alpha-
CC linked D-glucose units.
CC -!- COFACTOR: Binds 1 calcium ion per subunit.
CC -!- COFACTOR: Binds 1 chloride ion per subunit.
CC -!- SUBUNIT: Monomer.
CC -!- INTERACTION:
CC Q8TAX7:MUC7; NbExp=2; IntAct=EBI-738586, EBI-738582;
CC -!- SUBCELLULAR LOCATION: Secreted.
CC -!- SIMILARITY: Belongs to the glycosyl hydrolase 13 family.
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Amylase entry;
CC URL="http://en.wikipedia.org/wiki/Amylase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M18786; AAA52279.1; -; Genomic_DNA.
DR EMBL; M18715; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18717; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18719; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18721; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18723; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18725; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18727; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18784; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; AK292341; BAF85030.1; -; mRNA.
DR EMBL; AL513482; CAI14928.1; -; Genomic_DNA.
DR EMBL; AL513482; CAI14932.1; -; Genomic_DNA.
DR EMBL; BC063129; AAH63129.1; -; mRNA.
DR EMBL; BC069347; AAH69347.1; -; mRNA.
DR EMBL; BC069463; AAH69463.1; -; mRNA.
DR EMBL; BC092444; AAH92444.1; -; mRNA.
DR EMBL; BC132985; AAI32986.1; -; mRNA.
DR EMBL; BC132987; AAI32988.1; -; mRNA.
DR EMBL; BC132995; AAI32996.1; -; mRNA.
DR EMBL; BC132997; AAI32998.1; -; mRNA.
DR EMBL; M18671; AAA58368.1; -; Genomic_DNA.
DR EMBL; M18674; AAA16183.2; -; Genomic_DNA.
DR EMBL; M19233; AAA57345.1; ALT_TERM; Genomic_DNA.
DR EMBL; M17883; AAA57345.1; JOINED; Genomic_DNA.
DR EMBL; M17884; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR PIR; A91543; ALHUS.
DR RefSeq; NP_001008219.1; NM_001008218.1.
DR RefSeq; NP_001008220.1; NM_001008219.1.
DR RefSeq; NP_001008222.1; NM_001008221.1.
DR RefSeq; NP_004029.2; NM_004038.3.
DR RefSeq; XP_005270812.1; XM_005270755.1.
DR RefSeq; XP_005270813.1; XM_005270756.1.
DR RefSeq; XP_005270814.1; XM_005270757.1.
DR RefSeq; XP_005270815.1; XM_005270758.1.
DR RefSeq; XP_005270816.1; XM_005270759.1.
DR RefSeq; XP_005270817.1; XM_005270760.1.
DR RefSeq; XP_005270818.1; XM_005270761.1.
DR RefSeq; XP_005270819.1; XM_005270762.1.
DR UniGene; Hs.599274; -.
DR UniGene; Hs.654437; -.
DR UniGene; Hs.655232; -.
DR UniGene; Hs.662103; -.
DR PDB; 1C8Q; X-ray; 2.30 A; A=17-511.
DR PDB; 1JXJ; X-ray; 1.99 A; A=17-511.
DR PDB; 1JXK; X-ray; 1.90 A; A=17-511.
DR PDB; 1MFU; X-ray; 2.00 A; A=17-511.
DR PDB; 1MFV; X-ray; 2.00 A; A=17-511.
DR PDB; 1NM9; X-ray; 2.10 A; A=17-511.
DR PDB; 1Q4N; X-ray; 2.07 A; X=17-511.
DR PDB; 1SMD; X-ray; 1.60 A; A=17-511.
DR PDB; 1XV8; X-ray; 3.00 A; A/B=17-511.
DR PDB; 1Z32; X-ray; 1.60 A; X=17-511.
DR PDB; 3BLK; X-ray; 2.00 A; A=17-511.
DR PDB; 3BLP; X-ray; 1.60 A; X=17-511.
DR PDB; 3DHP; X-ray; 1.50 A; A=17-511.
DR PDBsum; 1C8Q; -.
DR PDBsum; 1JXJ; -.
DR PDBsum; 1JXK; -.
DR PDBsum; 1MFU; -.
DR PDBsum; 1MFV; -.
DR PDBsum; 1NM9; -.
DR PDBsum; 1Q4N; -.
DR PDBsum; 1SMD; -.
DR PDBsum; 1XV8; -.
DR PDBsum; 1Z32; -.
DR PDBsum; 3BLK; -.
DR PDBsum; 3BLP; -.
DR PDBsum; 3DHP; -.
DR ProteinModelPortal; P04745; -.
DR SMR; P04745; 16-511.
DR IntAct; P04745; 1.
DR STRING; 9606.ENSP00000330484; -.
DR BindingDB; P04745; -.
DR ChEMBL; CHEMBL2478; -.
DR CAZy; GH13; Glycoside Hydrolase Family 13.
DR PhosphoSite; P04745; -.
DR UniCarbKB; P04745; -.
DR PaxDb; P04745; -.
DR PeptideAtlas; P04745; -.
DR PRIDE; P04745; -.
DR DNASU; 277; -.
DR DNASU; 278; -.
DR Ensembl; ENST00000330330; ENSP00000330484; ENSG00000174876.
DR Ensembl; ENST00000370079; ENSP00000359096; ENSG00000187733.
DR Ensembl; ENST00000370080; ENSP00000359097; ENSG00000174876.
DR Ensembl; ENST00000370083; ENSP00000359100; ENSG00000237763.
DR GeneID; 276; -.
DR GeneID; 277; -.
DR GeneID; 278; -.
DR KEGG; hsa:276; -.
DR KEGG; hsa:277; -.
DR KEGG; hsa:278; -.
DR UCSC; uc001duu.3; human.
DR CTD; 276; -.
DR CTD; 277; -.
DR CTD; 278; -.
DR GeneCards; GC01M104230; -.
DR GeneCards; GC01P104197; -.
DR GeneCards; GC01P104292; -.
DR HGNC; HGNC:474; AMY1A.
DR HGNC; HGNC:475; AMY1B.
DR HGNC; HGNC:476; AMY1C.
DR HPA; CAB004310; -.
DR MIM; 104700; gene.
DR MIM; 104701; gene.
DR MIM; 104702; gene.
DR neXtProt; NX_P04745; -.
DR PharmGKB; PA24783; -.
DR eggNOG; COG0366; -.
DR HOGENOM; HOG000253313; -.
DR HOVERGEN; HBG000061; -.
DR InParanoid; P04745; -.
DR KO; K01176; -.
DR OMA; QPISYKW; -.
DR OrthoDB; EOG7RJPR2; -.
DR PhylomeDB; P04745; -.
DR BRENDA; 3.2.1.1; 2681.
DR Reactome; REACT_111217; Metabolism.
DR EvolutionaryTrace; P04745; -.
DR GeneWiki; AMY1A; -.
DR NextBio; 1113; -.
DR PRO; PR:P04745; -.
DR ArrayExpress; P04745; -.
DR Bgee; P04745; -.
DR CleanEx; HS_AMY1A; -.
DR Genevestigator; P04745; -.
DR GO; GO:0005576; C:extracellular region; IEA:UniProtKB-SubCell.
DR GO; GO:0004556; F:alpha-amylase activity; TAS:ProtInc.
DR GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR GO; GO:0005975; P:carbohydrate metabolic process; TAS:ProtInc.
DR GO; GO:0007586; P:digestion; TAS:ProtInc.
DR Gene3D; 2.60.40.1180; -; 1.
DR Gene3D; 3.20.20.80; -; 1.
DR InterPro; IPR006048; A-amylase_b_C.
DR InterPro; IPR006046; Alpha_amylase.
DR InterPro; IPR015902; Glyco_hydro_13.
DR InterPro; IPR013780; Glyco_hydro_13_b.
DR InterPro; IPR006047; Glyco_hydro_13_cat_dom.
DR InterPro; IPR006589; Glyco_hydro_13_sub_cat_dom.
DR InterPro; IPR013781; Glyco_hydro_catalytic_dom.
DR InterPro; IPR017853; Glycoside_hydrolase_SF.
DR PANTHER; PTHR10357; PTHR10357; 1.
DR Pfam; PF00128; Alpha-amylase; 1.
DR Pfam; PF02806; Alpha-amylase_C; 1.
DR PRINTS; PR00110; ALPHAAMYLASE.
DR SMART; SM00642; Aamy; 1.
DR SMART; SM00632; Aamy_C; 1.
DR SUPFAM; SSF51445; SSF51445; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Calcium; Carbohydrate metabolism; Chloride;
KW Complete proteome; Disulfide bond; Glycoprotein; Glycosidase;
KW Hydrolase; Metal-binding; Pyrrolidone carboxylic acid;
KW Reference proteome; Secreted; Signal.
FT SIGNAL 1 15 Potential.
FT CHAIN 16 511 Alpha-amylase 1.
FT /FTId=PRO_0000001401.
FT ACT_SITE 212 212 Nucleophile.
FT ACT_SITE 248 248 Proton donor.
FT METAL 115 115 Calcium.
FT METAL 173 173 Calcium; via carbonyl oxygen.
FT METAL 182 182 Calcium.
FT METAL 216 216 Calcium; via carbonyl oxygen.
FT BINDING 210 210 Chloride.
FT BINDING 313 313 Chloride.
FT BINDING 352 352 Chloride.
FT SITE 315 315 Transition state stabilizer (By
FT similarity).
FT MOD_RES 16 16 Pyrrolidone carboxylic acid.
FT MOD_RES 365 365 Deamidated asparagine; partial.
FT MOD_RES 427 427 Deamidated asparagine; partial.
FT MOD_RES 474 474 Deamidated asparagine; partial.
FT CARBOHYD 427 427 N-linked (GlcNAc...).
FT CARBOHYD 476 476 N-linked (GlcNAc...) (Potential).
FT DISULFID 43 101
FT DISULFID 85 130
FT DISULFID 156 175
FT DISULFID 393 399
FT DISULFID 465 477
FT CONFLICT 285 285 N -> T (in Ref. 8; AAA57345).
FT STRAND 27 31
FT HELIX 36 45
FT TURN 46 51
FT STRAND 54 57
FT TURN 67 70
FT HELIX 73 77
FT STRAND 78 80
FT HELIX 91 103
FT STRAND 107 112
FT STRAND 115 119
FT STRAND 124 126
FT TURN 136 139
FT TURN 142 145
FT HELIX 148 150
FT TURN 153 155
FT STRAND 158 162
FT HELIX 169 174
FT HELIX 177 179
FT STRAND 180 183
FT HELIX 188 204
FT STRAND 208 211
FT HELIX 214 216
FT HELIX 219 226
FT TURN 234 236
FT STRAND 244 247
FT STRAND 253 256
FT HELIX 259 262
FT TURN 263 265
FT STRAND 266 269
FT HELIX 272 282
FT HELIX 289 294
FT HELIX 297 299
FT TURN 304 306
FT STRAND 307 309
FT HELIX 316 318
FT STRAND 321 323
FT HELIX 324 326
FT HELIX 330 332
FT HELIX 333 345
FT STRAND 348 355
FT STRAND 363 368
FT TURN 369 372
FT STRAND 375 378
FT HELIX 400 402
FT HELIX 404 415
FT TURN 416 418
FT STRAND 421 426
FT STRAND 428 436
FT TURN 437 439
FT STRAND 440 445
FT STRAND 447 449
FT STRAND 451 456
FT STRAND 461 465
FT TURN 467 469
FT STRAND 476 479
FT STRAND 481 484
FT STRAND 488 494
FT STRAND 498 500
FT STRAND 502 506
FT HELIX 507 509
SQ SEQUENCE 511 AA; 57768 MW; 7710BCAC83EBE8B2 CRC64;
MKLFWLLFTI GFCWAQYSSN TQQGRTSIVH LFEWRWVDIA LECERYLAPK GFGGVQVSPP
NENVAIHNPF RPWWERYQPV SYKLCTRSGN EDEFRNMVTR CNNVGVRIYV DAVINHMCGN
AVSAGTSSTC GSYFNPGSRD FPAVPYSGWD FNDGKCKTGS GDIENYNDAT QVRDCRLSGL
LDLALGKDYV RSKIAEYMNH LIDIGVAGFR IDASKHMWPG DIKAILDKLH NLNSNWFPEG
SKPFIYQEVI DLGGEPIKSS DYFGNGRVTE FKYGAKLGTV IRKWNGEKMS YLKNWGEGWG
FMPSDRALVF VDNHDNQRGH GAGGASILTF WDARLYKMAV GFMLAHPYGF TRVMSSYRWP
RYFENGKDVN DWVGPPNDNG VTKEVTINPD TTCGNDWVCE HRWRQIRNMV NFRNVVDGQP
FTNWYDNGSN QVAFGRGNRG FIVFNNDDWT FSLTLQTGLP AGTYCDVISG DKINGNCTGI
KIYVSDDGKA HFSISNSAED PFIAIHAESK L
//
ID AMY1_HUMAN Reviewed; 511 AA.
AC P04745; A6NJS5; A8K8H6; Q13763; Q5T083;
DT 13-AUG-1987, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-FEB-1996, sequence version 2.
DT 22-JAN-2014, entry version 163.
DE RecName: Full=Alpha-amylase 1;
DE EC=3.2.1.1;
DE AltName: Full=1,4-alpha-D-glucan glucanohydrolase 1;
DE AltName: Full=Salivary alpha-amylase;
DE Flags: Precursor;
GN Name=AMY1A; Synonyms=AMY1;
GN and
GN Name=AMY1B; Synonyms=AMY1;
GN and
GN Name=AMY1C; Synonyms=AMY1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=2423416; DOI=10.1016/0378-1119(86)90110-1;
RA Nishide T., Nakamura Y., Emi M., Yamamoto T., Ogawa M., Mori T.,
RA Matsubara K.;
RT "Primary structure of human salivary alpha-amylase gene.";
RL Gene 41:299-304(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=6610603; DOI=10.1016/0378-1119(84)90265-8;
RA Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S.,
RA Matsubara K.;
RT "Corrected sequences of cDNAs for human salivary and pancreatic alpha-
RT amylases.";
RL Gene 28:263-270(1984).
RN [3]
RP ERRATUM, AND SEQUENCE REVISION.
RA Nakamura Y., Ogawa M., Nishide T., Emi M., Kosaki G., Himeno S.,
RA Matsubara K.;
RL Gene 50:371-372(1986).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thyroid;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-56 AND 408-448.
RX PubMed=2452973;
RA Gumucio D.L., Wiebauer K., Caldwell R.M., Samuelson L.C.,
RA Meisler M.H.;
RT "Concerted evolution of human amylase genes.";
RL Mol. Cell. Biol. 8:1197-1205(1988).
RN [8]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-293 AND 450-511.
RX PubMed=2442579;
RA Handy D.E., Larsen S.H., Karn R.C., Hodes M.E.;
RT "Identification of a human salivary amylase gene. Partial sequence of
RT genomic DNA suggests a mode of regulation different from that of
RT mouse, Amy1.";
RL Mol. Biol. Med. 4:145-155(1987).
RN [9]
RP POST-TRANSLATIONAL MODIFICATIONS.
RX PubMed=1710976; DOI=10.1002/elps.1150120114;
RA Bank R.A., Hettema E.H., Arwert F., Amerongen A.V., Pronk J.C.;
RT "Electrophoretic characterization of posttranslational modifications
RT of human parotid salivary alpha-amylase.";
RL Electrophoresis 12:74-79(1991).
RN [10]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-427, AND MASS
RP SPECTROMETRY.
RC TISSUE=Saliva;
RX PubMed=16740002; DOI=10.1021/pr050492k;
RA Ramachandran P., Boontheung P., Xie Y., Sondej M., Wong D.T.,
RA Loo J.A.;
RT "Identification of N-linked glycoproteins in human saliva by
RT glycoprotein capture and mass spectrometry.";
RL J. Proteome Res. 5:1493-1503(2006).
RN [11]
RP X-RAY CRYSTALLOGRAPHY (1.6 ANGSTROMS).
RX PubMed=15299664; DOI=10.1107/S0907444995014119;
RA Ramasubbu N., Paloth V., Luo Y., Brayer G.D., Levine M.J.;
RT "Structure of human salivary alpha-amylase at 1.6-A resolution:
RT implications for its role in the oral cavity.";
RL Acta Crystallogr. D 52:435-446(1996).
RN [12]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF WILD-TYPE AND MUTANT
RP 321-GLY--ALA-325 DEL.
RX PubMed=12527308; DOI=10.1016/S0022-2836(02)01326-8;
RA Ramasubbu N., Ragunath C., Mishra P.J.;
RT "Probing the role of a mobile loop in substrate binding and enzyme
RT activity of human salivary amylase.";
RL J. Mol. Biol. 325:1061-1076(2003).
CC -!- CATALYTIC ACTIVITY: Endohydrolysis of (1->4)-alpha-D-glucosidic
CC linkages in polysaccharides containing three or more (1->4)-alpha-
CC linked D-glucose units.
CC -!- COFACTOR: Binds 1 calcium ion per subunit.
CC -!- COFACTOR: Binds 1 chloride ion per subunit.
CC -!- SUBUNIT: Monomer.
CC -!- INTERACTION:
CC Q8TAX7:MUC7; NbExp=2; IntAct=EBI-738586, EBI-738582;
CC -!- SUBCELLULAR LOCATION: Secreted.
CC -!- SIMILARITY: Belongs to the glycosyl hydrolase 13 family.
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Amylase entry;
CC URL="http://en.wikipedia.org/wiki/Amylase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M18786; AAA52279.1; -; Genomic_DNA.
DR EMBL; M18715; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18717; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18719; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18721; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18723; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18725; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18727; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; M18784; AAA52279.1; JOINED; Genomic_DNA.
DR EMBL; AK292341; BAF85030.1; -; mRNA.
DR EMBL; AL513482; CAI14928.1; -; Genomic_DNA.
DR EMBL; AL513482; CAI14932.1; -; Genomic_DNA.
DR EMBL; BC063129; AAH63129.1; -; mRNA.
DR EMBL; BC069347; AAH69347.1; -; mRNA.
DR EMBL; BC069463; AAH69463.1; -; mRNA.
DR EMBL; BC092444; AAH92444.1; -; mRNA.
DR EMBL; BC132985; AAI32986.1; -; mRNA.
DR EMBL; BC132987; AAI32988.1; -; mRNA.
DR EMBL; BC132995; AAI32996.1; -; mRNA.
DR EMBL; BC132997; AAI32998.1; -; mRNA.
DR EMBL; M18671; AAA58368.1; -; Genomic_DNA.
DR EMBL; M18674; AAA16183.2; -; Genomic_DNA.
DR EMBL; M19233; AAA57345.1; ALT_TERM; Genomic_DNA.
DR EMBL; M17883; AAA57345.1; JOINED; Genomic_DNA.
DR EMBL; M17884; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR PIR; A91543; ALHUS.
DR RefSeq; NP_001008219.1; NM_001008218.1.
DR RefSeq; NP_001008220.1; NM_001008219.1.
DR RefSeq; NP_001008222.1; NM_001008221.1.
DR RefSeq; NP_004029.2; NM_004038.3.
DR RefSeq; XP_005270812.1; XM_005270755.1.
DR RefSeq; XP_005270813.1; XM_005270756.1.
DR RefSeq; XP_005270814.1; XM_005270757.1.
DR RefSeq; XP_005270815.1; XM_005270758.1.
DR RefSeq; XP_005270816.1; XM_005270759.1.
DR RefSeq; XP_005270817.1; XM_005270760.1.
DR RefSeq; XP_005270818.1; XM_005270761.1.
DR RefSeq; XP_005270819.1; XM_005270762.1.
DR UniGene; Hs.599274; -.
DR UniGene; Hs.654437; -.
DR UniGene; Hs.655232; -.
DR UniGene; Hs.662103; -.
DR PDB; 1C8Q; X-ray; 2.30 A; A=17-511.
DR PDB; 1JXJ; X-ray; 1.99 A; A=17-511.
DR PDB; 1JXK; X-ray; 1.90 A; A=17-511.
DR PDB; 1MFU; X-ray; 2.00 A; A=17-511.
DR PDB; 1MFV; X-ray; 2.00 A; A=17-511.
DR PDB; 1NM9; X-ray; 2.10 A; A=17-511.
DR PDB; 1Q4N; X-ray; 2.07 A; X=17-511.
DR PDB; 1SMD; X-ray; 1.60 A; A=17-511.
DR PDB; 1XV8; X-ray; 3.00 A; A/B=17-511.
DR PDB; 1Z32; X-ray; 1.60 A; X=17-511.
DR PDB; 3BLK; X-ray; 2.00 A; A=17-511.
DR PDB; 3BLP; X-ray; 1.60 A; X=17-511.
DR PDB; 3DHP; X-ray; 1.50 A; A=17-511.
DR PDBsum; 1C8Q; -.
DR PDBsum; 1JXJ; -.
DR PDBsum; 1JXK; -.
DR PDBsum; 1MFU; -.
DR PDBsum; 1MFV; -.
DR PDBsum; 1NM9; -.
DR PDBsum; 1Q4N; -.
DR PDBsum; 1SMD; -.
DR PDBsum; 1XV8; -.
DR PDBsum; 1Z32; -.
DR PDBsum; 3BLK; -.
DR PDBsum; 3BLP; -.
DR PDBsum; 3DHP; -.
DR ProteinModelPortal; P04745; -.
DR SMR; P04745; 16-511.
DR IntAct; P04745; 1.
DR STRING; 9606.ENSP00000330484; -.
DR BindingDB; P04745; -.
DR ChEMBL; CHEMBL2478; -.
DR CAZy; GH13; Glycoside Hydrolase Family 13.
DR PhosphoSite; P04745; -.
DR UniCarbKB; P04745; -.
DR PaxDb; P04745; -.
DR PeptideAtlas; P04745; -.
DR PRIDE; P04745; -.
DR DNASU; 277; -.
DR DNASU; 278; -.
DR Ensembl; ENST00000330330; ENSP00000330484; ENSG00000174876.
DR Ensembl; ENST00000370079; ENSP00000359096; ENSG00000187733.
DR Ensembl; ENST00000370080; ENSP00000359097; ENSG00000174876.
DR Ensembl; ENST00000370083; ENSP00000359100; ENSG00000237763.
DR GeneID; 276; -.
DR GeneID; 277; -.
DR GeneID; 278; -.
DR KEGG; hsa:276; -.
DR KEGG; hsa:277; -.
DR KEGG; hsa:278; -.
DR UCSC; uc001duu.3; human.
DR CTD; 276; -.
DR CTD; 277; -.
DR CTD; 278; -.
DR GeneCards; GC01M104230; -.
DR GeneCards; GC01P104197; -.
DR GeneCards; GC01P104292; -.
DR HGNC; HGNC:474; AMY1A.
DR HGNC; HGNC:475; AMY1B.
DR HGNC; HGNC:476; AMY1C.
DR HPA; CAB004310; -.
DR MIM; 104700; gene.
DR MIM; 104701; gene.
DR MIM; 104702; gene.
DR neXtProt; NX_P04745; -.
DR PharmGKB; PA24783; -.
DR eggNOG; COG0366; -.
DR HOGENOM; HOG000253313; -.
DR HOVERGEN; HBG000061; -.
DR InParanoid; P04745; -.
DR KO; K01176; -.
DR OMA; QPISYKW; -.
DR OrthoDB; EOG7RJPR2; -.
DR PhylomeDB; P04745; -.
DR BRENDA; 3.2.1.1; 2681.
DR Reactome; REACT_111217; Metabolism.
DR EvolutionaryTrace; P04745; -.
DR GeneWiki; AMY1A; -.
DR NextBio; 1113; -.
DR PRO; PR:P04745; -.
DR ArrayExpress; P04745; -.
DR Bgee; P04745; -.
DR CleanEx; HS_AMY1A; -.
DR Genevestigator; P04745; -.
DR GO; GO:0005576; C:extracellular region; IEA:UniProtKB-SubCell.
DR GO; GO:0004556; F:alpha-amylase activity; TAS:ProtInc.
DR GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR GO; GO:0005975; P:carbohydrate metabolic process; TAS:ProtInc.
DR GO; GO:0007586; P:digestion; TAS:ProtInc.
DR Gene3D; 2.60.40.1180; -; 1.
DR Gene3D; 3.20.20.80; -; 1.
DR InterPro; IPR006048; A-amylase_b_C.
DR InterPro; IPR006046; Alpha_amylase.
DR InterPro; IPR015902; Glyco_hydro_13.
DR InterPro; IPR013780; Glyco_hydro_13_b.
DR InterPro; IPR006047; Glyco_hydro_13_cat_dom.
DR InterPro; IPR006589; Glyco_hydro_13_sub_cat_dom.
DR InterPro; IPR013781; Glyco_hydro_catalytic_dom.
DR InterPro; IPR017853; Glycoside_hydrolase_SF.
DR PANTHER; PTHR10357; PTHR10357; 1.
DR Pfam; PF00128; Alpha-amylase; 1.
DR Pfam; PF02806; Alpha-amylase_C; 1.
DR PRINTS; PR00110; ALPHAAMYLASE.
DR SMART; SM00642; Aamy; 1.
DR SMART; SM00632; Aamy_C; 1.
DR SUPFAM; SSF51445; SSF51445; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Calcium; Carbohydrate metabolism; Chloride;
KW Complete proteome; Disulfide bond; Glycoprotein; Glycosidase;
KW Hydrolase; Metal-binding; Pyrrolidone carboxylic acid;
KW Reference proteome; Secreted; Signal.
FT SIGNAL 1 15 Potential.
FT CHAIN 16 511 Alpha-amylase 1.
FT /FTId=PRO_0000001401.
FT ACT_SITE 212 212 Nucleophile.
FT ACT_SITE 248 248 Proton donor.
FT METAL 115 115 Calcium.
FT METAL 173 173 Calcium; via carbonyl oxygen.
FT METAL 182 182 Calcium.
FT METAL 216 216 Calcium; via carbonyl oxygen.
FT BINDING 210 210 Chloride.
FT BINDING 313 313 Chloride.
FT BINDING 352 352 Chloride.
FT SITE 315 315 Transition state stabilizer (By
FT similarity).
FT MOD_RES 16 16 Pyrrolidone carboxylic acid.
FT MOD_RES 365 365 Deamidated asparagine; partial.
FT MOD_RES 427 427 Deamidated asparagine; partial.
FT MOD_RES 474 474 Deamidated asparagine; partial.
FT CARBOHYD 427 427 N-linked (GlcNAc...).
FT CARBOHYD 476 476 N-linked (GlcNAc...) (Potential).
FT DISULFID 43 101
FT DISULFID 85 130
FT DISULFID 156 175
FT DISULFID 393 399
FT DISULFID 465 477
FT CONFLICT 285 285 N -> T (in Ref. 8; AAA57345).
FT STRAND 27 31
FT HELIX 36 45
FT TURN 46 51
FT STRAND 54 57
FT TURN 67 70
FT HELIX 73 77
FT STRAND 78 80
FT HELIX 91 103
FT STRAND 107 112
FT STRAND 115 119
FT STRAND 124 126
FT TURN 136 139
FT TURN 142 145
FT HELIX 148 150
FT TURN 153 155
FT STRAND 158 162
FT HELIX 169 174
FT HELIX 177 179
FT STRAND 180 183
FT HELIX 188 204
FT STRAND 208 211
FT HELIX 214 216
FT HELIX 219 226
FT TURN 234 236
FT STRAND 244 247
FT STRAND 253 256
FT HELIX 259 262
FT TURN 263 265
FT STRAND 266 269
FT HELIX 272 282
FT HELIX 289 294
FT HELIX 297 299
FT TURN 304 306
FT STRAND 307 309
FT HELIX 316 318
FT STRAND 321 323
FT HELIX 324 326
FT HELIX 330 332
FT HELIX 333 345
FT STRAND 348 355
FT STRAND 363 368
FT TURN 369 372
FT STRAND 375 378
FT HELIX 400 402
FT HELIX 404 415
FT TURN 416 418
FT STRAND 421 426
FT STRAND 428 436
FT TURN 437 439
FT STRAND 440 445
FT STRAND 447 449
FT STRAND 451 456
FT STRAND 461 465
FT TURN 467 469
FT STRAND 476 479
FT STRAND 481 484
FT STRAND 488 494
FT STRAND 498 500
FT STRAND 502 506
FT HELIX 507 509
SQ SEQUENCE 511 AA; 57768 MW; 7710BCAC83EBE8B2 CRC64;
MKLFWLLFTI GFCWAQYSSN TQQGRTSIVH LFEWRWVDIA LECERYLAPK GFGGVQVSPP
NENVAIHNPF RPWWERYQPV SYKLCTRSGN EDEFRNMVTR CNNVGVRIYV DAVINHMCGN
AVSAGTSSTC GSYFNPGSRD FPAVPYSGWD FNDGKCKTGS GDIENYNDAT QVRDCRLSGL
LDLALGKDYV RSKIAEYMNH LIDIGVAGFR IDASKHMWPG DIKAILDKLH NLNSNWFPEG
SKPFIYQEVI DLGGEPIKSS DYFGNGRVTE FKYGAKLGTV IRKWNGEKMS YLKNWGEGWG
FMPSDRALVF VDNHDNQRGH GAGGASILTF WDARLYKMAV GFMLAHPYGF TRVMSSYRWP
RYFENGKDVN DWVGPPNDNG VTKEVTINPD TTCGNDWVCE HRWRQIRNMV NFRNVVDGQP
FTNWYDNGSN QVAFGRGNRG FIVFNNDDWT FSLTLQTGLP AGTYCDVISG DKINGNCTGI
KIYVSDDGKA HFSISNSAED PFIAIHAESK L
//
MIM
104700
*RECORD*
*FIELD* NO
104700
*FIELD* TI
*104700 AMYLASE, SALIVARY, A; AMY1A
;;AMYLASE, SALIVARY; AMY1
*FIELD* TX
CLONING
read moreThe alpha-amylases hydrolyze alpha-1,4-glucoside bonds in polymers of
glucose units. Kamaryt and Laxova (1965, 1966) found 2 amylase
isoenzymes in serum, one produced by the salivary gland and the second
by the pancreas (see 104650). In 11 of 120 children, a duplication of
pancreatic enzyme band was found on starch gel electrophoresis and in
each case 1 parent also showed the duplication. In the mouse the
salivary and pancreatic amylases are determined by genes at closely
linked loci (Sick and Nielsen, 1964). The separate loci in the human
were designated AMY1 (salivary) and AMY2 (pancreatic). Polymorphism of
both the salivary and the pancreatic serum amylases has been
demonstrated in man. Ward et al. (1971) studied amylase in saliva and
identified electrophoretic variants. Data on gene frequencies of allelic
variants were tabulated by Roychoudhury and Nei (1988).
GENE STRUCTURE
Nishide et al. (1986) showed that the human salivary alpha-amylase gene
is about 10 kb long and has 10 introns.
MAPPING
By in situ hybridization combined with high resolution cytogenetics,
Zabel et al. (1983) assigned the amylase gene to 1p21, the POMC gene
(176830) to 2p23, and the somatostatin gene (182450) to 3q28.
Using amylase DNA probes in somatic cell hybrids, Tricoli and Shows
(1984) mapped the amylase genes to the 1p22.1-p21 region.
Multipoint linkage analysis showed that the amylase gene cluster is
located distal to NGFB (162030) (Dracopoli and Meisler, 1990).
MOLECULAR GENETICS
Pronk et al. (1982) presented evidence they interpreted as indicating
duplication of the salivary amylase locus.
Gumucio et al. (1988) isolated cosmid clones containing 250 kb of
genomic DNA from the human amylase gene cluster. These clones were found
to contain 7 distinct amylase genes: 2 pancreatic amylase genes, 3
salivary amylase genes, and 2 truncated pseudogenes. Intergenic
distances of 17 to 22 kb separated the amylase gene copies.
Dracopoli and Meisler (1990) used a (CA)n repeat sequence immediately
upstream from the gamma-actin pseudogene associated with the AMY2B gene
(104660) in a study of 40 CEPH families. By PCR amplification of genomic
DNA, they identified 6 alleles with (CA)n lengths of 16 to 21 repeats.
The average heterozygosity was 0.70.
Large-scale copy number variations (LCVs) involve gains or losses of
several kilobases to hundreds of kilobases of genomic DNA among
phenotypically normal individuals. To investigate LCVs in the human
genome, Iafrate et al. (2004) applied array-based comparative genomic
hybridization (array CGH) to the genomes of 55 unrelated individuals.
The most common LCV (identified in 49.1% of the individuals studied)
encompassed the AMY1A and AMY2A locus (Groot et al., 1991). Iafrate et
al. (2004) detected relative gains (in 23.6% of cases) and losses (in
25.5% of cases) at this locus and confirmed the array CGH results using
metaphase-interphase FISH, high-resolution fiber FISH, and quantitative
PCR. In all they described more than 200 LCVs in the human genome.
Twenty-four of these variants were present in more than 10% of the
individuals studied, and 6 of these variants were present at a frequency
of more than 20%. A chromosome map indicating the location of the LCVs
was provided. Carter (2004) commented on this work and the parallel work
of Sebat et al. (2004).
Starch consumption is a prominent characteristic of agricultural
societies and hunter-gatherers in arid environments. In contrast,
rainforest and circum-arctic hunter-gatherers and some pastoralists
consume much less starch. This behavioral variation raised the
possibility that different selective pressures have acted on amylase,
the enzyme responsible for starch hydrolysis. Perry et al. (2007) found
that copy number of the AMY1 gene is correlated positively with salivary
amylase protein level and that individuals from populations with high
starch diets have, on average, more AMY1 copies than those with
traditionally low starch diets. Comparisons with other loci in a subset
of these populations suggested that the extent of AMY1 copy number
differentiation is highly unusual. Higher AMY1 copy numbers and protein
levels probably improve the digestion of starchy foods and may buffer
against the fitness-reducing effects of intestinal disease.
EVOLUTION
Groot et al. (1990) presented structural analyses of the human amylase
gene cluster that allowed them to construct a model for the evolution of
this family of genes by a number of consecutive events involving inter-
and intrachromosomal crossovers.
In a study comparing human AMY1 copy number variation with that of
chimpanzees and bonobos, Perry et al. (2007) found that the average
human has 3 times more AMY1 copies than chimpanzees, and bonobos may not
have salivary amylase at all. Outgroup comparisons with other great apes
suggested that AMY1 copy number was probably gained in the human
lineage, rather than lost in chimpanzees. It is hypothesized that
starch-rich plant underground storage organs (USOs) such as bulbs,
corms, and tubers were a critical food resource for early hominins. The
example of amylase as representative of the importance of diet as a
widespread source of selective pressure in human evolution is comparable
to that of lactase persistence (223100), which has evolved independently
in multiple populations.
*FIELD* SA
de Soyza (1978); Ishizaki et al. (1985); McGeachin (1968); Muenke
et al. (1984); Pronk et al. (1984); Tricoli and Shows (1984); Wiebauer
et al. (1985)
*FIELD* RF
1. Carter, N. P.: As normal as normal can be? (Comment) Nature Genet. 36:
931-932, 2004.
2. de Soyza, K.: Polymorphism of human salivary amylase: a preliminary
communication. Hum. Genet. 45: 189-192, 1978.
3. Dracopoli, N. C.; Meisler, M. H.: Mapping the human amylase gene
cluster on the proximal short arm of chromosome 1 using a highly informative
(CA)n repeat. Genomics 7: 97-102, 1990.
4. Groot, P. C.; Mager, W. H.; Frants, R. R.: Interpretation of polymorphic
DNA patterns in the human alpha-amylase multigene family. Genomics 10:
779-785, 1991.
5. Groot, P. C.; Mager, W. H.; Henriquez, N. V.; Pronk, J. C.; Arwert,
F.; Planta, R. J.; Eriksson, A. W.; Frants, R. R.: Evolution of the
human alpha-amylase multigene family through unequal, homologous,
and inter- and intrachromosomal crossovers. Genomics 8: 97-105,
1990.
6. Gumucio, D. L.; Wiebauer, K.; Caldwell, R. M.; Samuelson, L. C.;
Meisler, M. H.: Concerted evolution of human amylase genes. Molec.
Cell. Biol. 8: 1197-1205, 1988.
7. Iafrate, A. J.; Feuk, L.; Rivera, M. N.; Listewnik, M. L.; Donahoe,
P. K.; Qi, Y.; Scherer, S. W.; Lee, C.: Detection of large-scale
variation in the human genome. Nature Genet. 36: 949-951, 2004.
8. Ishizaki, K.; Noda, A.; Ikenaga, M.; Ida, K.; Omoto, K.; Nakamura,
Y.; Matsubara, K.: Restriction fragment length polymorphism detected
by human salivary amylase cDNA. Hum. Genet. 71: 261-262, 1985.
9. Kamaryt, J.; Laxova, R.: Amylase heterogeneity variants in man. Humangenetik 3:
41-45, 1966.
10. Kamaryt, J.; Laxova, R.: Amylase heterogeneity: some genetic
and clinical aspects. Humangenetik 1: 579-586, 1965.
11. McGeachin, R. L.: Multiple molecular forms of amylase. Ann.
N.Y. Acad. Sci. 151: 208-212, 1968.
12. Muenke, M.; Lindgren, V.; de Martinville, B.; Francke, U.: Comparative
analysis of mouse-human hybrids with rearranged chromosomes 1 by in
situ hybridization and Southern blotting: high resolution mapping
of NRAS, NGFB, and AMY on chromosome 1. Somat. Cell Molec. Genet. 10:
589-599, 1984.
13. Nishide, T.; Nakamura, Y.; Emi, M.; Yamamoto, T.; Ogawa, M.; Mori,
T.; Matsubara, K.: Primary structure of human salivary alpha-amylase
gene. Gene 41: 299-304, 1986.
14. Perry, G. H.; Dominy, N. J.; Claw, K. G.; Lee, A. S.; Fiegler,
H.; Redon, R.; Werner, J.; Villanea, F. A.; Mountain, J. L.; Misra,
R.; Carter, N. P.; Lee, C.; Stone, A. C.: Diet and the evolution
of human amylase gene copy number variation. Nature Genet. 39: 1256-1260,
2007.
15. Pronk, J. C.; Frants, R. R.; Jansen, W.; Eriksson, A. W.; Tonino,
G. J. M.: Evidence for duplication of the human salivary amylase
gene. Hum. Genet. 60: 32-35, 1982.
16. Pronk, J. C.; Jansen, W. J.; Pronk, A.; Pol, C. F. A. M.; Frants,
R. R.; Eriksson, A. W.: Salivary protein polymorphism in Kenya: evidence
for a new AMY1 allele. Hum. Hered. 34: 212-216, 1984.
17. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
18. Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin,
P.; Maner, S.; Massa, H.; Walker, M.; Chi, M.; Navin, N.; Lucito,
R.; and 9 others: Large-scale copy number polymorphism in the human
genome. Science 305: 525-528, 2004.
19. Sick, K.; Nielsen, J. T.: Genetics of amylase isozymes in the
mouse. Hereditas 51: 291-296, 1964.
20. Tricoli, J. V.; Shows, T. B.: Regional assignment of human amylase
(AMY) to p22-p21 of chromosome 1. Somat. Cell Molec. Genet. 10:
205-210, 1984.
21. Tricoli, J. V.; Shows, T. B.: Assignment of alpha-amylase genes
to the p22.1-p21 region of chromosome 1. (Abstract) Cytogenet. Cell
Genet. 37: 597 only, 1984.
22. Ward, J. C.; Merritt, A. D.; Bixler, D.: Human salivary amylase:
genetics of electrophoretic variants. Am. J. Hum. Genet. 23: 403-409,
1971.
23. Wiebauer, K.; Gumucio, D. L.; Jones, J. M.; Caldwell, R. M.; Hartle,
H. T.; Meisler, M. H.: A 78-kilobase region of mouse chromosome 3
contains salivary and pancreatic amylase genes and a pseudogene. Proc.
Nat. Acad. Sci. 82: 5446-5449, 1985.
24. Zabel, B. U.; Naylor, S. L.; Sakaguchi, A. Y.; Bell, G. I.; Shows,
T. B.: High-resolution chromosomal localization of human genes for
amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D3S1)
by in situ hybridization. Proc. Nat. Acad. Sci. 80: 6932-6936, 1983.
*FIELD* CN
Victor A. McKusick - updated: 10/18/2007
Victor A. McKusick - updated: 9/27/2004
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 10/24/2007
terry: 10/18/2007
terry: 11/2/2004
alopez: 9/30/2004
terry: 9/27/2004
mark: 11/27/1996
mimadm: 2/11/1994
supermim: 3/16/1992
carol: 2/27/1992
carol: 10/21/1991
carol: 12/14/1990
carol: 12/6/1990
*RECORD*
*FIELD* NO
104700
*FIELD* TI
*104700 AMYLASE, SALIVARY, A; AMY1A
;;AMYLASE, SALIVARY; AMY1
*FIELD* TX
CLONING
read moreThe alpha-amylases hydrolyze alpha-1,4-glucoside bonds in polymers of
glucose units. Kamaryt and Laxova (1965, 1966) found 2 amylase
isoenzymes in serum, one produced by the salivary gland and the second
by the pancreas (see 104650). In 11 of 120 children, a duplication of
pancreatic enzyme band was found on starch gel electrophoresis and in
each case 1 parent also showed the duplication. In the mouse the
salivary and pancreatic amylases are determined by genes at closely
linked loci (Sick and Nielsen, 1964). The separate loci in the human
were designated AMY1 (salivary) and AMY2 (pancreatic). Polymorphism of
both the salivary and the pancreatic serum amylases has been
demonstrated in man. Ward et al. (1971) studied amylase in saliva and
identified electrophoretic variants. Data on gene frequencies of allelic
variants were tabulated by Roychoudhury and Nei (1988).
GENE STRUCTURE
Nishide et al. (1986) showed that the human salivary alpha-amylase gene
is about 10 kb long and has 10 introns.
MAPPING
By in situ hybridization combined with high resolution cytogenetics,
Zabel et al. (1983) assigned the amylase gene to 1p21, the POMC gene
(176830) to 2p23, and the somatostatin gene (182450) to 3q28.
Using amylase DNA probes in somatic cell hybrids, Tricoli and Shows
(1984) mapped the amylase genes to the 1p22.1-p21 region.
Multipoint linkage analysis showed that the amylase gene cluster is
located distal to NGFB (162030) (Dracopoli and Meisler, 1990).
MOLECULAR GENETICS
Pronk et al. (1982) presented evidence they interpreted as indicating
duplication of the salivary amylase locus.
Gumucio et al. (1988) isolated cosmid clones containing 250 kb of
genomic DNA from the human amylase gene cluster. These clones were found
to contain 7 distinct amylase genes: 2 pancreatic amylase genes, 3
salivary amylase genes, and 2 truncated pseudogenes. Intergenic
distances of 17 to 22 kb separated the amylase gene copies.
Dracopoli and Meisler (1990) used a (CA)n repeat sequence immediately
upstream from the gamma-actin pseudogene associated with the AMY2B gene
(104660) in a study of 40 CEPH families. By PCR amplification of genomic
DNA, they identified 6 alleles with (CA)n lengths of 16 to 21 repeats.
The average heterozygosity was 0.70.
Large-scale copy number variations (LCVs) involve gains or losses of
several kilobases to hundreds of kilobases of genomic DNA among
phenotypically normal individuals. To investigate LCVs in the human
genome, Iafrate et al. (2004) applied array-based comparative genomic
hybridization (array CGH) to the genomes of 55 unrelated individuals.
The most common LCV (identified in 49.1% of the individuals studied)
encompassed the AMY1A and AMY2A locus (Groot et al., 1991). Iafrate et
al. (2004) detected relative gains (in 23.6% of cases) and losses (in
25.5% of cases) at this locus and confirmed the array CGH results using
metaphase-interphase FISH, high-resolution fiber FISH, and quantitative
PCR. In all they described more than 200 LCVs in the human genome.
Twenty-four of these variants were present in more than 10% of the
individuals studied, and 6 of these variants were present at a frequency
of more than 20%. A chromosome map indicating the location of the LCVs
was provided. Carter (2004) commented on this work and the parallel work
of Sebat et al. (2004).
Starch consumption is a prominent characteristic of agricultural
societies and hunter-gatherers in arid environments. In contrast,
rainforest and circum-arctic hunter-gatherers and some pastoralists
consume much less starch. This behavioral variation raised the
possibility that different selective pressures have acted on amylase,
the enzyme responsible for starch hydrolysis. Perry et al. (2007) found
that copy number of the AMY1 gene is correlated positively with salivary
amylase protein level and that individuals from populations with high
starch diets have, on average, more AMY1 copies than those with
traditionally low starch diets. Comparisons with other loci in a subset
of these populations suggested that the extent of AMY1 copy number
differentiation is highly unusual. Higher AMY1 copy numbers and protein
levels probably improve the digestion of starchy foods and may buffer
against the fitness-reducing effects of intestinal disease.
EVOLUTION
Groot et al. (1990) presented structural analyses of the human amylase
gene cluster that allowed them to construct a model for the evolution of
this family of genes by a number of consecutive events involving inter-
and intrachromosomal crossovers.
In a study comparing human AMY1 copy number variation with that of
chimpanzees and bonobos, Perry et al. (2007) found that the average
human has 3 times more AMY1 copies than chimpanzees, and bonobos may not
have salivary amylase at all. Outgroup comparisons with other great apes
suggested that AMY1 copy number was probably gained in the human
lineage, rather than lost in chimpanzees. It is hypothesized that
starch-rich plant underground storage organs (USOs) such as bulbs,
corms, and tubers were a critical food resource for early hominins. The
example of amylase as representative of the importance of diet as a
widespread source of selective pressure in human evolution is comparable
to that of lactase persistence (223100), which has evolved independently
in multiple populations.
*FIELD* SA
de Soyza (1978); Ishizaki et al. (1985); McGeachin (1968); Muenke
et al. (1984); Pronk et al. (1984); Tricoli and Shows (1984); Wiebauer
et al. (1985)
*FIELD* RF
1. Carter, N. P.: As normal as normal can be? (Comment) Nature Genet. 36:
931-932, 2004.
2. de Soyza, K.: Polymorphism of human salivary amylase: a preliminary
communication. Hum. Genet. 45: 189-192, 1978.
3. Dracopoli, N. C.; Meisler, M. H.: Mapping the human amylase gene
cluster on the proximal short arm of chromosome 1 using a highly informative
(CA)n repeat. Genomics 7: 97-102, 1990.
4. Groot, P. C.; Mager, W. H.; Frants, R. R.: Interpretation of polymorphic
DNA patterns in the human alpha-amylase multigene family. Genomics 10:
779-785, 1991.
5. Groot, P. C.; Mager, W. H.; Henriquez, N. V.; Pronk, J. C.; Arwert,
F.; Planta, R. J.; Eriksson, A. W.; Frants, R. R.: Evolution of the
human alpha-amylase multigene family through unequal, homologous,
and inter- and intrachromosomal crossovers. Genomics 8: 97-105,
1990.
6. Gumucio, D. L.; Wiebauer, K.; Caldwell, R. M.; Samuelson, L. C.;
Meisler, M. H.: Concerted evolution of human amylase genes. Molec.
Cell. Biol. 8: 1197-1205, 1988.
7. Iafrate, A. J.; Feuk, L.; Rivera, M. N.; Listewnik, M. L.; Donahoe,
P. K.; Qi, Y.; Scherer, S. W.; Lee, C.: Detection of large-scale
variation in the human genome. Nature Genet. 36: 949-951, 2004.
8. Ishizaki, K.; Noda, A.; Ikenaga, M.; Ida, K.; Omoto, K.; Nakamura,
Y.; Matsubara, K.: Restriction fragment length polymorphism detected
by human salivary amylase cDNA. Hum. Genet. 71: 261-262, 1985.
9. Kamaryt, J.; Laxova, R.: Amylase heterogeneity variants in man. Humangenetik 3:
41-45, 1966.
10. Kamaryt, J.; Laxova, R.: Amylase heterogeneity: some genetic
and clinical aspects. Humangenetik 1: 579-586, 1965.
11. McGeachin, R. L.: Multiple molecular forms of amylase. Ann.
N.Y. Acad. Sci. 151: 208-212, 1968.
12. Muenke, M.; Lindgren, V.; de Martinville, B.; Francke, U.: Comparative
analysis of mouse-human hybrids with rearranged chromosomes 1 by in
situ hybridization and Southern blotting: high resolution mapping
of NRAS, NGFB, and AMY on chromosome 1. Somat. Cell Molec. Genet. 10:
589-599, 1984.
13. Nishide, T.; Nakamura, Y.; Emi, M.; Yamamoto, T.; Ogawa, M.; Mori,
T.; Matsubara, K.: Primary structure of human salivary alpha-amylase
gene. Gene 41: 299-304, 1986.
14. Perry, G. H.; Dominy, N. J.; Claw, K. G.; Lee, A. S.; Fiegler,
H.; Redon, R.; Werner, J.; Villanea, F. A.; Mountain, J. L.; Misra,
R.; Carter, N. P.; Lee, C.; Stone, A. C.: Diet and the evolution
of human amylase gene copy number variation. Nature Genet. 39: 1256-1260,
2007.
15. Pronk, J. C.; Frants, R. R.; Jansen, W.; Eriksson, A. W.; Tonino,
G. J. M.: Evidence for duplication of the human salivary amylase
gene. Hum. Genet. 60: 32-35, 1982.
16. Pronk, J. C.; Jansen, W. J.; Pronk, A.; Pol, C. F. A. M.; Frants,
R. R.; Eriksson, A. W.: Salivary protein polymorphism in Kenya: evidence
for a new AMY1 allele. Hum. Hered. 34: 212-216, 1984.
17. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
18. Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin,
P.; Maner, S.; Massa, H.; Walker, M.; Chi, M.; Navin, N.; Lucito,
R.; and 9 others: Large-scale copy number polymorphism in the human
genome. Science 305: 525-528, 2004.
19. Sick, K.; Nielsen, J. T.: Genetics of amylase isozymes in the
mouse. Hereditas 51: 291-296, 1964.
20. Tricoli, J. V.; Shows, T. B.: Regional assignment of human amylase
(AMY) to p22-p21 of chromosome 1. Somat. Cell Molec. Genet. 10:
205-210, 1984.
21. Tricoli, J. V.; Shows, T. B.: Assignment of alpha-amylase genes
to the p22.1-p21 region of chromosome 1. (Abstract) Cytogenet. Cell
Genet. 37: 597 only, 1984.
22. Ward, J. C.; Merritt, A. D.; Bixler, D.: Human salivary amylase:
genetics of electrophoretic variants. Am. J. Hum. Genet. 23: 403-409,
1971.
23. Wiebauer, K.; Gumucio, D. L.; Jones, J. M.; Caldwell, R. M.; Hartle,
H. T.; Meisler, M. H.: A 78-kilobase region of mouse chromosome 3
contains salivary and pancreatic amylase genes and a pseudogene. Proc.
Nat. Acad. Sci. 82: 5446-5449, 1985.
24. Zabel, B. U.; Naylor, S. L.; Sakaguchi, A. Y.; Bell, G. I.; Shows,
T. B.: High-resolution chromosomal localization of human genes for
amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D3S1)
by in situ hybridization. Proc. Nat. Acad. Sci. 80: 6932-6936, 1983.
*FIELD* CN
Victor A. McKusick - updated: 10/18/2007
Victor A. McKusick - updated: 9/27/2004
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 10/24/2007
terry: 10/18/2007
terry: 11/2/2004
alopez: 9/30/2004
terry: 9/27/2004
mark: 11/27/1996
mimadm: 2/11/1994
supermim: 3/16/1992
carol: 2/27/1992
carol: 10/21/1991
carol: 12/14/1990
carol: 12/6/1990
MIM
104701
*RECORD*
*FIELD* NO
104701
*FIELD* TI
*104701 AMYLASE, SALIVARY, B; AMY1B
*FIELD* TX
To investigate the genomic organization of the human alpha-amylase
read moregenes, Groot et al. (1989) isolated the pertinent genes from a cosmid
library constructed of DNA from an individual expressing 3 different
salivary amylase allozymes. From the restriction maps of the overlapping
cosmids and a comparison of these maps with the restriction enzyme
patterns of DNA from the donor and family members, they were able to
identify 2 haplotypes consisting of very different numbers of salivary
amylase genes. The short haplotype contained 2 pancreatic genes, AMY2A
and AMY2B, and 1 salivary amylase gene, AMY1C, arranged in the order
2B--2A--1C, encompassing a total length of approximately 100 kb. The
long haplotype spanned about 300 kb and contained 6 additional genes
arranged in 2 repeats, each one consisting of 2 salivary genes, AMY1A
and AMY1B, and a pseudogene lacking the first 3 exons, AMYP1. The order
of the amylase genes within the repeat was 1A--1B--P1. All of the genes
were in a head-to-tail orientation except AMY1B, which had the reverse
orientation with respect to the other genes.
*FIELD* RF
1. Groot, P. C.; Bleeker, M. J.; Pronk, J. C.; Arwert, F.; Mager,
W. H.; Planta, R. J.; Eriksson, A. W.; Frants, R. R.: The human alpha-amylase
multigene family consists of haplotypes with variable numbers of genes.
Genomics 5: 29-42, 1989.
*FIELD* CD
Victor A. McKusick: 10/21/1991
*FIELD* ED
supermim: 3/16/1992
carol: 1/10/1992
carol: 10/21/1991
*RECORD*
*FIELD* NO
104701
*FIELD* TI
*104701 AMYLASE, SALIVARY, B; AMY1B
*FIELD* TX
To investigate the genomic organization of the human alpha-amylase
read moregenes, Groot et al. (1989) isolated the pertinent genes from a cosmid
library constructed of DNA from an individual expressing 3 different
salivary amylase allozymes. From the restriction maps of the overlapping
cosmids and a comparison of these maps with the restriction enzyme
patterns of DNA from the donor and family members, they were able to
identify 2 haplotypes consisting of very different numbers of salivary
amylase genes. The short haplotype contained 2 pancreatic genes, AMY2A
and AMY2B, and 1 salivary amylase gene, AMY1C, arranged in the order
2B--2A--1C, encompassing a total length of approximately 100 kb. The
long haplotype spanned about 300 kb and contained 6 additional genes
arranged in 2 repeats, each one consisting of 2 salivary genes, AMY1A
and AMY1B, and a pseudogene lacking the first 3 exons, AMYP1. The order
of the amylase genes within the repeat was 1A--1B--P1. All of the genes
were in a head-to-tail orientation except AMY1B, which had the reverse
orientation with respect to the other genes.
*FIELD* RF
1. Groot, P. C.; Bleeker, M. J.; Pronk, J. C.; Arwert, F.; Mager,
W. H.; Planta, R. J.; Eriksson, A. W.; Frants, R. R.: The human alpha-amylase
multigene family consists of haplotypes with variable numbers of genes.
Genomics 5: 29-42, 1989.
*FIELD* CD
Victor A. McKusick: 10/21/1991
*FIELD* ED
supermim: 3/16/1992
carol: 1/10/1992
carol: 10/21/1991