Full text data of PRMT5
PRMT5
(HRMT1L5, IBP72, JBP1, SKB1)
[Confidence: high (present in two of the MS resources)]
Protein arginine N-methyltransferase 5; 2.1.1.- (72 kDa ICln-binding protein; Histone-arginine N-methyltransferase PRMT5; 2.1.1.125; Jak-binding protein 1; Shk1 kinase-binding protein 1 homolog; SKB1 homolog; SKB1Hs; Protein arginine N-methyltransferase 5, N-terminally processed)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Protein arginine N-methyltransferase 5; 2.1.1.- (72 kDa ICln-binding protein; Histone-arginine N-methyltransferase PRMT5; 2.1.1.125; Jak-binding protein 1; Shk1 kinase-binding protein 1 homolog; SKB1 homolog; SKB1Hs; Protein arginine N-methyltransferase 5, N-terminally processed)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00441473
IPI00441473 Protein arginine N-methyltransferase 5 May play a role in cytokine-activated transduction pathways, May be part of a pathway that is connected to a chloride current, possibly through cytoskeletal rearrangement soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Cytoplasmic n/a found at its expected molecular weight found at molecular weight
IPI00441473 Protein arginine N-methyltransferase 5 May play a role in cytokine-activated transduction pathways, May be part of a pathway that is connected to a chloride current, possibly through cytoskeletal rearrangement soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a Cytoplasmic n/a found at its expected molecular weight found at molecular weight
UniProt
O14744
ID ANM5_HUMAN Reviewed; 637 AA.
AC O14744; A8MZ91; B5BU10; D3DS33; Q6IBR1; Q9UKH1;
DT 20-JUN-2003, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 4.
DT 22-JAN-2014, entry version 124.
DE RecName: Full=Protein arginine N-methyltransferase 5;
DE EC=2.1.1.-;
DE AltName: Full=72 kDa ICln-binding protein;
DE AltName: Full=Histone-arginine N-methyltransferase PRMT5;
DE EC=2.1.1.125;
DE AltName: Full=Jak-binding protein 1;
DE AltName: Full=Shk1 kinase-binding protein 1 homolog;
DE Short=SKB1 homolog;
DE Short=SKB1Hs;
DE Contains:
DE RecName: Full=Protein arginine N-methyltransferase 5, N-terminally processed;
GN Name=PRMT5; Synonyms=HRMT1L5, IBP72, JBP1, SKB1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND INTERACTION WITH CLNS1A.
RX PubMed=9556550; DOI=10.1074/jbc.273.18.10811;
RA Krapivinsky G., Pu W., Wickman K., Krapivinsky L., Clapham D.E.;
RT "pICln binds to a mammalian homolog of a yeast protein involved in
RT regulation of cell morphology.";
RL J. Biol. Chem. 273:10811-10814(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RX PubMed=9843966; DOI=10.1073/pnas.95.25.14781;
RA Gilbreth M., Yang P., Bartholomeusz G., Pimental R.A., Kansra S.,
RA Gadiraju R., Marcus S.;
RT "Negative regulation of mitosis in fission yeast by the shk1
RT interacting protein skb1 and its human homolog, Skb1Hs.";
RL Proc. Natl. Acad. Sci. U.S.A. 95:14781-14786(1998).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, AND INTERACTION WITH
RP JAK2.
RX PubMed=10531356; DOI=10.1074/jbc.274.44.31531;
RA Pollack B.P., Kotenko S.V., He W., Izotova L.S., Barnoski B.L.,
RA Pestka S.;
RT "The human homologue of the yeast proteins Skb1 and Hsl7p interacts
RT with Jak kinases and contains protein methyltransferase activity.";
RL J. Biol. Chem. 274:31531-31542(1999).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RC TISSUE=Thyroid;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=19054851; DOI=10.1038/nmeth.1273;
RA Goshima N., Kawamura Y., Fukumoto A., Miura A., Honma R., Satoh R.,
RA Wakamatsu A., Yamamoto J., Kimura K., Nishikawa T., Andoh T., Iida Y.,
RA Ishikawa K., Ito E., Kagawa N., Kaminaga C., Kanehori K., Kawakami B.,
RA Kenmochi K., Kimura R., Kobayashi M., Kuroita T., Kuwayama H.,
RA Maruyama Y., Matsuo K., Minami K., Mitsubori M., Mori M.,
RA Morishita R., Murase A., Nishikawa A., Nishikawa S., Okamoto T.,
RA Sakagami N., Sakamoto Y., Sasaki Y., Seki T., Sono S., Sugiyama A.,
RA Sumiya T., Takayama T., Takayama Y., Takeda H., Togashi T., Yahata K.,
RA Yamada H., Yanagisawa Y., Endo Y., Imamoto F., Kisu Y., Tanaka S.,
RA Isogai T., Imai J., Watanabe S., Nomura N.;
RT "Human protein factory for converting the transcriptome into an in
RT vitro-expressed proteome.";
RL Nat. Methods 5:1011-1017(2008).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=12508121; DOI=10.1038/nature01348;
RA Heilig R., Eckenberg R., Petit J.-L., Fonknechten N., Da Silva C.,
RA Cattolico L., Levy M., Barbe V., De Berardinis V., Ureta-Vidal A.,
RA Pelletier E., Vico V., Anthouard V., Rowen L., Madan A., Qin S.,
RA Sun H., Du H., Pepin K., Artiguenave F., Robert C., Cruaud C.,
RA Bruels T., Jaillon O., Friedlander L., Samson G., Brottier P.,
RA Cure S., Segurens B., Aniere F., Samain S., Crespeau H., Abbasi N.,
RA Aiach N., Boscus D., Dickhoff R., Dors M., Dubois I., Friedman C.,
RA Gouyvenoux M., James R., Madan A., Mairey-Estrada B., Mangenot S.,
RA Martins N., Menard M., Oztas S., Ratcliffe A., Shaffer T., Trask B.,
RA Vacherie B., Bellemere C., Belser C., Besnard-Gonnet M.,
RA Bartol-Mavel D., Boutard M., Briez-Silla S., Combette S.,
RA Dufosse-Laurent V., Ferron C., Lechaplais C., Louesse C., Muselet D.,
RA Magdelenat G., Pateau E., Petit E., Sirvain-Trukniewicz P., Trybou A.,
RA Vega-Czarny N., Bataille E., Bluet E., Bordelais I., Dubois M.,
RA Dumont C., Guerin T., Haffray S., Hammadi R., Muanga J., Pellouin V.,
RA Robert D., Wunderle E., Gauguet G., Roy A., Sainte-Marthe L.,
RA Verdier J., Verdier-Discala C., Hillier L.W., Fulton L., McPherson J.,
RA Matsuda F., Wilson R., Scarpelli C., Gyapay G., Wincker P., Saurin W.,
RA Quetier F., Waterston R., Hood L., Weissenbach J.;
RT "The DNA sequence and analysis of human chromosome 14.";
RL Nature 421:601-607(2003).
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [10]
RP PROTEIN SEQUENCE OF 1-13 AND 594-601, FUNCTION IN THE REGULATION OF
RP MAPK1/MAPK3 SIGNALING PATHWAY, INTERACTION WITH BRAF AND RAF1, ENZYME
RP REGULATION, SUBCELLULAR LOCATION, AND MUTAGENESIS OF 365-GLY--GLY-369.
RX PubMed=21917714; DOI=10.1126/scisignal.2001936;
RA Andreu-Perez P., Esteve-Puig R., de Torre-Minguela C.,
RA Lopez-Fauqued M., Bech-Serra J.J., Tenbaum S., Garcia-Trevijano E.R.,
RA Canals F., Merlino G., Avila M.A., Recio J.A.;
RT "Protein arginine methyltransferase 5 regulates ERK1/2 signal
RT transduction amplitude and cell fate through CRAF.";
RL Sci. Signal. 4:RA58-RA58(2011).
RN [11]
RP PROTEIN SEQUENCE OF 2-13.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [12]
RP FUNCTION, AND SUBUNIT.
RX PubMed=12411503; DOI=10.1093/emboj/cdf585;
RA Meister G., Fischer U.;
RT "Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the
RT formation of spliceosomal UsnRNPs.";
RL EMBO J. 21:5853-5863(2002).
RN [13]
RP FUNCTION, AND INTERACTION WITH EPB41L3.
RX PubMed=15737618; DOI=10.1016/j.bbrc.2005.01.153;
RA Jiang W., Roemer M.E., Newsham I.F.;
RT "The tumor suppressor DAL-1/4.1B modulates protein arginine N-
RT methyltransferase 5 activity in a substrate-specific manner.";
RL Biochem. Biophys. Res. Commun. 329:522-530(2005).
RN [14]
RP INTERACTION WITH LSM11.
RX PubMed=16087681; DOI=10.1074/jbc.M505077200;
RA Azzouz T.N., Pillai R.S., Dapp C., Chari A., Meister G., Kambach C.,
RA Fischer U., Schuemperli D.;
RT "Toward an assembly line for U7 snRNPs: interactions of U7-specific
RT Lsm proteins with PRMT5 and SMN complexes.";
RL J. Biol. Chem. 280:34435-34440(2005).
RN [15]
RP PROTEIN SEQUENCE OF 2-13; 19-49; 52-60; 69-95; 155-193; 201-248;
RP 334-343; 349-377; 386-393; 422-428; 459-485 AND 489-526, CLEAVAGE OF
RP INITIATOR METHIONINE, ACETYLATION AT ALA-2, AND MASS SPECTROMETRY.
RC TISSUE=Hepatoma, and Mammary carcinoma;
RA Bienvenut W.V., Calvo F., Matallanas D., Cooper W.N., Kolch W.,
RA Boldt K., von Kriegsheim A.F.;
RL Submitted (FEB-2008) to UniProtKB.
RN [16]
RP INTERACTION WITH SSTR1.
RX PubMed=10734105; DOI=10.1074/jbc.275.13.9557;
RA Schwaerzler A., Kreienkamp H.-J., Richter D.;
RT "Interaction of the somatostatin receptor subtype 1 with the human
RT homolog of the Shk1 kinase-binding protein from yeast.";
RL J. Biol. Chem. 275:9557-9562(2000).
RN [17]
RP FUNCTION, AND SUBUNIT.
RX PubMed=11152681; DOI=10.1074/jbc.M008660200;
RA Rho J., Choi S., Seong Y.R., Cho W.-K., Kim S.H., Im D.-S.;
RT "Prmt5, which forms distinct homo-oligomers, is a member of the
RT protein-arginine methyltransferase family.";
RL J. Biol. Chem. 276:11393-11401(2001).
RN [18]
RP FUNCTION IN THE METHYLATION AT SNRPD1 AND SNRPD3.
RX PubMed=11747828; DOI=10.1016/S0960-9822(01)00592-9;
RA Meister G., Eggert C., Buehler D., Brahms H., Kambach C., Fischer U.;
RT "Methylation of Sm proteins by a complex containing PRMT5 and the
RT putative U snRNP assembly factor pICln.";
RL Curr. Biol. 11:1990-1994(2001).
RN [19]
RP COMPONENT OF THE CERC COMPLEX.
RX PubMed=12101096; DOI=10.1093/embo-reports/kvf136;
RA Fabbrizio E., El Messaoudi S., Polanowska J., Paul C., Cook J.R.,
RA Lee J.-H., Negre V., Rousset M., Pestka S., Le Cam A., Sardet C.;
RT "Negative regulation of transcription by the type II arginine
RT methyltransferase PRMT5.";
RL EMBO Rep. 3:641-645(2002).
RN [20]
RP INTERACTION WITH SUPT5H.
RX PubMed=12718890; DOI=10.1016/S1097-2765(03)00101-1;
RA Kwak Y.T., Guo J., Prajapati S., Park K.-J., Surabhi R.M., Miller B.,
RA Gehrig P., Gaynor R.B.;
RT "Methylation of SPT5 regulates its interaction with RNA polymerase II
RT and transcriptional elongation properties.";
RL Mol. Cell 11:1055-1066(2003).
RN [21]
RP INTERACTION WITH THE SWI/SNF COMPLEX, MUTAGENESIS OF 367-GLY-ARG-368,
RP AND METHYLATION OF HISTONE H3.
RX PubMed=15485929; DOI=10.1128/MCB.24.21.9630-9645.2004;
RA Pal S., Vishwanath S.N., Erdjument-Bromage H., Tempst P., Sif S.;
RT "Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and
RT negatively regulates expression of ST7 and NM23 tumor suppressor
RT genes.";
RL Mol. Cell. Biol. 24:9630-9645(2004).
RN [22]
RP INTERACTION WITH IWS1.
RX PubMed=17184735; DOI=10.1016/j.bbrc.2006.11.133;
RA Liu Z., Zhou Z., Chen G., Bao S.;
RT "A putative transcriptional elongation factor hIws1 is essential for
RT mammalian cell proliferation.";
RL Biochem. Biophys. Res. Commun. 353:47-53(2007).
RN [23]
RP FUNCTION, AND INTERACTION WITH PRMT7 AND SNRPD3.
RX PubMed=17709427; DOI=10.1083/jcb.200702147;
RA Gonsalvez G.B., Tian L., Ospina J.K., Boisvert F.-M., Lamond A.I.,
RA Matera A.G.;
RT "Two distinct arginine methyltransferases are required for biogenesis
RT of Sm-class ribonucleoproteins.";
RL J. Cell Biol. 178:733-740(2007).
RN [24]
RP INTERACTION WITH COPRS, AND SUBCELLULAR LOCATION.
RX PubMed=18404153; DOI=10.1038/embor.2008.45;
RA Lacroix M., Messaoudi S.E., Rodier G., Le Cam A., Sardet C.,
RA Fabbrizio E.;
RT "The histone-binding protein COPR5 is required for nuclear functions
RT of the protein arginine methyltransferase PRMT5.";
RL EMBO Rep. 9:452-458(2008).
RN [25]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [26]
RP FUNCTION, AND INTERACTION WITH RPS10.
RX PubMed=20159986; DOI=10.1074/jbc.M110.103911;
RA Ren J., Wang Y., Liang Y., Zhang Y., Bao S., Xu Z.;
RT "Methylation of ribosomal protein S10 by protein-arginine
RT methyltransferase 5 regulates ribosome biogenesis.";
RL J. Biol. Chem. 285:12695-12705(2010).
RN [27]
RP FUNCTION IN CELL MIGRATION, AND INTERACTION WITH SRGAP2.
RX PubMed=20810653; DOI=10.1074/jbc.M110.153429;
RA Guo S., Bao S.;
RT "srGAP2 arginine methylation regulates cell migration and cell
RT spreading through promoting dimerization.";
RL J. Biol. Chem. 285:35133-35141(2010).
RN [28]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [29]
RP FUNCTION IN EGFR SIGNALING, SUBCELLULAR LOCATION, FUNCTION IN EGFR
RP METHYLATION, AND INTERACTION WITH EGFR.
RX PubMed=21258366; DOI=10.1038/ncb2158;
RA Hsu J.M., Chen C.T., Chou C.K., Kuo H.P., Li L.Y., Lin C.Y., Lee H.J.,
RA Wang Y.N., Liu M., Liao H.W., Shi B., Lai C.C., Bedford M.T.,
RA Tsai C.H., Hung M.C.;
RT "Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation
RT negatively modulates EGFR-mediated ERK activation.";
RL Nat. Cell Biol. 13:174-181(2011).
RN [30]
RP FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH HOXA9.
RX PubMed=22269951; DOI=10.1128/MCB.05977-11;
RA Bandyopadhyay S., Harris D.P., Adams G.N., Lause G.E., McHugh A.,
RA Tillmaand E.G., Money A., Willard B., Fox P.L., Dicorleto P.E.;
RT "HOXA9 methylation by PRMT5 is essential for endothelial cell
RT expression of leukocyte adhesion molecules.";
RL Mol. Cell. Biol. 32:1202-1213(2012).
RN [31]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [32]
RP X-RAY CRYSTALLOGRAPHY (2.06 ANGSTROMS) IN COMPLEX WITH WDR77;
RP S-ADENOSYLMETHIONINE ANALOG AND HISTONE H4 PEPTIDE, CATALYTIC
RP ACTIVITY, ACTIVE SITE, SUBSTRATE-BINDING SITES, AND SUBUNIT.
RX PubMed=23071334; DOI=10.1073/pnas.1209814109;
RA Antonysamy S., Bonday Z., Campbell R.M., Doyle B., Druzina Z.,
RA Gheyi T., Han B., Jungheim L.N., Qian Y., Rauch C., Russell M.,
RA Sauder J.M., Wasserman S.R., Weichert K., Willard F.S., Zhang A.,
RA Emtage S.;
RT "Crystal structure of the human PRMT5:MEP50 complex.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:17960-17965(2012).
CC -!- FUNCTION: Arginine methyltransferase that can both catalyze the
CC formation of omega-N monomethylarginine (MMA) and symmetrical
CC dimethylarginine (sDMA), with a preference for the formation of
CC MMA. Specifically mediates the symmetrical dimethylation of
CC arginine residues in the small nuclear ribonucleoproteins Sm D1
CC (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for
CC the assembly and biogenesis of snRNP core particles. Methylates
CC SUPT5H. Mono- and dimethylates arginine residues of myelin basic
CC protein (MBP) in vitro. Plays a role in the assembly of snRNP core
CC particles. May play a role in cytokine-activated transduction
CC pathways. Negatively regulates cyclin E1 promoter activity and
CC cellular proliferation. May regulate the SUPT5H transcriptional
CC elongation properties. May be part of a pathway that is connected
CC to a chloride current, possibly through cytoskeletal
CC rearrangement. Methylates histone H2A and H4 'Arg-3' during germ
CC cell development. Methylates histone H3 'Arg-8', which may repress
CC transcription. Methylates the Piwi proteins (PIWIL1, PIWIL2 and
CC PIWIL4), methylation of Piwi proteins being required for the
CC interaction with Tudor domain-containing proteins and subsequent
CC localization to the meiotic nuage. Methylates RPS10. Attenuates
CC EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels.
CC First, monomethylates EGFR; this enhances EGFR 'Tyr-1197'
CC phosphorylation and PTPN6 recruitment, eventually leading to
CC reduced SOS1 phosphorylation. Second, methylates RAF1 and probably
CC BRAF, hence destabilizing these 2 signaling proteins and reducing
CC their catalytic activity. Required for induction of E-selectin and
CC VCAM-1, on the endothelial cells surface at sites of inflammation.
CC Methylates HOXA9. Methylates and regulates SRGAP2 which is
CC involved in cell migration and differentiation.
CC -!- CATALYTIC ACTIVITY: S-adenosyl-L-methionine + arginine-[histone] =
CC S-adenosyl-L-homocysteine + N(omega)-methyl-arginine-[histone].
CC -!- ENZYME REGULATION: Activity is increased by EGF, HGF, FGF1 or FGF2
CC treatments, and slightly decreased by NGF treatment.
CC -!- SUBUNIT: Forms, at least, homodimers and homotetramers. Interacts
CC with PRDM1 (By similarity). Component of the methylosome, a 20S
CC complex containing at least CLNS1A/pICLn, PRMT1/SKB1 and
CC WDR77/MEP50. Interacts with EGFR; methylates EGFR and stimulates
CC EGFR-mediated ERK activation. Interacts with HOXA9. Interacts with
CC SRGAP2. Found in a complex with COPRS, RUNX1 AND CBFB. Interacts
CC with CHTOP; the interaction symmetrically methylates CHTOP, but
CC seems to require the presence of PRMT1 (By similarity). Interacts
CC with EPB41L3; this modulates methylation of target proteins.
CC Component of a high molecular weight E2F-pocket protein complex,
CC CERC (cyclin E1 repressor complex). Associates with SWI/SNF
CC remodeling complexes containing SMARCA2 and SMARCA4. Interacts
CC with JAK2, SSTR1, SUPT5H, BRAF and with active RAF1. Interacts
CC with LSM11, PRMT7 and SNRPD3. Interacts with COPRS; promoting its
CC recruitment on histone H4. Interacts with CLNS1A/pICLn. Identified
CC in a complex with CLNS1A/pICLn and Sm proteins. Interacts with
CC RPS10. Interacts with WDR77. Interacts with IWS1.
CC -!- INTERACTION:
CC Q8N8U2:CDYL2; NbExp=2; IntAct=EBI-351098, EBI-8467076;
CC P54105:CLNS1A; NbExp=3; IntAct=EBI-351098, EBI-724693;
CC Q9NQ92:COPRS; NbExp=6; IntAct=EBI-351098, EBI-1642558;
CC Q01094:E2F1; NbExp=8; IntAct=EBI-351098, EBI-448924;
CC Q8TE85:GRHL3; NbExp=2; IntAct=EBI-351098, EBI-8469396;
CC Q9BX10:GTPBP2; NbExp=2; IntAct=EBI-351098, EBI-6115579;
CC P62805:HIST2H4B; NbExp=3; IntAct=EBI-351098, EBI-302023;
CC Q8WVJ2:NUDCD2; NbExp=2; IntAct=EBI-351098, EBI-1052153;
CC Q86U06:RBM23; NbExp=3; IntAct=EBI-351098, EBI-780319;
CC O75044:SRGAP2; NbExp=4; IntAct=EBI-351098, EBI-1051034;
CC Q96RU7:TRIB3; NbExp=2; IntAct=EBI-351098, EBI-492476;
CC Q9BQA1:WDR77; NbExp=6; IntAct=EBI-351098, EBI-1237307;
CC P63104:YWHAZ; NbExp=2; IntAct=EBI-351098, EBI-347088;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Nucleus.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seems to exist. According to EST
CC sequences;
CC Name=1;
CC IsoId=O14744-1; Sequence=Displayed;
CC Name=2;
CC IsoId=O14744-2; Sequence=VSP_043382;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- SIMILARITY: Belongs to the class I-like SAM-binding
CC methyltransferase superfamily. Protein arginine N-
CC methyltransferase family.
CC -!- SIMILARITY: Contains 1 SAM-dependent MTase PRMT-type domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF015913; AAB66581.1; -; mRNA.
DR EMBL; AF167572; AAF04502.1; -; mRNA.
DR EMBL; AK075251; BAG52095.1; -; mRNA.
DR EMBL; CR456741; CAG33022.1; -; mRNA.
DR EMBL; AB451246; BAG70060.1; -; mRNA.
DR EMBL; AB451370; BAG70184.1; -; mRNA.
DR EMBL; AL132780; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471078; EAW66218.1; -; Genomic_DNA.
DR EMBL; CH471078; EAW66219.1; -; Genomic_DNA.
DR EMBL; CH471078; EAW66221.1; -; Genomic_DNA.
DR EMBL; BC025979; AAH25979.1; -; mRNA.
DR PIR; T03842; T03842.
DR RefSeq; NP_001034708.1; NM_001039619.2.
DR RefSeq; NP_006100.2; NM_006109.4.
DR UniGene; Hs.367854; -.
DR PDB; 4GQB; X-ray; 2.06 A; A=1-637.
DR PDBsum; 4GQB; -.
DR ProteinModelPortal; O14744; -.
DR SMR; O14744; 13-637.
DR DIP; DIP-33172N; -.
DR IntAct; O14744; 61.
DR MINT; MINT-1216859; -.
DR STRING; 9606.ENSP00000319169; -.
DR ChEMBL; CHEMBL1795116; -.
DR PhosphoSite; O14744; -.
DR PaxDb; O14744; -.
DR PeptideAtlas; O14744; -.
DR PRIDE; O14744; -.
DR DNASU; 10419; -.
DR Ensembl; ENST00000324366; ENSP00000319169; ENSG00000100462.
DR Ensembl; ENST00000397441; ENSP00000380583; ENSG00000100462.
DR GeneID; 10419; -.
DR KEGG; hsa:10419; -.
DR UCSC; uc001whm.1; human.
DR CTD; 10419; -.
DR GeneCards; GC14M023389; -.
DR H-InvDB; HIX0011525; -.
DR HGNC; HGNC:10894; PRMT5.
DR HPA; CAB012459; -.
DR HPA; HPA005525; -.
DR MIM; 604045; gene.
DR neXtProt; NX_O14744; -.
DR PharmGKB; PA35794; -.
DR eggNOG; NOG291156; -.
DR HOGENOM; HOG000175933; -.
DR HOVERGEN; HBG057083; -.
DR InParanoid; O14744; -.
DR KO; K02516; -.
DR OMA; IHNPAGR; -.
DR OrthoDB; EOG7X6KZR; -.
DR PhylomeDB; O14744; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; PRMT5; human.
DR GeneWiki; Protein_arginine_methyltransferase_5; -.
DR GenomeRNAi; 10419; -.
DR NextBio; 39486; -.
DR PRO; PR:O14744; -.
DR ArrayExpress; O14744; -.
DR Bgee; O14744; -.
DR CleanEx; HS_PRMT5; -.
DR Genevestigator; O14744; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; NAS:UniProtKB.
DR GO; GO:0043234; C:protein complex; IEA:Ensembl.
DR GO; GO:0003682; F:chromatin binding; IEA:Ensembl.
DR GO; GO:0008469; F:histone-arginine N-methyltransferase activity; IEA:UniProtKB-EC.
DR GO; GO:0035243; F:protein-arginine omega-N symmetric methyltransferase activity; IMP:UniProtKB.
DR GO; GO:0043021; F:ribonucleoprotein complex binding; IPI:UniProtKB.
DR GO; GO:0008283; P:cell proliferation; TAS:ProtInc.
DR GO; GO:0042118; P:endothelial cell activation; IMP:UniProtKB.
DR GO; GO:0043985; P:histone H4-R3 methylation; NAS:UniProtKB.
DR GO; GO:0034660; P:ncRNA metabolic process; TAS:Reactome.
DR GO; GO:0000122; P:negative regulation of transcription from RNA polymerase II promoter; IEA:Ensembl.
DR GO; GO:0007088; P:regulation of mitosis; TAS:ProtInc.
DR GO; GO:0000387; P:spliceosomal snRNP assembly; IMP:UniProtKB.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR InterPro; IPR025799; Arg_MeTrfase.
DR InterPro; IPR007857; Arg_MeTrfase_PRMT5.
DR PANTHER; PTHR10738; PTHR10738; 1.
DR Pfam; PF05185; PRMT5; 1.
DR PIRSF; PIRSF015894; Skb1_MeTrfase; 1.
DR PROSITE; PS51678; SAM_MT_PRMT; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Chromatin regulator;
KW Complete proteome; Cytoplasm; Direct protein sequencing;
KW Methyltransferase; Nucleus; Reference proteome;
KW S-adenosyl-L-methionine; Transcription; Transcription regulation;
KW Transferase.
FT CHAIN 1 637 Protein arginine N-methyltransferase 5.
FT /FTId=PRO_0000212342.
FT INIT_MET 1 1 Removed; alternate.
FT CHAIN 2 637 Protein arginine N-methyltransferase 5,
FT N-terminally processed.
FT /FTId=PRO_0000417602.
FT DOMAIN 308 615 SAM-dependent MTase PRMT-type.
FT REGION 13 292 TIM barrel.
FT REGION 333 334 S-adenosyl-L-methionine binding.
FT REGION 419 420 S-adenosyl-L-methionine binding.
FT REGION 465 637 Beta barrel.
FT REGION 488 494 Dimerization.
FT ACT_SITE 435 435 Proton donor/acceptor (Probable).
FT ACT_SITE 444 444 Proton donor/acceptor (Probable).
FT BINDING 304 304 Peptide substrate.
FT BINDING 307 307 Peptide substrate.
FT BINDING 324 324 S-adenosyl-L-methionine.
FT BINDING 392 392 S-adenosyl-L-methionine.
FT SITE 327 327 Critical for specifying symmetric
FT addition of methyl groups (By
FT similarity).
FT MOD_RES 2 2 N-acetylalanine.
FT VAR_SEQ 1 34 MAAMAVGGAGGSRVSSGRDLNCVPEIADTLGAVA -> MRG
FT PNSGTEKGRLVIPE (in isoform 2).
FT /FTId=VSP_043382.
FT MUTAGEN 365 369 Missing: Increased MAPK1/MAPK3
FT phosphorylation in response to EGF.
FT MUTAGEN 367 368 GR->AA: Abolishes enzymatic activity.
FT CONFLICT 247 247 S -> F (in Ref. 2; AAB66581).
FT CONFLICT 553 553 G -> V (in Ref. 2; AAB66581).
FT STRAND 16 19
FT HELIX 26 35
FT STRAND 39 46
FT STRAND 54 56
FT HELIX 59 61
FT HELIX 70 72
FT HELIX 75 81
FT STRAND 82 85
FT HELIX 97 117
FT STRAND 120 125
FT HELIX 132 142
FT STRAND 150 158
FT HELIX 160 163
FT HELIX 181 183
FT HELIX 184 195
FT TURN 196 198
FT STRAND 202 207
FT HELIX 215 219
FT TURN 220 223
FT STRAND 226 232
FT HELIX 233 235
FT HELIX 248 259
FT STRAND 263 268
FT HELIX 273 275
FT HELIX 279 289
FT HELIX 296 300
FT STRAND 309 311
FT TURN 314 316
FT HELIX 321 327
FT HELIX 331 348
FT HELIX 351 353
FT TURN 354 356
FT STRAND 358 365
FT HELIX 370 381
FT STRAND 385 393
FT HELIX 395 407
FT HELIX 410 412
FT STRAND 413 418
FT TURN 420 422
FT STRAND 429 433
FT HELIX 442 444
FT HELIX 446 453
FT HELIX 454 456
FT STRAND 457 465
FT STRAND 467 476
FT HELIX 478 485
FT HELIX 496 499
FT STRAND 516 524
FT STRAND 534 541
FT STRAND 546 560
FT STRAND 563 566
FT HELIX 569 571
FT STRAND 582 592
FT STRAND 597 606
FT STRAND 608 621
FT HELIX 628 630
SQ SEQUENCE 637 AA; 72684 MW; 522E255B384F25E7 CRC64;
MAAMAVGGAG GSRVSSGRDL NCVPEIADTL GAVAKQGFDF LCMPVFHPRF KREFIQEPAK
NRPGPQTRSD LLLSGRDWNT LIVGKLSPWI RPDSKVEKIR RNSEAAMLQE LNFGAYLGLP
AFLLPLNQED NTNLARVLTN HIHTGHHSSM FWMRVPLVAP EDLRDDIIEN APTTHTEEYS
GEEKTWMWWH NFRTLCDYSK RIAVALEIGA DLPSNHVIDR WLGEPIKAAI LPTSIFLTNK
KGFPVLSKMH QRLIFRLLKL EVQFIITGTN HHSEKEFCSY LQYLEYLSQN RPPPNAYELF
AKGYEDYLQS PLQPLMDNLE SQTYEVFEKD PIKYSQYQQA IYKCLLDRVP EEEKDTNVQV
LMVLGAGRGP LVNASLRAAK QADRRIKLYA VEKNPNAVVT LENWQFEEWG SQVTVVSSDM
REWVAPEKAD IIVSELLGSF ADNELSPECL DGAQHFLKDD GVSIPGEYTS FLAPISSSKL
YNEVRACREK DRDPEAQFEM PYVVRLHNFH QLSAPQPCFT FSHPNRDPMI DNNRYCTLEF
PVEVNTVLHG FAGYFETVLY QDITLSIRPE THSPGMFSWF PILFPIKQPI TVREGQTICV
RFWRCSNSKK VWYEWAVTAP VCSAIHNPTG RSYTIGL
//
ID ANM5_HUMAN Reviewed; 637 AA.
AC O14744; A8MZ91; B5BU10; D3DS33; Q6IBR1; Q9UKH1;
DT 20-JUN-2003, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 4.
DT 22-JAN-2014, entry version 124.
DE RecName: Full=Protein arginine N-methyltransferase 5;
DE EC=2.1.1.-;
DE AltName: Full=72 kDa ICln-binding protein;
DE AltName: Full=Histone-arginine N-methyltransferase PRMT5;
DE EC=2.1.1.125;
DE AltName: Full=Jak-binding protein 1;
DE AltName: Full=Shk1 kinase-binding protein 1 homolog;
DE Short=SKB1 homolog;
DE Short=SKB1Hs;
DE Contains:
DE RecName: Full=Protein arginine N-methyltransferase 5, N-terminally processed;
GN Name=PRMT5; Synonyms=HRMT1L5, IBP72, JBP1, SKB1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND INTERACTION WITH CLNS1A.
RX PubMed=9556550; DOI=10.1074/jbc.273.18.10811;
RA Krapivinsky G., Pu W., Wickman K., Krapivinsky L., Clapham D.E.;
RT "pICln binds to a mammalian homolog of a yeast protein involved in
RT regulation of cell morphology.";
RL J. Biol. Chem. 273:10811-10814(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RX PubMed=9843966; DOI=10.1073/pnas.95.25.14781;
RA Gilbreth M., Yang P., Bartholomeusz G., Pimental R.A., Kansra S.,
RA Gadiraju R., Marcus S.;
RT "Negative regulation of mitosis in fission yeast by the shk1
RT interacting protein skb1 and its human homolog, Skb1Hs.";
RL Proc. Natl. Acad. Sci. U.S.A. 95:14781-14786(1998).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, AND INTERACTION WITH
RP JAK2.
RX PubMed=10531356; DOI=10.1074/jbc.274.44.31531;
RA Pollack B.P., Kotenko S.V., He W., Izotova L.S., Barnoski B.L.,
RA Pestka S.;
RT "The human homologue of the yeast proteins Skb1 and Hsl7p interacts
RT with Jak kinases and contains protein methyltransferase activity.";
RL J. Biol. Chem. 274:31531-31542(1999).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RC TISSUE=Thyroid;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=19054851; DOI=10.1038/nmeth.1273;
RA Goshima N., Kawamura Y., Fukumoto A., Miura A., Honma R., Satoh R.,
RA Wakamatsu A., Yamamoto J., Kimura K., Nishikawa T., Andoh T., Iida Y.,
RA Ishikawa K., Ito E., Kagawa N., Kaminaga C., Kanehori K., Kawakami B.,
RA Kenmochi K., Kimura R., Kobayashi M., Kuroita T., Kuwayama H.,
RA Maruyama Y., Matsuo K., Minami K., Mitsubori M., Mori M.,
RA Morishita R., Murase A., Nishikawa A., Nishikawa S., Okamoto T.,
RA Sakagami N., Sakamoto Y., Sasaki Y., Seki T., Sono S., Sugiyama A.,
RA Sumiya T., Takayama T., Takayama Y., Takeda H., Togashi T., Yahata K.,
RA Yamada H., Yanagisawa Y., Endo Y., Imamoto F., Kisu Y., Tanaka S.,
RA Isogai T., Imai J., Watanabe S., Nomura N.;
RT "Human protein factory for converting the transcriptome into an in
RT vitro-expressed proteome.";
RL Nat. Methods 5:1011-1017(2008).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=12508121; DOI=10.1038/nature01348;
RA Heilig R., Eckenberg R., Petit J.-L., Fonknechten N., Da Silva C.,
RA Cattolico L., Levy M., Barbe V., De Berardinis V., Ureta-Vidal A.,
RA Pelletier E., Vico V., Anthouard V., Rowen L., Madan A., Qin S.,
RA Sun H., Du H., Pepin K., Artiguenave F., Robert C., Cruaud C.,
RA Bruels T., Jaillon O., Friedlander L., Samson G., Brottier P.,
RA Cure S., Segurens B., Aniere F., Samain S., Crespeau H., Abbasi N.,
RA Aiach N., Boscus D., Dickhoff R., Dors M., Dubois I., Friedman C.,
RA Gouyvenoux M., James R., Madan A., Mairey-Estrada B., Mangenot S.,
RA Martins N., Menard M., Oztas S., Ratcliffe A., Shaffer T., Trask B.,
RA Vacherie B., Bellemere C., Belser C., Besnard-Gonnet M.,
RA Bartol-Mavel D., Boutard M., Briez-Silla S., Combette S.,
RA Dufosse-Laurent V., Ferron C., Lechaplais C., Louesse C., Muselet D.,
RA Magdelenat G., Pateau E., Petit E., Sirvain-Trukniewicz P., Trybou A.,
RA Vega-Czarny N., Bataille E., Bluet E., Bordelais I., Dubois M.,
RA Dumont C., Guerin T., Haffray S., Hammadi R., Muanga J., Pellouin V.,
RA Robert D., Wunderle E., Gauguet G., Roy A., Sainte-Marthe L.,
RA Verdier J., Verdier-Discala C., Hillier L.W., Fulton L., McPherson J.,
RA Matsuda F., Wilson R., Scarpelli C., Gyapay G., Wincker P., Saurin W.,
RA Quetier F., Waterston R., Hood L., Weissenbach J.;
RT "The DNA sequence and analysis of human chromosome 14.";
RL Nature 421:601-607(2003).
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [10]
RP PROTEIN SEQUENCE OF 1-13 AND 594-601, FUNCTION IN THE REGULATION OF
RP MAPK1/MAPK3 SIGNALING PATHWAY, INTERACTION WITH BRAF AND RAF1, ENZYME
RP REGULATION, SUBCELLULAR LOCATION, AND MUTAGENESIS OF 365-GLY--GLY-369.
RX PubMed=21917714; DOI=10.1126/scisignal.2001936;
RA Andreu-Perez P., Esteve-Puig R., de Torre-Minguela C.,
RA Lopez-Fauqued M., Bech-Serra J.J., Tenbaum S., Garcia-Trevijano E.R.,
RA Canals F., Merlino G., Avila M.A., Recio J.A.;
RT "Protein arginine methyltransferase 5 regulates ERK1/2 signal
RT transduction amplitude and cell fate through CRAF.";
RL Sci. Signal. 4:RA58-RA58(2011).
RN [11]
RP PROTEIN SEQUENCE OF 2-13.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [12]
RP FUNCTION, AND SUBUNIT.
RX PubMed=12411503; DOI=10.1093/emboj/cdf585;
RA Meister G., Fischer U.;
RT "Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the
RT formation of spliceosomal UsnRNPs.";
RL EMBO J. 21:5853-5863(2002).
RN [13]
RP FUNCTION, AND INTERACTION WITH EPB41L3.
RX PubMed=15737618; DOI=10.1016/j.bbrc.2005.01.153;
RA Jiang W., Roemer M.E., Newsham I.F.;
RT "The tumor suppressor DAL-1/4.1B modulates protein arginine N-
RT methyltransferase 5 activity in a substrate-specific manner.";
RL Biochem. Biophys. Res. Commun. 329:522-530(2005).
RN [14]
RP INTERACTION WITH LSM11.
RX PubMed=16087681; DOI=10.1074/jbc.M505077200;
RA Azzouz T.N., Pillai R.S., Dapp C., Chari A., Meister G., Kambach C.,
RA Fischer U., Schuemperli D.;
RT "Toward an assembly line for U7 snRNPs: interactions of U7-specific
RT Lsm proteins with PRMT5 and SMN complexes.";
RL J. Biol. Chem. 280:34435-34440(2005).
RN [15]
RP PROTEIN SEQUENCE OF 2-13; 19-49; 52-60; 69-95; 155-193; 201-248;
RP 334-343; 349-377; 386-393; 422-428; 459-485 AND 489-526, CLEAVAGE OF
RP INITIATOR METHIONINE, ACETYLATION AT ALA-2, AND MASS SPECTROMETRY.
RC TISSUE=Hepatoma, and Mammary carcinoma;
RA Bienvenut W.V., Calvo F., Matallanas D., Cooper W.N., Kolch W.,
RA Boldt K., von Kriegsheim A.F.;
RL Submitted (FEB-2008) to UniProtKB.
RN [16]
RP INTERACTION WITH SSTR1.
RX PubMed=10734105; DOI=10.1074/jbc.275.13.9557;
RA Schwaerzler A., Kreienkamp H.-J., Richter D.;
RT "Interaction of the somatostatin receptor subtype 1 with the human
RT homolog of the Shk1 kinase-binding protein from yeast.";
RL J. Biol. Chem. 275:9557-9562(2000).
RN [17]
RP FUNCTION, AND SUBUNIT.
RX PubMed=11152681; DOI=10.1074/jbc.M008660200;
RA Rho J., Choi S., Seong Y.R., Cho W.-K., Kim S.H., Im D.-S.;
RT "Prmt5, which forms distinct homo-oligomers, is a member of the
RT protein-arginine methyltransferase family.";
RL J. Biol. Chem. 276:11393-11401(2001).
RN [18]
RP FUNCTION IN THE METHYLATION AT SNRPD1 AND SNRPD3.
RX PubMed=11747828; DOI=10.1016/S0960-9822(01)00592-9;
RA Meister G., Eggert C., Buehler D., Brahms H., Kambach C., Fischer U.;
RT "Methylation of Sm proteins by a complex containing PRMT5 and the
RT putative U snRNP assembly factor pICln.";
RL Curr. Biol. 11:1990-1994(2001).
RN [19]
RP COMPONENT OF THE CERC COMPLEX.
RX PubMed=12101096; DOI=10.1093/embo-reports/kvf136;
RA Fabbrizio E., El Messaoudi S., Polanowska J., Paul C., Cook J.R.,
RA Lee J.-H., Negre V., Rousset M., Pestka S., Le Cam A., Sardet C.;
RT "Negative regulation of transcription by the type II arginine
RT methyltransferase PRMT5.";
RL EMBO Rep. 3:641-645(2002).
RN [20]
RP INTERACTION WITH SUPT5H.
RX PubMed=12718890; DOI=10.1016/S1097-2765(03)00101-1;
RA Kwak Y.T., Guo J., Prajapati S., Park K.-J., Surabhi R.M., Miller B.,
RA Gehrig P., Gaynor R.B.;
RT "Methylation of SPT5 regulates its interaction with RNA polymerase II
RT and transcriptional elongation properties.";
RL Mol. Cell 11:1055-1066(2003).
RN [21]
RP INTERACTION WITH THE SWI/SNF COMPLEX, MUTAGENESIS OF 367-GLY-ARG-368,
RP AND METHYLATION OF HISTONE H3.
RX PubMed=15485929; DOI=10.1128/MCB.24.21.9630-9645.2004;
RA Pal S., Vishwanath S.N., Erdjument-Bromage H., Tempst P., Sif S.;
RT "Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and
RT negatively regulates expression of ST7 and NM23 tumor suppressor
RT genes.";
RL Mol. Cell. Biol. 24:9630-9645(2004).
RN [22]
RP INTERACTION WITH IWS1.
RX PubMed=17184735; DOI=10.1016/j.bbrc.2006.11.133;
RA Liu Z., Zhou Z., Chen G., Bao S.;
RT "A putative transcriptional elongation factor hIws1 is essential for
RT mammalian cell proliferation.";
RL Biochem. Biophys. Res. Commun. 353:47-53(2007).
RN [23]
RP FUNCTION, AND INTERACTION WITH PRMT7 AND SNRPD3.
RX PubMed=17709427; DOI=10.1083/jcb.200702147;
RA Gonsalvez G.B., Tian L., Ospina J.K., Boisvert F.-M., Lamond A.I.,
RA Matera A.G.;
RT "Two distinct arginine methyltransferases are required for biogenesis
RT of Sm-class ribonucleoproteins.";
RL J. Cell Biol. 178:733-740(2007).
RN [24]
RP INTERACTION WITH COPRS, AND SUBCELLULAR LOCATION.
RX PubMed=18404153; DOI=10.1038/embor.2008.45;
RA Lacroix M., Messaoudi S.E., Rodier G., Le Cam A., Sardet C.,
RA Fabbrizio E.;
RT "The histone-binding protein COPR5 is required for nuclear functions
RT of the protein arginine methyltransferase PRMT5.";
RL EMBO Rep. 9:452-458(2008).
RN [25]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [26]
RP FUNCTION, AND INTERACTION WITH RPS10.
RX PubMed=20159986; DOI=10.1074/jbc.M110.103911;
RA Ren J., Wang Y., Liang Y., Zhang Y., Bao S., Xu Z.;
RT "Methylation of ribosomal protein S10 by protein-arginine
RT methyltransferase 5 regulates ribosome biogenesis.";
RL J. Biol. Chem. 285:12695-12705(2010).
RN [27]
RP FUNCTION IN CELL MIGRATION, AND INTERACTION WITH SRGAP2.
RX PubMed=20810653; DOI=10.1074/jbc.M110.153429;
RA Guo S., Bao S.;
RT "srGAP2 arginine methylation regulates cell migration and cell
RT spreading through promoting dimerization.";
RL J. Biol. Chem. 285:35133-35141(2010).
RN [28]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [29]
RP FUNCTION IN EGFR SIGNALING, SUBCELLULAR LOCATION, FUNCTION IN EGFR
RP METHYLATION, AND INTERACTION WITH EGFR.
RX PubMed=21258366; DOI=10.1038/ncb2158;
RA Hsu J.M., Chen C.T., Chou C.K., Kuo H.P., Li L.Y., Lin C.Y., Lee H.J.,
RA Wang Y.N., Liu M., Liao H.W., Shi B., Lai C.C., Bedford M.T.,
RA Tsai C.H., Hung M.C.;
RT "Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation
RT negatively modulates EGFR-mediated ERK activation.";
RL Nat. Cell Biol. 13:174-181(2011).
RN [30]
RP FUNCTION, SUBCELLULAR LOCATION, AND INTERACTION WITH HOXA9.
RX PubMed=22269951; DOI=10.1128/MCB.05977-11;
RA Bandyopadhyay S., Harris D.P., Adams G.N., Lause G.E., McHugh A.,
RA Tillmaand E.G., Money A., Willard B., Fox P.L., Dicorleto P.E.;
RT "HOXA9 methylation by PRMT5 is essential for endothelial cell
RT expression of leukocyte adhesion molecules.";
RL Mol. Cell. Biol. 32:1202-1213(2012).
RN [31]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [32]
RP X-RAY CRYSTALLOGRAPHY (2.06 ANGSTROMS) IN COMPLEX WITH WDR77;
RP S-ADENOSYLMETHIONINE ANALOG AND HISTONE H4 PEPTIDE, CATALYTIC
RP ACTIVITY, ACTIVE SITE, SUBSTRATE-BINDING SITES, AND SUBUNIT.
RX PubMed=23071334; DOI=10.1073/pnas.1209814109;
RA Antonysamy S., Bonday Z., Campbell R.M., Doyle B., Druzina Z.,
RA Gheyi T., Han B., Jungheim L.N., Qian Y., Rauch C., Russell M.,
RA Sauder J.M., Wasserman S.R., Weichert K., Willard F.S., Zhang A.,
RA Emtage S.;
RT "Crystal structure of the human PRMT5:MEP50 complex.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:17960-17965(2012).
CC -!- FUNCTION: Arginine methyltransferase that can both catalyze the
CC formation of omega-N monomethylarginine (MMA) and symmetrical
CC dimethylarginine (sDMA), with a preference for the formation of
CC MMA. Specifically mediates the symmetrical dimethylation of
CC arginine residues in the small nuclear ribonucleoproteins Sm D1
CC (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for
CC the assembly and biogenesis of snRNP core particles. Methylates
CC SUPT5H. Mono- and dimethylates arginine residues of myelin basic
CC protein (MBP) in vitro. Plays a role in the assembly of snRNP core
CC particles. May play a role in cytokine-activated transduction
CC pathways. Negatively regulates cyclin E1 promoter activity and
CC cellular proliferation. May regulate the SUPT5H transcriptional
CC elongation properties. May be part of a pathway that is connected
CC to a chloride current, possibly through cytoskeletal
CC rearrangement. Methylates histone H2A and H4 'Arg-3' during germ
CC cell development. Methylates histone H3 'Arg-8', which may repress
CC transcription. Methylates the Piwi proteins (PIWIL1, PIWIL2 and
CC PIWIL4), methylation of Piwi proteins being required for the
CC interaction with Tudor domain-containing proteins and subsequent
CC localization to the meiotic nuage. Methylates RPS10. Attenuates
CC EGF signaling through the MAPK1/MAPK3 pathway acting at 2 levels.
CC First, monomethylates EGFR; this enhances EGFR 'Tyr-1197'
CC phosphorylation and PTPN6 recruitment, eventually leading to
CC reduced SOS1 phosphorylation. Second, methylates RAF1 and probably
CC BRAF, hence destabilizing these 2 signaling proteins and reducing
CC their catalytic activity. Required for induction of E-selectin and
CC VCAM-1, on the endothelial cells surface at sites of inflammation.
CC Methylates HOXA9. Methylates and regulates SRGAP2 which is
CC involved in cell migration and differentiation.
CC -!- CATALYTIC ACTIVITY: S-adenosyl-L-methionine + arginine-[histone] =
CC S-adenosyl-L-homocysteine + N(omega)-methyl-arginine-[histone].
CC -!- ENZYME REGULATION: Activity is increased by EGF, HGF, FGF1 or FGF2
CC treatments, and slightly decreased by NGF treatment.
CC -!- SUBUNIT: Forms, at least, homodimers and homotetramers. Interacts
CC with PRDM1 (By similarity). Component of the methylosome, a 20S
CC complex containing at least CLNS1A/pICLn, PRMT1/SKB1 and
CC WDR77/MEP50. Interacts with EGFR; methylates EGFR and stimulates
CC EGFR-mediated ERK activation. Interacts with HOXA9. Interacts with
CC SRGAP2. Found in a complex with COPRS, RUNX1 AND CBFB. Interacts
CC with CHTOP; the interaction symmetrically methylates CHTOP, but
CC seems to require the presence of PRMT1 (By similarity). Interacts
CC with EPB41L3; this modulates methylation of target proteins.
CC Component of a high molecular weight E2F-pocket protein complex,
CC CERC (cyclin E1 repressor complex). Associates with SWI/SNF
CC remodeling complexes containing SMARCA2 and SMARCA4. Interacts
CC with JAK2, SSTR1, SUPT5H, BRAF and with active RAF1. Interacts
CC with LSM11, PRMT7 and SNRPD3. Interacts with COPRS; promoting its
CC recruitment on histone H4. Interacts with CLNS1A/pICLn. Identified
CC in a complex with CLNS1A/pICLn and Sm proteins. Interacts with
CC RPS10. Interacts with WDR77. Interacts with IWS1.
CC -!- INTERACTION:
CC Q8N8U2:CDYL2; NbExp=2; IntAct=EBI-351098, EBI-8467076;
CC P54105:CLNS1A; NbExp=3; IntAct=EBI-351098, EBI-724693;
CC Q9NQ92:COPRS; NbExp=6; IntAct=EBI-351098, EBI-1642558;
CC Q01094:E2F1; NbExp=8; IntAct=EBI-351098, EBI-448924;
CC Q8TE85:GRHL3; NbExp=2; IntAct=EBI-351098, EBI-8469396;
CC Q9BX10:GTPBP2; NbExp=2; IntAct=EBI-351098, EBI-6115579;
CC P62805:HIST2H4B; NbExp=3; IntAct=EBI-351098, EBI-302023;
CC Q8WVJ2:NUDCD2; NbExp=2; IntAct=EBI-351098, EBI-1052153;
CC Q86U06:RBM23; NbExp=3; IntAct=EBI-351098, EBI-780319;
CC O75044:SRGAP2; NbExp=4; IntAct=EBI-351098, EBI-1051034;
CC Q96RU7:TRIB3; NbExp=2; IntAct=EBI-351098, EBI-492476;
CC Q9BQA1:WDR77; NbExp=6; IntAct=EBI-351098, EBI-1237307;
CC P63104:YWHAZ; NbExp=2; IntAct=EBI-351098, EBI-347088;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Nucleus.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seems to exist. According to EST
CC sequences;
CC Name=1;
CC IsoId=O14744-1; Sequence=Displayed;
CC Name=2;
CC IsoId=O14744-2; Sequence=VSP_043382;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- SIMILARITY: Belongs to the class I-like SAM-binding
CC methyltransferase superfamily. Protein arginine N-
CC methyltransferase family.
CC -!- SIMILARITY: Contains 1 SAM-dependent MTase PRMT-type domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF015913; AAB66581.1; -; mRNA.
DR EMBL; AF167572; AAF04502.1; -; mRNA.
DR EMBL; AK075251; BAG52095.1; -; mRNA.
DR EMBL; CR456741; CAG33022.1; -; mRNA.
DR EMBL; AB451246; BAG70060.1; -; mRNA.
DR EMBL; AB451370; BAG70184.1; -; mRNA.
DR EMBL; AL132780; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471078; EAW66218.1; -; Genomic_DNA.
DR EMBL; CH471078; EAW66219.1; -; Genomic_DNA.
DR EMBL; CH471078; EAW66221.1; -; Genomic_DNA.
DR EMBL; BC025979; AAH25979.1; -; mRNA.
DR PIR; T03842; T03842.
DR RefSeq; NP_001034708.1; NM_001039619.2.
DR RefSeq; NP_006100.2; NM_006109.4.
DR UniGene; Hs.367854; -.
DR PDB; 4GQB; X-ray; 2.06 A; A=1-637.
DR PDBsum; 4GQB; -.
DR ProteinModelPortal; O14744; -.
DR SMR; O14744; 13-637.
DR DIP; DIP-33172N; -.
DR IntAct; O14744; 61.
DR MINT; MINT-1216859; -.
DR STRING; 9606.ENSP00000319169; -.
DR ChEMBL; CHEMBL1795116; -.
DR PhosphoSite; O14744; -.
DR PaxDb; O14744; -.
DR PeptideAtlas; O14744; -.
DR PRIDE; O14744; -.
DR DNASU; 10419; -.
DR Ensembl; ENST00000324366; ENSP00000319169; ENSG00000100462.
DR Ensembl; ENST00000397441; ENSP00000380583; ENSG00000100462.
DR GeneID; 10419; -.
DR KEGG; hsa:10419; -.
DR UCSC; uc001whm.1; human.
DR CTD; 10419; -.
DR GeneCards; GC14M023389; -.
DR H-InvDB; HIX0011525; -.
DR HGNC; HGNC:10894; PRMT5.
DR HPA; CAB012459; -.
DR HPA; HPA005525; -.
DR MIM; 604045; gene.
DR neXtProt; NX_O14744; -.
DR PharmGKB; PA35794; -.
DR eggNOG; NOG291156; -.
DR HOGENOM; HOG000175933; -.
DR HOVERGEN; HBG057083; -.
DR InParanoid; O14744; -.
DR KO; K02516; -.
DR OMA; IHNPAGR; -.
DR OrthoDB; EOG7X6KZR; -.
DR PhylomeDB; O14744; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; PRMT5; human.
DR GeneWiki; Protein_arginine_methyltransferase_5; -.
DR GenomeRNAi; 10419; -.
DR NextBio; 39486; -.
DR PRO; PR:O14744; -.
DR ArrayExpress; O14744; -.
DR Bgee; O14744; -.
DR CleanEx; HS_PRMT5; -.
DR Genevestigator; O14744; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; NAS:UniProtKB.
DR GO; GO:0043234; C:protein complex; IEA:Ensembl.
DR GO; GO:0003682; F:chromatin binding; IEA:Ensembl.
DR GO; GO:0008469; F:histone-arginine N-methyltransferase activity; IEA:UniProtKB-EC.
DR GO; GO:0035243; F:protein-arginine omega-N symmetric methyltransferase activity; IMP:UniProtKB.
DR GO; GO:0043021; F:ribonucleoprotein complex binding; IPI:UniProtKB.
DR GO; GO:0008283; P:cell proliferation; TAS:ProtInc.
DR GO; GO:0042118; P:endothelial cell activation; IMP:UniProtKB.
DR GO; GO:0043985; P:histone H4-R3 methylation; NAS:UniProtKB.
DR GO; GO:0034660; P:ncRNA metabolic process; TAS:Reactome.
DR GO; GO:0000122; P:negative regulation of transcription from RNA polymerase II promoter; IEA:Ensembl.
DR GO; GO:0007088; P:regulation of mitosis; TAS:ProtInc.
DR GO; GO:0000387; P:spliceosomal snRNP assembly; IMP:UniProtKB.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR InterPro; IPR025799; Arg_MeTrfase.
DR InterPro; IPR007857; Arg_MeTrfase_PRMT5.
DR PANTHER; PTHR10738; PTHR10738; 1.
DR Pfam; PF05185; PRMT5; 1.
DR PIRSF; PIRSF015894; Skb1_MeTrfase; 1.
DR PROSITE; PS51678; SAM_MT_PRMT; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Chromatin regulator;
KW Complete proteome; Cytoplasm; Direct protein sequencing;
KW Methyltransferase; Nucleus; Reference proteome;
KW S-adenosyl-L-methionine; Transcription; Transcription regulation;
KW Transferase.
FT CHAIN 1 637 Protein arginine N-methyltransferase 5.
FT /FTId=PRO_0000212342.
FT INIT_MET 1 1 Removed; alternate.
FT CHAIN 2 637 Protein arginine N-methyltransferase 5,
FT N-terminally processed.
FT /FTId=PRO_0000417602.
FT DOMAIN 308 615 SAM-dependent MTase PRMT-type.
FT REGION 13 292 TIM barrel.
FT REGION 333 334 S-adenosyl-L-methionine binding.
FT REGION 419 420 S-adenosyl-L-methionine binding.
FT REGION 465 637 Beta barrel.
FT REGION 488 494 Dimerization.
FT ACT_SITE 435 435 Proton donor/acceptor (Probable).
FT ACT_SITE 444 444 Proton donor/acceptor (Probable).
FT BINDING 304 304 Peptide substrate.
FT BINDING 307 307 Peptide substrate.
FT BINDING 324 324 S-adenosyl-L-methionine.
FT BINDING 392 392 S-adenosyl-L-methionine.
FT SITE 327 327 Critical for specifying symmetric
FT addition of methyl groups (By
FT similarity).
FT MOD_RES 2 2 N-acetylalanine.
FT VAR_SEQ 1 34 MAAMAVGGAGGSRVSSGRDLNCVPEIADTLGAVA -> MRG
FT PNSGTEKGRLVIPE (in isoform 2).
FT /FTId=VSP_043382.
FT MUTAGEN 365 369 Missing: Increased MAPK1/MAPK3
FT phosphorylation in response to EGF.
FT MUTAGEN 367 368 GR->AA: Abolishes enzymatic activity.
FT CONFLICT 247 247 S -> F (in Ref. 2; AAB66581).
FT CONFLICT 553 553 G -> V (in Ref. 2; AAB66581).
FT STRAND 16 19
FT HELIX 26 35
FT STRAND 39 46
FT STRAND 54 56
FT HELIX 59 61
FT HELIX 70 72
FT HELIX 75 81
FT STRAND 82 85
FT HELIX 97 117
FT STRAND 120 125
FT HELIX 132 142
FT STRAND 150 158
FT HELIX 160 163
FT HELIX 181 183
FT HELIX 184 195
FT TURN 196 198
FT STRAND 202 207
FT HELIX 215 219
FT TURN 220 223
FT STRAND 226 232
FT HELIX 233 235
FT HELIX 248 259
FT STRAND 263 268
FT HELIX 273 275
FT HELIX 279 289
FT HELIX 296 300
FT STRAND 309 311
FT TURN 314 316
FT HELIX 321 327
FT HELIX 331 348
FT HELIX 351 353
FT TURN 354 356
FT STRAND 358 365
FT HELIX 370 381
FT STRAND 385 393
FT HELIX 395 407
FT HELIX 410 412
FT STRAND 413 418
FT TURN 420 422
FT STRAND 429 433
FT HELIX 442 444
FT HELIX 446 453
FT HELIX 454 456
FT STRAND 457 465
FT STRAND 467 476
FT HELIX 478 485
FT HELIX 496 499
FT STRAND 516 524
FT STRAND 534 541
FT STRAND 546 560
FT STRAND 563 566
FT HELIX 569 571
FT STRAND 582 592
FT STRAND 597 606
FT STRAND 608 621
FT HELIX 628 630
SQ SEQUENCE 637 AA; 72684 MW; 522E255B384F25E7 CRC64;
MAAMAVGGAG GSRVSSGRDL NCVPEIADTL GAVAKQGFDF LCMPVFHPRF KREFIQEPAK
NRPGPQTRSD LLLSGRDWNT LIVGKLSPWI RPDSKVEKIR RNSEAAMLQE LNFGAYLGLP
AFLLPLNQED NTNLARVLTN HIHTGHHSSM FWMRVPLVAP EDLRDDIIEN APTTHTEEYS
GEEKTWMWWH NFRTLCDYSK RIAVALEIGA DLPSNHVIDR WLGEPIKAAI LPTSIFLTNK
KGFPVLSKMH QRLIFRLLKL EVQFIITGTN HHSEKEFCSY LQYLEYLSQN RPPPNAYELF
AKGYEDYLQS PLQPLMDNLE SQTYEVFEKD PIKYSQYQQA IYKCLLDRVP EEEKDTNVQV
LMVLGAGRGP LVNASLRAAK QADRRIKLYA VEKNPNAVVT LENWQFEEWG SQVTVVSSDM
REWVAPEKAD IIVSELLGSF ADNELSPECL DGAQHFLKDD GVSIPGEYTS FLAPISSSKL
YNEVRACREK DRDPEAQFEM PYVVRLHNFH QLSAPQPCFT FSHPNRDPMI DNNRYCTLEF
PVEVNTVLHG FAGYFETVLY QDITLSIRPE THSPGMFSWF PILFPIKQPI TVREGQTICV
RFWRCSNSKK VWYEWAVTAP VCSAIHNPTG RSYTIGL
//
MIM
604045
*RECORD*
*FIELD* NO
604045
*FIELD* TI
*604045 PROTEIN ARGININE N-METHYLTRANSFERASE 5; PRMT5
;;SHK1 KINASE-BINDING PROTEIN 1, S. POMBE, HOMOLOG OF; SKB1;;
read moreICLN-BINDING PROTEIN, 72-KD; IBP72;;
JAK-BINDING PROTEIN 1; JBP1;;
HISTONE SYNTHETIC LETHAL 7, S. CEREVISIAE, HOMOLOG OF; HSL7
*FIELD* TX
DESCRIPTION
PRMT5 belongs to the methyltransferase enzyme family. Methyltransferases
transfer methyl groups from S-adenosylmethionine (AdoMet) to a variety
of substrates, including nucleic acids, small molecules, and proteins
(summary by Pollack et al., 1999).
CLONING
The S. pombe Shk1 gene is a PAK (see 602590) homolog that is essential
for cell viability and that plays key roles in morphologic control and
mating response pathways. The Skb1 protein is a regulator of Shk1 that
appears to positively modulate Shk1 function. Gilbreth et al. (1996)
identified partial cDNAs encoding a human Skb1 homolog. Gilbreth et al.
(1998) isolated additional clones corresponding to the complete coding
region of human SKB1. The predicted 637-amino acid human protein shares
39% identity with S. pombe Skb1.
Independently, Krapivinsky et al. (1998) identified SKB1 as a 72-kD
protein that coimmunoprecipitated with the ICln (602158) chloride
channel and was thus termed IBP72 (ICln-binding protein of 72 kD).
Northern blot analysis revealed that the IBP72 gene was widely expressed
as a 2.4-kb transcript. The authors suggested that ICln is not a channel
itself but rather part of a pathway that is connected to a chloride
current, possibly through cytoskeletal rearrangement. IBP72 may provide
a link between ICln and cytoskeletal rearrangement because PAKs, such as
Shk1, affect cell morphology through interactions with the cytoskeleton.
Using mouse Jak2 (147796) as bait in a yeast 2-hybrid screen of a HeLa
cell cDNA library, Pollack et al. (1999) cloned PRMT5, which they called
JBP1. The deduced 637-amino acid protein has a calculated molecular mass
of 72.4 kD. JBP1 contains 3 motifs characteristic of methyltransferases,
including a conserved GxGxG motif (GAGRG) within the predicted
AdoMet-binding pocket. Northern blot analysis detected variable
expression of a 2.5-kb JBP1 transcript in all tissues examined. Database
analysis revealed JBP1 orthologs in mouse, nematode, fly, and yeast.
Rho et al. (2001) found that fluorescence-tagged human PRMT5 localized
predominantly to the cytoplasm of transfected COS-1 cells and human
Chang liver cells.
GENE FUNCTION
Gilbreth et al. (1998) demonstrated that S. pombe Skb1 and Shk1 are
dosage-dependent mitotic inhibitors that interact with Cdc2 (116940),
the cyclin-dependent kinase that initiates mitosis. When expressed in S.
pombe, human SKB1 functionally substituted for the yeast protein,
demonstrating that SKB1 protein function has been conserved.
Using a protein pull-down assay, Pollack et al. (1999) confirmed that
JBP1 interacted with mouse Jak2. The JBP1/Jak2 interaction did not
require the Jak2 kinase domain. JBP1 also bound murine Jak1 (147795) and
Jak3 (600173) and human TYK2 (176941) following expression in COS-1
cells. Crosslinking studies revealed that epitope-tagged JBP1 bound the
universal methyl donor AdoMet in transfected COS cells. JBP1
specifically methylated histones H2A (see 602786) and H4 (see 602822)
and myelin basic protein (MBP; 159430), but not cytochrome c (123970) or
other histones, using AdoMet as the methyl donor.
Lee et al. (2000) found that the yeast ortholog of JBP1, Hsl7,
functioned as a protein methyltransferase. Human JBP1 complemented yeast
lacking the Hsl7 gene.
Rho et al. (2001) found that endogenous PRMT5 formed dimers and
tetramers that comigrated with methyltransferase activity in
fractionated 293T cells. Multimers were formed through both disulfide
bonds and noncovalent associations and involved interaction between the
PRMT5 N- and C-terminal domains. The C-terminal domain of PRMT5
containing all the methyltransferase motifs was insufficient for
methyltransferase activity and required the N-terminal domain. Mutation
analysis showed that the GAGRG motif of PRMT5 was critical for catalytic
activity. Recombinant PRMT5 catalyzed the formation of both
monomethylated and dimethylated arginine residues on myelin basic
protein. Rho et al. (2001) concluded that PRMT5 is a multimeric arginine
methyltransferase.
Branscombe et al. (2001) showed that human PRMT5 catalyzed the formation
of monomethylarginine and symmetric dimethylarginine in a variety of
proteins. Deletion or mutation of the AdoMet-binding GAGRG sequence in
PRMT5 led to near complete loss of enzymatic activity in transfected
COS-1 cells.
Friesen et al. (2002) stated that PRMT5 is part of a 20S
methyltransferase complex that modifies specific arginines to
dimethylarginines in several spliceosomal Sm proteins (see 601061). This
modification targets Sm proteins to the survival of motor neurons (SMN)
complex (see 600354) for assembly into small nuclear ribonucleoprotein
core particles. Friesen et al. (2002) showed that endogenous MEP50
(WDR77; 611734) associated with PRMT5 in the 20S arginine
methyltransferase complex in HeLa cells. Antibodies directed against
MEP50 significantly reduced the arginine methyltransferase activity of
the immunopurified complex toward Sm substrates.
Furuno et al. (2006) found that PRMT5-mediated transcriptional
repression of a reporter gene was dependent on MEP50. Human MEP50
interacted with free histone H2a (see 601772) from calf thymus, but not
with other histones or with H2A complexed in isolated HeLa cell
nucleosomes. Furuno et al. (2006) concluded that MEP50 may be an adaptor
between PRMT5 and its H2A substrate.
Rank et al. (2010) stated that symmetric methylation of histone H4 on
arg3 by PRMT5 is required for recruitment of the DNA methyltransferase
DNMT3A (602769) to the promoter of the fetal gamma-globin gene (see
142250), which is followed by DNA methylation and gene silencing. Using
the K562 human erythroleukemia cell line and human bone marrow and cord
blood, they showed that PRMT5 binding was essential for assembly of a
repressive multiprotein complex on the gamma-globin promoter. This
complex of about 700 kD contained the histone-modifying enzymes SUV420H1
(610881) and casein kinase 2-alpha (CSNK2A1; 115440) and components of
the nucleosome remodeling and histone deacetylation complex. Expression
of a PRMT5 mutant lacking methyltransferase activity or knockdown of
SUV420H1 resulted in loss of complex binding to the gamma-globin
promoter, reversal of both histone and DNA repressive epigenetic marks,
and increased gamma-globin gene expression.
MAPPING
Using FISH, Pollack et al. (1999) mapped the PRMT5 gene to chromosome
14q11.2-q21.
*FIELD* RF
1. Branscombe, T. L.; Frankel, A.; Lee, J.-H.; Cook, J. R.; Yang,
Z.; Pestka, S.; Clarke, S.: PRMT5 (Janus kinase-binding protein 1)
catalyzes the formation of symmetric dimethylarginine residues in
proteins. J. Biol. Chem. 276: 32971-32976, 2001.
2. Friesen, W. J.; Wyce, A.; Paushkin, S.; Abel, L.; Rappsilbers,
J.; Mann, M.; Dreyfuss, G.: A novel WD repeat protein component of
the methylosome binds Sm proteins. J. Biol. Chem. 277: 8243-8247,
2002.
3. Furuno, K.; Masatsugu, T.; Sonoda, M.; Sasazuki, T.; Yamamoto,
K.: Association of Polycomb group SUZ12 with WD-repeat protein MEP50
that binds to histone H2A selectively in vitro. Biochem. Biophys.
Res. Commun. 345: 1051-1058, 2006.
4. Gilbreth, M.; Yang, P.; Bartholomeusz, G.; Pimental, R. A.; Kansra,
S.; Gadiraju, R.; Marcus, S.: Negative regulation of mitosis in fission
yeast by the Shk1-interacting protein Skb1 and its human homolog,
Skb1Hs. Proc. Nat. Acad. Sci. 95: 14781-14786, 1998.
5. Gilbreth, M.; Yang, P.; Wang, D.; Frost, J.; Polverino, A.; Cobb,
M. H.; Marcus, S.: The highly conserved skb1 gene encodes a protein
that interacts with Shk1, a fission yeast Ste20/PAK homolog. Proc.
Nat. Acad. Sci. 93: 13802-13807, 1996.
6. Krapivinsky, G.; Pu, W.; Wickman, K.; Krapivinsky, L.; Clapham,
D. E.: pICln binds to a mammalian homolog of a yeast protein involved
in regulation of cell morphology. J. Biol. Chem. 273: 10811-10814,
1998.
7. Lee, J.-H.; Cook, J. R.; Pollack, B. P.; Kinzy, T. G.; Norris,
D.; Pestka, S.: Hsl7p, the yeast homologue of human JBP1, is a protein
methyltransferase. Biochem. Biophys. Res. Commun. 274: 105-111,
2000.
8. Pollack, B. P.; Kotenko, S. V.; He, W.; Izotova, L. S.; Barnoski,
B. L.; Pestka, S.: The human homologue of the yeast proteins Skb1
and Hsl7p interacts with Jak kinases and contains protein methyltransferase
activity. J. Biol. Chem. 274: 31531-31542, 1999.
9. Rank, G.; Cerruti, L.; Simpson, R. J.; Moritz, R. L.; Jane, S.
M.; Zhao, Q.: Identification of a PRMT5-dependent repressor complex
linked to silencing of human fetal globin gene expression. Blood 116:
1585-1592, 2010.
10. Rho, J.; Choi, S.; Seong, Y. R.; Cho, W.-K.; Kim, S. H.; Im, D.-S.
: PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine
methyltransferase family. J. Biol. Chem. 276: 11393-11401, 2001.
*FIELD* CN
Patricia A. Hartz - updated: 6/16/2011
Patricia A. Hartz - updated: 1/18/2008
*FIELD* CD
Rebekah S. Rasooly: 7/22/1999
*FIELD* ED
mgross: 02/08/2013
terry: 1/17/2012
mgross: 9/1/2011
terry: 6/16/2011
mgross: 1/18/2008
mgross: 4/27/2006
alopez: 10/14/2005
terry: 10/10/2005
mgross: 7/23/1999
mgross: 7/22/1999
*RECORD*
*FIELD* NO
604045
*FIELD* TI
*604045 PROTEIN ARGININE N-METHYLTRANSFERASE 5; PRMT5
;;SHK1 KINASE-BINDING PROTEIN 1, S. POMBE, HOMOLOG OF; SKB1;;
read moreICLN-BINDING PROTEIN, 72-KD; IBP72;;
JAK-BINDING PROTEIN 1; JBP1;;
HISTONE SYNTHETIC LETHAL 7, S. CEREVISIAE, HOMOLOG OF; HSL7
*FIELD* TX
DESCRIPTION
PRMT5 belongs to the methyltransferase enzyme family. Methyltransferases
transfer methyl groups from S-adenosylmethionine (AdoMet) to a variety
of substrates, including nucleic acids, small molecules, and proteins
(summary by Pollack et al., 1999).
CLONING
The S. pombe Shk1 gene is a PAK (see 602590) homolog that is essential
for cell viability and that plays key roles in morphologic control and
mating response pathways. The Skb1 protein is a regulator of Shk1 that
appears to positively modulate Shk1 function. Gilbreth et al. (1996)
identified partial cDNAs encoding a human Skb1 homolog. Gilbreth et al.
(1998) isolated additional clones corresponding to the complete coding
region of human SKB1. The predicted 637-amino acid human protein shares
39% identity with S. pombe Skb1.
Independently, Krapivinsky et al. (1998) identified SKB1 as a 72-kD
protein that coimmunoprecipitated with the ICln (602158) chloride
channel and was thus termed IBP72 (ICln-binding protein of 72 kD).
Northern blot analysis revealed that the IBP72 gene was widely expressed
as a 2.4-kb transcript. The authors suggested that ICln is not a channel
itself but rather part of a pathway that is connected to a chloride
current, possibly through cytoskeletal rearrangement. IBP72 may provide
a link between ICln and cytoskeletal rearrangement because PAKs, such as
Shk1, affect cell morphology through interactions with the cytoskeleton.
Using mouse Jak2 (147796) as bait in a yeast 2-hybrid screen of a HeLa
cell cDNA library, Pollack et al. (1999) cloned PRMT5, which they called
JBP1. The deduced 637-amino acid protein has a calculated molecular mass
of 72.4 kD. JBP1 contains 3 motifs characteristic of methyltransferases,
including a conserved GxGxG motif (GAGRG) within the predicted
AdoMet-binding pocket. Northern blot analysis detected variable
expression of a 2.5-kb JBP1 transcript in all tissues examined. Database
analysis revealed JBP1 orthologs in mouse, nematode, fly, and yeast.
Rho et al. (2001) found that fluorescence-tagged human PRMT5 localized
predominantly to the cytoplasm of transfected COS-1 cells and human
Chang liver cells.
GENE FUNCTION
Gilbreth et al. (1998) demonstrated that S. pombe Skb1 and Shk1 are
dosage-dependent mitotic inhibitors that interact with Cdc2 (116940),
the cyclin-dependent kinase that initiates mitosis. When expressed in S.
pombe, human SKB1 functionally substituted for the yeast protein,
demonstrating that SKB1 protein function has been conserved.
Using a protein pull-down assay, Pollack et al. (1999) confirmed that
JBP1 interacted with mouse Jak2. The JBP1/Jak2 interaction did not
require the Jak2 kinase domain. JBP1 also bound murine Jak1 (147795) and
Jak3 (600173) and human TYK2 (176941) following expression in COS-1
cells. Crosslinking studies revealed that epitope-tagged JBP1 bound the
universal methyl donor AdoMet in transfected COS cells. JBP1
specifically methylated histones H2A (see 602786) and H4 (see 602822)
and myelin basic protein (MBP; 159430), but not cytochrome c (123970) or
other histones, using AdoMet as the methyl donor.
Lee et al. (2000) found that the yeast ortholog of JBP1, Hsl7,
functioned as a protein methyltransferase. Human JBP1 complemented yeast
lacking the Hsl7 gene.
Rho et al. (2001) found that endogenous PRMT5 formed dimers and
tetramers that comigrated with methyltransferase activity in
fractionated 293T cells. Multimers were formed through both disulfide
bonds and noncovalent associations and involved interaction between the
PRMT5 N- and C-terminal domains. The C-terminal domain of PRMT5
containing all the methyltransferase motifs was insufficient for
methyltransferase activity and required the N-terminal domain. Mutation
analysis showed that the GAGRG motif of PRMT5 was critical for catalytic
activity. Recombinant PRMT5 catalyzed the formation of both
monomethylated and dimethylated arginine residues on myelin basic
protein. Rho et al. (2001) concluded that PRMT5 is a multimeric arginine
methyltransferase.
Branscombe et al. (2001) showed that human PRMT5 catalyzed the formation
of monomethylarginine and symmetric dimethylarginine in a variety of
proteins. Deletion or mutation of the AdoMet-binding GAGRG sequence in
PRMT5 led to near complete loss of enzymatic activity in transfected
COS-1 cells.
Friesen et al. (2002) stated that PRMT5 is part of a 20S
methyltransferase complex that modifies specific arginines to
dimethylarginines in several spliceosomal Sm proteins (see 601061). This
modification targets Sm proteins to the survival of motor neurons (SMN)
complex (see 600354) for assembly into small nuclear ribonucleoprotein
core particles. Friesen et al. (2002) showed that endogenous MEP50
(WDR77; 611734) associated with PRMT5 in the 20S arginine
methyltransferase complex in HeLa cells. Antibodies directed against
MEP50 significantly reduced the arginine methyltransferase activity of
the immunopurified complex toward Sm substrates.
Furuno et al. (2006) found that PRMT5-mediated transcriptional
repression of a reporter gene was dependent on MEP50. Human MEP50
interacted with free histone H2a (see 601772) from calf thymus, but not
with other histones or with H2A complexed in isolated HeLa cell
nucleosomes. Furuno et al. (2006) concluded that MEP50 may be an adaptor
between PRMT5 and its H2A substrate.
Rank et al. (2010) stated that symmetric methylation of histone H4 on
arg3 by PRMT5 is required for recruitment of the DNA methyltransferase
DNMT3A (602769) to the promoter of the fetal gamma-globin gene (see
142250), which is followed by DNA methylation and gene silencing. Using
the K562 human erythroleukemia cell line and human bone marrow and cord
blood, they showed that PRMT5 binding was essential for assembly of a
repressive multiprotein complex on the gamma-globin promoter. This
complex of about 700 kD contained the histone-modifying enzymes SUV420H1
(610881) and casein kinase 2-alpha (CSNK2A1; 115440) and components of
the nucleosome remodeling and histone deacetylation complex. Expression
of a PRMT5 mutant lacking methyltransferase activity or knockdown of
SUV420H1 resulted in loss of complex binding to the gamma-globin
promoter, reversal of both histone and DNA repressive epigenetic marks,
and increased gamma-globin gene expression.
MAPPING
Using FISH, Pollack et al. (1999) mapped the PRMT5 gene to chromosome
14q11.2-q21.
*FIELD* RF
1. Branscombe, T. L.; Frankel, A.; Lee, J.-H.; Cook, J. R.; Yang,
Z.; Pestka, S.; Clarke, S.: PRMT5 (Janus kinase-binding protein 1)
catalyzes the formation of symmetric dimethylarginine residues in
proteins. J. Biol. Chem. 276: 32971-32976, 2001.
2. Friesen, W. J.; Wyce, A.; Paushkin, S.; Abel, L.; Rappsilbers,
J.; Mann, M.; Dreyfuss, G.: A novel WD repeat protein component of
the methylosome binds Sm proteins. J. Biol. Chem. 277: 8243-8247,
2002.
3. Furuno, K.; Masatsugu, T.; Sonoda, M.; Sasazuki, T.; Yamamoto,
K.: Association of Polycomb group SUZ12 with WD-repeat protein MEP50
that binds to histone H2A selectively in vitro. Biochem. Biophys.
Res. Commun. 345: 1051-1058, 2006.
4. Gilbreth, M.; Yang, P.; Bartholomeusz, G.; Pimental, R. A.; Kansra,
S.; Gadiraju, R.; Marcus, S.: Negative regulation of mitosis in fission
yeast by the Shk1-interacting protein Skb1 and its human homolog,
Skb1Hs. Proc. Nat. Acad. Sci. 95: 14781-14786, 1998.
5. Gilbreth, M.; Yang, P.; Wang, D.; Frost, J.; Polverino, A.; Cobb,
M. H.; Marcus, S.: The highly conserved skb1 gene encodes a protein
that interacts with Shk1, a fission yeast Ste20/PAK homolog. Proc.
Nat. Acad. Sci. 93: 13802-13807, 1996.
6. Krapivinsky, G.; Pu, W.; Wickman, K.; Krapivinsky, L.; Clapham,
D. E.: pICln binds to a mammalian homolog of a yeast protein involved
in regulation of cell morphology. J. Biol. Chem. 273: 10811-10814,
1998.
7. Lee, J.-H.; Cook, J. R.; Pollack, B. P.; Kinzy, T. G.; Norris,
D.; Pestka, S.: Hsl7p, the yeast homologue of human JBP1, is a protein
methyltransferase. Biochem. Biophys. Res. Commun. 274: 105-111,
2000.
8. Pollack, B. P.; Kotenko, S. V.; He, W.; Izotova, L. S.; Barnoski,
B. L.; Pestka, S.: The human homologue of the yeast proteins Skb1
and Hsl7p interacts with Jak kinases and contains protein methyltransferase
activity. J. Biol. Chem. 274: 31531-31542, 1999.
9. Rank, G.; Cerruti, L.; Simpson, R. J.; Moritz, R. L.; Jane, S.
M.; Zhao, Q.: Identification of a PRMT5-dependent repressor complex
linked to silencing of human fetal globin gene expression. Blood 116:
1585-1592, 2010.
10. Rho, J.; Choi, S.; Seong, Y. R.; Cho, W.-K.; Kim, S. H.; Im, D.-S.
: PRMT5, which forms distinct homo-oligomers, is a member of the protein-arginine
methyltransferase family. J. Biol. Chem. 276: 11393-11401, 2001.
*FIELD* CN
Patricia A. Hartz - updated: 6/16/2011
Patricia A. Hartz - updated: 1/18/2008
*FIELD* CD
Rebekah S. Rasooly: 7/22/1999
*FIELD* ED
mgross: 02/08/2013
terry: 1/17/2012
mgross: 9/1/2011
terry: 6/16/2011
mgross: 1/18/2008
mgross: 4/27/2006
alopez: 10/14/2005
terry: 10/10/2005
mgross: 7/23/1999
mgross: 7/22/1999