Full text data of CTSG
CTSG
[Confidence: high (present in two of the MS resources)]
Cathepsin G; CG; 3.4.21.20; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Cathepsin G; CG; 3.4.21.20; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00028064
IPI00028064 Cathepsin G precursor Cathepsin G precursor membrane n/a n/a 2 n/a 3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 n/a extracellular binds RBC n/a found at its expected molecular weight found at molecular weight
IPI00028064 Cathepsin G precursor Cathepsin G precursor membrane n/a n/a 2 n/a 3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1 n/a extracellular binds RBC n/a found at its expected molecular weight found at molecular weight
UniProt
P08311
ID CATG_HUMAN Reviewed; 255 AA.
AC P08311; Q6IBJ6; Q9UCA5; Q9UCU6;
DT 01-AUG-1988, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JAN-1990, sequence version 2.
DT 22-JAN-2014, entry version 142.
DE RecName: Full=Cathepsin G;
DE Short=CG;
DE EC=3.4.21.20;
DE Flags: Precursor;
GN Name=CTSG;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=3304423; DOI=10.1021/bi00382a032;
RA Salvesen G., Farley D., Shuman J., Przybyla A., Reilly C., Travis J.;
RT "Molecular cloning of human cathepsin G: structural similarity to mast
RT cell and cytotoxic T lymphocyte proteinases.";
RL Biochemistry 26:2289-2293(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=2569462;
RA Hohn P.A., Popescu N.C., Hanson R.D., Salvesen G., Ley T.J.;
RT "Genomic organization and chromosomal localization of the human
RT cathepsin G gene.";
RL J. Biol. Chem. 264:13412-13419(1989).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Halleck A., Ebert L., Mkoundinya M., Schick M., Eisenstein S.,
RA Neubert P., Kstrang K., Schatten R., Shen B., Henze S., Mar W.,
RA Korn B., Zuo D., Hu Y., LaBaer J.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP PROTEIN SEQUENCE OF 21-52, FUNCTION, ENZYME REGULATION,
RP BIOPHYSICOCHEMICAL PROPERTIES, AND SUBCELLULAR LOCATION.
RC TISSUE=Monocyte;
RX PubMed=8194606; DOI=10.1016/0014-5793(94)00410-2;
RA Avril L.E., Di Martino-Ferrer M., Pignede G., Seman M., Gauthier F.;
RT "Identification of the U-937 membrane-associated proteinase
RT interacting with the V3 loop of HIV-1 gp120 as cathepsin G.";
RL FEBS Lett. 345:81-86(1994).
RN [7]
RP PROTEIN SEQUENCE OF 21-45.
RX PubMed=3799965; DOI=10.1016/0003-2697(86)90612-3;
RA Heck L.W., Rostand K.S., Hunter F.A., Bhown A.;
RT "Isolation, characterization, and amino-terminal amino acid sequence
RT analysis of human neutrophil cathepsin G from normal donors.";
RL Anal. Biochem. 158:217-227(1986).
RN [8]
RP PROTEIN SEQUENCE OF 21-36.
RX PubMed=2501794; DOI=10.1073/pnas.86.14.5610;
RA Gabay J.E., Scott R.W., Campanelli D., Griffith J., Wilde C.,
RA Marra M.N., Seeger M., Nathan C.F.;
RT "Antibiotic proteins of human polymorphonuclear leukocytes.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:5610-5614(1989).
RN [9]
RP PROTEIN SEQUENCE OF 21-30, FUNCTION, AND ENZYME REGULATION.
RC TISSUE=Monocyte;
RX PubMed=1861080;
RA Maison C.M., Villiers C.L., Colomb M.G.;
RT "Proteolysis of C3 on U937 cell plasma membranes. Purification of
RT cathepsin G.";
RL J. Immunol. 147:921-926(1991).
RN [10]
RP PROTEIN SEQUENCE OF 21-30.
RC TISSUE=Neutrophil;
RX PubMed=7897245; DOI=10.1016/0022-1759(94)00295-8;
RA Gaskin G., Kendal H., Coulthart A., Turner N., Pusey C.D.;
RT "Use of proteinase 3 purified by reverse phase HPLC to detect
RT autoantibodies in systemic vasculitis.";
RL J. Immunol. Methods 180:25-33(1995).
RN [11]
RP FUNCTION AS A MICROBICIDE, AND ENZYME REGULATION.
RX PubMed=1937776;
RA Wasiluk K.R., Skubitz K.M., Gray B.H.;
RT "Comparison of granule proteins from human polymorphonuclear
RT leukocytes which are bactericidal toward Pseudomonas aeruginosa.";
RL Infect. Immun. 59:4193-4200(1991).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS).
RX PubMed=8896442;
RA Hof P., Mayr I., Huber R., Korzus E., Potempa J., Travis J.,
RA Powers J.C., Bode W.;
RT "The 1.8 A crystal structure of human cathepsin G in complex with Suc-
RT Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite
RT specificities.";
RL EMBO J. 15:5481-5491(1996).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS).
RA Medrano F.J., Bode W., Banbula A., Potempa J.;
RL Submitted (SEP-1997) to the PDB data bank.
RN [15]
RP VARIANT SER-125.
RX PubMed=8454293; DOI=10.1007/BF00230230;
RA Luedecke B., Poller W., Olek K., Bartholome K.;
RT "Sequence variant of the human cathepsin G gene.";
RL Hum. Genet. 91:83-84(1993).
CC -!- FUNCTION: Serine protease with trypsin- and chymotrypsin-like
CC specificity. Cleaves complement C3. Has antibacterial activity
CC against the Gram-negative bacterium P.aeruginosa, antibacterial
CC activity is inhibited by LPS from P.aeruginosa, Z-Gly-Leu-Phe-
CC CH2Cl and phenylmethylsulfonyl fluoride.
CC -!- CATALYTIC ACTIVITY: Specificity similar to chymotrypsin C.
CC -!- ENZYME REGULATION: Inhibited by soybean trypsin inhibitor,
CC benzamidine, the synthetic peptide R13K, Z-Gly-Leu-Phe-CH2Cl,
CC phenylmethylsulfonyl fluoride, 3,4-dichloroisocoumarin, DFP, SBTI
CC and alpha-1-antitrypsin. Inhibited by LPS from P.aeruginosa but
CC not by LPS from S.minnesota. Not inhibited by elastinal, CMK, TLCK
CC and ETDA.
CC -!- BIOPHYSICOCHEMICAL PROPERTIES:
CC Kinetic parameters:
CC KM=1.15 mM for Z-Lys-SBzl;
CC KM=0.26 mM for Suc-Ala-Ala-Pro-Phe-SBzl;
CC -!- SUBCELLULAR LOCATION: Cell surface.
CC -!- SIMILARITY: Belongs to the peptidase S1 family.
CC -!- SIMILARITY: Contains 1 peptidase S1 domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M16117; AAA52126.1; -; mRNA.
DR EMBL; J04990; AAA51919.1; -; Genomic_DNA.
DR EMBL; CR456807; CAG33088.1; -; mRNA.
DR EMBL; CR541704; CAG46505.1; -; mRNA.
DR EMBL; CH471078; EAW66006.1; -; Genomic_DNA.
DR EMBL; BC014460; AAH14460.1; -; mRNA.
DR PIR; A32627; A27122.
DR RefSeq; NP_001902.1; NM_001911.2.
DR UniGene; Hs.421724; -.
DR PDB; 1AU8; X-ray; 1.90 A; A=21-244.
DR PDB; 1CGH; X-ray; 1.80 A; A=21-244.
DR PDB; 1KYN; X-ray; 3.50 A; A/B=21-255.
DR PDB; 1T32; X-ray; 1.85 A; A=21-239.
DR PDBsum; 1AU8; -.
DR PDBsum; 1CGH; -.
DR PDBsum; 1KYN; -.
DR PDBsum; 1T32; -.
DR ProteinModelPortal; P08311; -.
DR SMR; P08311; 21-244.
DR IntAct; P08311; 2.
DR MINT; MINT-4054534; -.
DR STRING; 9606.ENSP00000216336; -.
DR BindingDB; P08311; -.
DR ChEMBL; CHEMBL4071; -.
DR GuidetoPHARMACOLOGY; 2348; -.
DR MEROPS; S01.133; -.
DR PhosphoSite; P08311; -.
DR DMDM; 115725; -.
DR PaxDb; P08311; -.
DR PeptideAtlas; P08311; -.
DR PRIDE; P08311; -.
DR DNASU; 1511; -.
DR Ensembl; ENST00000216336; ENSP00000216336; ENSG00000100448.
DR GeneID; 1511; -.
DR KEGG; hsa:1511; -.
DR UCSC; uc001wpq.3; human.
DR CTD; 1511; -.
DR GeneCards; GC14M025042; -.
DR HGNC; HGNC:2532; CTSG.
DR HPA; CAB000110; -.
DR MIM; 116830; gene.
DR neXtProt; NX_P08311; -.
DR PharmGKB; PA27032; -.
DR eggNOG; COG5640; -.
DR HOGENOM; HOG000251820; -.
DR HOVERGEN; HBG013304; -.
DR InParanoid; P08311; -.
DR KO; K01319; -.
DR OMA; QHITARR; -.
DR OrthoDB; EOG7RRF7Z; -.
DR PhylomeDB; P08311; -.
DR BRENDA; 3.4.21.20; 2681.
DR Reactome; REACT_118779; Extracellular matrix organization.
DR Reactome; REACT_17015; Metabolism of proteins.
DR SABIO-RK; P08311; -.
DR EvolutionaryTrace; P08311; -.
DR GeneWiki; Cathepsin_G; -.
DR GenomeRNAi; 1511; -.
DR NextBio; 6257; -.
DR PMAP-CutDB; P08311; -.
DR PRO; PR:P08311; -.
DR Bgee; P08311; -.
DR CleanEx; HS_CTSG; -.
DR Genevestigator; P08311; -.
DR GO; GO:0009986; C:cell surface; IEA:UniProtKB-SubCell.
DR GO; GO:0005615; C:extracellular space; IDA:BHF-UCL.
DR GO; GO:0005886; C:plasma membrane; IDA:UniProtKB.
DR GO; GO:0030141; C:secretory granule; IDA:MGI.
DR GO; GO:0008201; F:heparin binding; IDA:MGI.
DR GO; GO:0004252; F:serine-type endopeptidase activity; IDA:UniProtKB.
DR GO; GO:0002003; P:angiotensin maturation; TAS:Reactome.
DR GO; GO:0044267; P:cellular protein metabolic process; TAS:Reactome.
DR GO; GO:0050832; P:defense response to fungus; IEA:Ensembl.
DR GO; GO:0022617; P:extracellular matrix disassembly; TAS:Reactome.
DR GO; GO:0006955; P:immune response; TAS:ProtInc.
DR GO; GO:0044130; P:negative regulation of growth of symbiont in host; IEA:Ensembl.
DR GO; GO:0070946; P:neutrophil mediated killing of gram-positive bacterium; IEA:Ensembl.
DR GO; GO:0050778; P:positive regulation of immune response; IEA:Ensembl.
DR GO; GO:0006508; P:proteolysis; IDA:UniProtKB.
DR GO; GO:0032496; P:response to lipopolysaccharide; IEA:Ensembl.
DR InterPro; IPR001254; Peptidase_S1.
DR InterPro; IPR018114; Peptidase_S1_AS.
DR InterPro; IPR001314; Peptidase_S1A.
DR InterPro; IPR009003; Trypsin-like_Pept_dom.
DR Pfam; PF00089; Trypsin; 1.
DR PRINTS; PR00722; CHYMOTRYPSIN.
DR SMART; SM00020; Tryp_SPc; 1.
DR SUPFAM; SSF50494; SSF50494; 1.
DR PROSITE; PS50240; TRYPSIN_DOM; 1.
DR PROSITE; PS00134; TRYPSIN_HIS; 1.
DR PROSITE; PS00135; TRYPSIN_SER; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Antibiotic; Antimicrobial; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein; Hydrolase;
KW Polymorphism; Protease; Reference proteome; Serine protease; Signal;
KW Zymogen.
FT SIGNAL 1 18
FT PROPEP 19 20 Activation peptide.
FT /FTId=PRO_0000027512.
FT CHAIN 21 255 Cathepsin G.
FT /FTId=PRO_0000027513.
FT DOMAIN 21 243 Peptidase S1.
FT ACT_SITE 64 64 Charge relay system.
FT ACT_SITE 108 108 Charge relay system.
FT ACT_SITE 201 201 Charge relay system.
FT CARBOHYD 71 71 N-linked (GlcNAc...).
FT DISULFID 49 65
FT DISULFID 142 207
FT DISULFID 172 186
FT VARIANT 125 125 N -> S (in dbSNP:rs45567233).
FT /FTId=VAR_006491.
FT STRAND 35 41
FT TURN 42 45
FT STRAND 48 55
FT STRAND 58 61
FT HELIX 63 65
FT STRAND 68 75
FT STRAND 87 96
FT TURN 102 105
FT STRAND 110 116
FT STRAND 141 147
FT STRAND 150 153
FT STRAND 160 166
FT HELIX 169 175
FT TURN 181 183
FT STRAND 184 187
FT STRAND 204 207
FT STRAND 210 217
FT STRAND 226 230
FT HELIX 231 234
FT HELIX 235 243
SQ SEQUENCE 255 AA; 28837 MW; 6228E741E6A43889 CRC64;
MQPLLLLLAF LLPTGAEAGE IIGGRESRPH SRPYMAYLQI QSPAGQSRCG GFLVREDFVL
TAAHCWGSNI NVTLGAHNIQ RRENTQQHIT ARRAIRHPQY NQRTIQNDIM LLQLSRRVRR
NRNVNPVALP RAQEGLRPGT LCTVAGWGRV SMRRGTDTLR EVQLRVQRDR QCLRIFGSYD
PRRQICVGDR RERKAAFKGD SGGPLLCNNV AHGIVSYGKS SGVPPEVFTR VSSFLPWIRT
TMRSFKLLDQ METPL
//
ID CATG_HUMAN Reviewed; 255 AA.
AC P08311; Q6IBJ6; Q9UCA5; Q9UCU6;
DT 01-AUG-1988, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JAN-1990, sequence version 2.
DT 22-JAN-2014, entry version 142.
DE RecName: Full=Cathepsin G;
DE Short=CG;
DE EC=3.4.21.20;
DE Flags: Precursor;
GN Name=CTSG;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=3304423; DOI=10.1021/bi00382a032;
RA Salvesen G., Farley D., Shuman J., Przybyla A., Reilly C., Travis J.;
RT "Molecular cloning of human cathepsin G: structural similarity to mast
RT cell and cytotoxic T lymphocyte proteinases.";
RL Biochemistry 26:2289-2293(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=2569462;
RA Hohn P.A., Popescu N.C., Hanson R.D., Salvesen G., Ley T.J.;
RT "Genomic organization and chromosomal localization of the human
RT cathepsin G gene.";
RL J. Biol. Chem. 264:13412-13419(1989).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Halleck A., Ebert L., Mkoundinya M., Schick M., Eisenstein S.,
RA Neubert P., Kstrang K., Schatten R., Shen B., Henze S., Mar W.,
RA Korn B., Zuo D., Hu Y., LaBaer J.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP PROTEIN SEQUENCE OF 21-52, FUNCTION, ENZYME REGULATION,
RP BIOPHYSICOCHEMICAL PROPERTIES, AND SUBCELLULAR LOCATION.
RC TISSUE=Monocyte;
RX PubMed=8194606; DOI=10.1016/0014-5793(94)00410-2;
RA Avril L.E., Di Martino-Ferrer M., Pignede G., Seman M., Gauthier F.;
RT "Identification of the U-937 membrane-associated proteinase
RT interacting with the V3 loop of HIV-1 gp120 as cathepsin G.";
RL FEBS Lett. 345:81-86(1994).
RN [7]
RP PROTEIN SEQUENCE OF 21-45.
RX PubMed=3799965; DOI=10.1016/0003-2697(86)90612-3;
RA Heck L.W., Rostand K.S., Hunter F.A., Bhown A.;
RT "Isolation, characterization, and amino-terminal amino acid sequence
RT analysis of human neutrophil cathepsin G from normal donors.";
RL Anal. Biochem. 158:217-227(1986).
RN [8]
RP PROTEIN SEQUENCE OF 21-36.
RX PubMed=2501794; DOI=10.1073/pnas.86.14.5610;
RA Gabay J.E., Scott R.W., Campanelli D., Griffith J., Wilde C.,
RA Marra M.N., Seeger M., Nathan C.F.;
RT "Antibiotic proteins of human polymorphonuclear leukocytes.";
RL Proc. Natl. Acad. Sci. U.S.A. 86:5610-5614(1989).
RN [9]
RP PROTEIN SEQUENCE OF 21-30, FUNCTION, AND ENZYME REGULATION.
RC TISSUE=Monocyte;
RX PubMed=1861080;
RA Maison C.M., Villiers C.L., Colomb M.G.;
RT "Proteolysis of C3 on U937 cell plasma membranes. Purification of
RT cathepsin G.";
RL J. Immunol. 147:921-926(1991).
RN [10]
RP PROTEIN SEQUENCE OF 21-30.
RC TISSUE=Neutrophil;
RX PubMed=7897245; DOI=10.1016/0022-1759(94)00295-8;
RA Gaskin G., Kendal H., Coulthart A., Turner N., Pusey C.D.;
RT "Use of proteinase 3 purified by reverse phase HPLC to detect
RT autoantibodies in systemic vasculitis.";
RL J. Immunol. Methods 180:25-33(1995).
RN [11]
RP FUNCTION AS A MICROBICIDE, AND ENZYME REGULATION.
RX PubMed=1937776;
RA Wasiluk K.R., Skubitz K.M., Gray B.H.;
RT "Comparison of granule proteins from human polymorphonuclear
RT leukocytes which are bactericidal toward Pseudomonas aeruginosa.";
RL Infect. Immun. 59:4193-4200(1991).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS).
RX PubMed=8896442;
RA Hof P., Mayr I., Huber R., Korzus E., Potempa J., Travis J.,
RA Powers J.C., Bode W.;
RT "The 1.8 A crystal structure of human cathepsin G in complex with Suc-
RT Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite
RT specificities.";
RL EMBO J. 15:5481-5491(1996).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS).
RA Medrano F.J., Bode W., Banbula A., Potempa J.;
RL Submitted (SEP-1997) to the PDB data bank.
RN [15]
RP VARIANT SER-125.
RX PubMed=8454293; DOI=10.1007/BF00230230;
RA Luedecke B., Poller W., Olek K., Bartholome K.;
RT "Sequence variant of the human cathepsin G gene.";
RL Hum. Genet. 91:83-84(1993).
CC -!- FUNCTION: Serine protease with trypsin- and chymotrypsin-like
CC specificity. Cleaves complement C3. Has antibacterial activity
CC against the Gram-negative bacterium P.aeruginosa, antibacterial
CC activity is inhibited by LPS from P.aeruginosa, Z-Gly-Leu-Phe-
CC CH2Cl and phenylmethylsulfonyl fluoride.
CC -!- CATALYTIC ACTIVITY: Specificity similar to chymotrypsin C.
CC -!- ENZYME REGULATION: Inhibited by soybean trypsin inhibitor,
CC benzamidine, the synthetic peptide R13K, Z-Gly-Leu-Phe-CH2Cl,
CC phenylmethylsulfonyl fluoride, 3,4-dichloroisocoumarin, DFP, SBTI
CC and alpha-1-antitrypsin. Inhibited by LPS from P.aeruginosa but
CC not by LPS from S.minnesota. Not inhibited by elastinal, CMK, TLCK
CC and ETDA.
CC -!- BIOPHYSICOCHEMICAL PROPERTIES:
CC Kinetic parameters:
CC KM=1.15 mM for Z-Lys-SBzl;
CC KM=0.26 mM for Suc-Ala-Ala-Pro-Phe-SBzl;
CC -!- SUBCELLULAR LOCATION: Cell surface.
CC -!- SIMILARITY: Belongs to the peptidase S1 family.
CC -!- SIMILARITY: Contains 1 peptidase S1 domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M16117; AAA52126.1; -; mRNA.
DR EMBL; J04990; AAA51919.1; -; Genomic_DNA.
DR EMBL; CR456807; CAG33088.1; -; mRNA.
DR EMBL; CR541704; CAG46505.1; -; mRNA.
DR EMBL; CH471078; EAW66006.1; -; Genomic_DNA.
DR EMBL; BC014460; AAH14460.1; -; mRNA.
DR PIR; A32627; A27122.
DR RefSeq; NP_001902.1; NM_001911.2.
DR UniGene; Hs.421724; -.
DR PDB; 1AU8; X-ray; 1.90 A; A=21-244.
DR PDB; 1CGH; X-ray; 1.80 A; A=21-244.
DR PDB; 1KYN; X-ray; 3.50 A; A/B=21-255.
DR PDB; 1T32; X-ray; 1.85 A; A=21-239.
DR PDBsum; 1AU8; -.
DR PDBsum; 1CGH; -.
DR PDBsum; 1KYN; -.
DR PDBsum; 1T32; -.
DR ProteinModelPortal; P08311; -.
DR SMR; P08311; 21-244.
DR IntAct; P08311; 2.
DR MINT; MINT-4054534; -.
DR STRING; 9606.ENSP00000216336; -.
DR BindingDB; P08311; -.
DR ChEMBL; CHEMBL4071; -.
DR GuidetoPHARMACOLOGY; 2348; -.
DR MEROPS; S01.133; -.
DR PhosphoSite; P08311; -.
DR DMDM; 115725; -.
DR PaxDb; P08311; -.
DR PeptideAtlas; P08311; -.
DR PRIDE; P08311; -.
DR DNASU; 1511; -.
DR Ensembl; ENST00000216336; ENSP00000216336; ENSG00000100448.
DR GeneID; 1511; -.
DR KEGG; hsa:1511; -.
DR UCSC; uc001wpq.3; human.
DR CTD; 1511; -.
DR GeneCards; GC14M025042; -.
DR HGNC; HGNC:2532; CTSG.
DR HPA; CAB000110; -.
DR MIM; 116830; gene.
DR neXtProt; NX_P08311; -.
DR PharmGKB; PA27032; -.
DR eggNOG; COG5640; -.
DR HOGENOM; HOG000251820; -.
DR HOVERGEN; HBG013304; -.
DR InParanoid; P08311; -.
DR KO; K01319; -.
DR OMA; QHITARR; -.
DR OrthoDB; EOG7RRF7Z; -.
DR PhylomeDB; P08311; -.
DR BRENDA; 3.4.21.20; 2681.
DR Reactome; REACT_118779; Extracellular matrix organization.
DR Reactome; REACT_17015; Metabolism of proteins.
DR SABIO-RK; P08311; -.
DR EvolutionaryTrace; P08311; -.
DR GeneWiki; Cathepsin_G; -.
DR GenomeRNAi; 1511; -.
DR NextBio; 6257; -.
DR PMAP-CutDB; P08311; -.
DR PRO; PR:P08311; -.
DR Bgee; P08311; -.
DR CleanEx; HS_CTSG; -.
DR Genevestigator; P08311; -.
DR GO; GO:0009986; C:cell surface; IEA:UniProtKB-SubCell.
DR GO; GO:0005615; C:extracellular space; IDA:BHF-UCL.
DR GO; GO:0005886; C:plasma membrane; IDA:UniProtKB.
DR GO; GO:0030141; C:secretory granule; IDA:MGI.
DR GO; GO:0008201; F:heparin binding; IDA:MGI.
DR GO; GO:0004252; F:serine-type endopeptidase activity; IDA:UniProtKB.
DR GO; GO:0002003; P:angiotensin maturation; TAS:Reactome.
DR GO; GO:0044267; P:cellular protein metabolic process; TAS:Reactome.
DR GO; GO:0050832; P:defense response to fungus; IEA:Ensembl.
DR GO; GO:0022617; P:extracellular matrix disassembly; TAS:Reactome.
DR GO; GO:0006955; P:immune response; TAS:ProtInc.
DR GO; GO:0044130; P:negative regulation of growth of symbiont in host; IEA:Ensembl.
DR GO; GO:0070946; P:neutrophil mediated killing of gram-positive bacterium; IEA:Ensembl.
DR GO; GO:0050778; P:positive regulation of immune response; IEA:Ensembl.
DR GO; GO:0006508; P:proteolysis; IDA:UniProtKB.
DR GO; GO:0032496; P:response to lipopolysaccharide; IEA:Ensembl.
DR InterPro; IPR001254; Peptidase_S1.
DR InterPro; IPR018114; Peptidase_S1_AS.
DR InterPro; IPR001314; Peptidase_S1A.
DR InterPro; IPR009003; Trypsin-like_Pept_dom.
DR Pfam; PF00089; Trypsin; 1.
DR PRINTS; PR00722; CHYMOTRYPSIN.
DR SMART; SM00020; Tryp_SPc; 1.
DR SUPFAM; SSF50494; SSF50494; 1.
DR PROSITE; PS50240; TRYPSIN_DOM; 1.
DR PROSITE; PS00134; TRYPSIN_HIS; 1.
DR PROSITE; PS00135; TRYPSIN_SER; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Antibiotic; Antimicrobial; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein; Hydrolase;
KW Polymorphism; Protease; Reference proteome; Serine protease; Signal;
KW Zymogen.
FT SIGNAL 1 18
FT PROPEP 19 20 Activation peptide.
FT /FTId=PRO_0000027512.
FT CHAIN 21 255 Cathepsin G.
FT /FTId=PRO_0000027513.
FT DOMAIN 21 243 Peptidase S1.
FT ACT_SITE 64 64 Charge relay system.
FT ACT_SITE 108 108 Charge relay system.
FT ACT_SITE 201 201 Charge relay system.
FT CARBOHYD 71 71 N-linked (GlcNAc...).
FT DISULFID 49 65
FT DISULFID 142 207
FT DISULFID 172 186
FT VARIANT 125 125 N -> S (in dbSNP:rs45567233).
FT /FTId=VAR_006491.
FT STRAND 35 41
FT TURN 42 45
FT STRAND 48 55
FT STRAND 58 61
FT HELIX 63 65
FT STRAND 68 75
FT STRAND 87 96
FT TURN 102 105
FT STRAND 110 116
FT STRAND 141 147
FT STRAND 150 153
FT STRAND 160 166
FT HELIX 169 175
FT TURN 181 183
FT STRAND 184 187
FT STRAND 204 207
FT STRAND 210 217
FT STRAND 226 230
FT HELIX 231 234
FT HELIX 235 243
SQ SEQUENCE 255 AA; 28837 MW; 6228E741E6A43889 CRC64;
MQPLLLLLAF LLPTGAEAGE IIGGRESRPH SRPYMAYLQI QSPAGQSRCG GFLVREDFVL
TAAHCWGSNI NVTLGAHNIQ RRENTQQHIT ARRAIRHPQY NQRTIQNDIM LLQLSRRVRR
NRNVNPVALP RAQEGLRPGT LCTVAGWGRV SMRRGTDTLR EVQLRVQRDR QCLRIFGSYD
PRRQICVGDR RERKAAFKGD SGGPLLCNNV AHGIVSYGKS SGVPPEVFTR VSSFLPWIRT
TMRSFKLLDQ METPL
//
MIM
116830
*RECORD*
*FIELD* NO
116830
*FIELD* TI
*116830 CATHEPSIN G; CTSG
;;CATG
*FIELD* TX
CLONING
Neutrophilic polymorphonuclear leukocytes contain specialized azurophil
read moregranules whose contents, including the serine proteases cathepsin G and
elastase, may participate in the killing and digestion of engulfed
pathogens, and in connective tissue remodeling at sites of inflammation.
Cathepsin G is a 26,000-Da protease. Using mRNA from a leukemic cell
line, Salvesen et al. (1987) isolated and determined the sequence of a
cDNA clone encoding CTSG.
Using human CTSG cDNA as a probe, Heusel et al. (1993) cloned and
characterized a novel related murine hematopoietic serine protease gene
which was highly homologous to the human gene at nucleotide and amino
acid levels.
GENE STRUCTURE
Hohn et al. (1989) found that the CTSG gene spans 2.7 kb of genomic DNA
and consists of 5 exons and 4 introns. The genomic organization is
similar to that of neutrophil elastase.
MAPPING
Using in situ hybridization, Hohn et al. (1989) localized the CTSG gene
to 14q11.2. Heusel et al. (1993) assigned the Ctsg gene to mouse
chromosome 14, tightly linked to the Ctla1 gene.
GENE FUNCTION
In transgenic mice, Grisolano et al. (1994) found that the human CTSG
gene was expressed in early myeloid precursors in a manner coordinate
with the expression of the endogenous murine gene in the bone marrow and
spleen.
The antiinflammatory properties of preparations of frankincense, a gum
resin derived from Boswellia species, are largely due to boswellic acids
(BAs). Using BA affinity chromatography, Tausch et al. (2009) showed
selective precipitation of a 26-kD protein from neutrophils that they
identified as CATG by mass spectrometry and Western blot analysis.
Automated docking analysis revealed that BAs bound, like synthetic
inhibitors, to the active center of CATG. BAs potently and reversibly
suppressed the activity of CATG, whereas related serine proteases,
including leukocyte elastase (ELANE; 130130), chymotrypsin (see CTRB1;
118890), and proteinase-3 (PRTN3; 177020), were much less sensitive to
BAs, and others, including tryptase (see TPSAB1; 191080) and chymase
(CMA1; 118938), were not affected by BAs at all. BAs did not inhibit
neutrophil chemotaxis, but they inhibited invasion through a synthetic
matrix. They also inhibited Ca(2+) mobilization in platelets induced by
CATG. Oral administration of frankincense extracts to healthy volunteers
reduced CATG activity in blood ex vivo. Tausch et al. (2009) concluded
that CATG is a functional and pharmacologically relevant target of BAs
and that interference with CATG may explain some of the antiinflammatory
properties of frankincense.
Using a mouse model of acute inflammation, Chmelar et al. (2011) found
that a salivary protein, termed Irs2, from the tick Ixodes ricinus, the
vector for Lyme disease in Europe, inhibited edema formation and
neutrophil influx in inflamed tissue. Using a panel of human proteins,
they found that Irs2 primarily inhibited CTSG and CMA1. Human platelet
aggregation assays showed that Irs2 inhibited CTSG-induced and thrombin
(F2; 176930)-induced platelet aggregation. Structural analysis revealed
that Irs2 resembles mammalian serpins, including bovine antithrombin III
(SERPINC1; 107300) and human alpha-1-antichymotrypsin (SERPINA3; 107280)
and alpha-1-antitrypsin (SERPINA1; 107400).
MOLECULAR GENETICS
Since one form of Alzheimer disease, AD3 (607822), maps to 14q24.3, the
lysosomal serine protease cathepsin G, which also maps to 14q, is a
candidate for the site of the mutation. A defect in the cellular
processing of amyloid precursor protein in familial Alzheimer disease
has been postulated. Wong et al. (1993) analyzed the nucleotide sequence
of the entire open reading frame of the CTSG gene and found no
abnormality in 1 clinically affected member from each of 5 large FAD
pedigrees that showed significant or nearly significant lod scores with
one or more markers on chromosome 14. The sequence was compared with
that of his/her unaffected living parent in each case and no differences
were found.
ANIMAL MODEL
Using mice deficient in Ctsg and/or Ela2 (130130), Reeves et al. (2002)
confirmed data originally generated by Tkalcevic et al. (2000) and
Belaaouaj et al. (1998) that Ctsg -/- mice resist Candida but not
Staphylococcal infection, whereas the reverse is true in Ela2 -/- mice.
Both organisms were more virulent in double-knockout mice. Purified
neutrophils from these mice mirrored these results in vitro in spite of
exhibiting normal phagocytosis, degranulation, oxidase activity,
superoxide production, and myeloperoxidase (MPO; 606989) activity.
Reeves et al. (2002) hypothesized that reactive oxygen species (ROS) and
proteases act together since deficiencies in either lead to comparable
reductions in killing efficiency. They determined that conditions in the
phagocytic vacuole after activation provoke the influx of enormous
concentrations of ROS compensated by a surge of K+ ions crossing the
membrane in a pH-dependent manner. The resulting rise in ionic strength
induces the release of cationic granule proteins, including Ctsg and
Ela2, from the highly charged anionic sulfated proteoglycan matrix
within the granules. Reeves et al. (2002) concluded that it is essential
for the volume of the vacuole to be restricted for the requisite
hypertonicity to develop. They proposed that disruption of the integrity
of the cytoskeletal network by microbial products could offer a
mechanism of virulence by inhibiting the activation of granule proteins.
They also suggested that a role of MPO may be to protect proteases,
notably CTSG, from oxidative damage. In a commentary, Gratzer (2002)
noted that mycobacteria may evade the innate immune response by their
ability to disrupt actin filaments as demonstrated by Guerin and de
Chastellier (2000).
*FIELD* RF
1. Belaaouaj, A.; McCarthy, R.; Baumann, M.; Gao, Z.; Ley, T. J.;
Abraham, S. N.; Shapiro, S. D.: Mice lacking neutrophil elastase
reveal impaired host defense against gram negative bacterial sepsis. Nature
Med. 4: 615-618, 1998.
2. Chmelar, J.; Oliveira, C. J.; Rezacova, P.; Francischetti, I. M.
B.; Kovarova, Z.; Pejler, G.; Kopacek, P.; Ribeiro, J. M. C.; Mares,
M.; Kopecky, J.; Kotsyfakis, M.: A tick salivary protein targets
cathepsin G and chymase and inhibits host inflammation and platelet
aggregation. Blood 117: 736-744, 2011.
3. Gratzer, W.: Immunology: the Wright stuff. Nature 416: 275-277,
2002.
4. Grisolano, J. L.; Sclar, G. M.; Ley, T. J.: Early myeloid cell-specific
expression of the human cathepsin G gene in transgenic mice. Proc.
Nat. Acad. Sci. 91: 8989-8993, 1994.
5. Guerin, I.; de Chastellier, C.: Pathogenic mycobacteria disrupt
the macrophage actin filament network. Infect. Immun. 68: 2655-2662,
2000.
6. Heusel, J. W.; Scarpati, E. M.; Jenkins, N. A.; Gilbert, D. J.;
Copeland, N. G.; Shapiro, S. D.; Ley, T. J.: Molecular cloning, chromosomal
location, and tissue-specific expression of the murine cathepsin G
gene. Blood 81: 1614-1623, 1993.
7. Hohn, P. A.; Popescu, N. C.; Hanson, R. D.; Salvesen, G.; Ley,
T. J.: Genomic organization and chromosomal localization of the human
cathepsin G gene. J. Biol. Chem. 264: 13412-13419, 1989.
8. Reeves, E. P.; Lu, H.; Jacobs, H. L.; Messina, C. G. M.; Bolsover,
S.; Gabella, G.; Potma, E. O.; Warley, A.; Roes, J.; Segal, A. W.
: Killing activity of neutrophils is mediated through activation of
proteases by K+ flux. Nature 416: 291-297, 2002.
9. Salvesen, G.; Farley, D.; Shuman, J.; Przybyla, A.; Reilly, C.;
Travis, J.: Molecular cloning of human cathepsin G: structural similarity
to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry 26:
2289-2293, 1987.
10. Tausch, L.; Henkel, A.; Siemoneit, U.; Poeckel, D.; Kather, N.;
Franke, L.; Hofmann, B.; Schneider, G.; Angioni, C.; Geisslinger,
G.; Skarke, C.; Holtmeier, W.; Beckhaus, T.; Karas, M.; Jauch, J.;
Werz, O.: Identification of human cathepsin G as a functional target
of boswellic acids from the anit-inflammatory remedy frankincense. J.
Immun. 183: 3433-3442, 2009.
11. Tkalcevic, J.; Novelli, M.; Phylactides, M.; Iredale, J. P.; Segal,
A. W.; Roes, J.: Impaired immunity and enhanced resistance to endotoxin
in the absence of neutrophil elastase and cathepsin G. Immunity 12:
201-210, 2000.
12. Wong, L.; Liang, Y.; Jiang, L.; Tsuda, T.; Fong, Q.; Galway, G.;
Alexandrova, N.; Rogaeva, E.; Lukiw, W.; Smith, J.; Rogaev, E.; Crapper
McLachlan, D.; St. George-Hyslop, P.: Mutation of the gene for the
human lysosomal serine protease cathepsin G is not the cause of aberrant
APP processing in familial Alzheimer disease. Neurosci. Lett. 152:
96-98, 1993.
*FIELD* CN
Paul J. Converse - updated: 10/31/2011
Paul J. Converse - updated: 11/17/2010
Paul J. Converse - updated: 4/9/2002
*FIELD* CD
Victor A. McKusick: 5/26/1987
*FIELD* ED
mgross: 11/02/2011
terry: 10/31/2011
mgross: 11/17/2010
terry: 11/17/2010
ckniffin: 5/28/2003
ckniffin: 5/29/2002
alopez: 4/9/2002
carol: 11/14/1994
warfield: 3/31/1994
carol: 6/3/1993
carol: 5/14/1993
supermim: 3/16/1992
supermim: 3/20/1990
*RECORD*
*FIELD* NO
116830
*FIELD* TI
*116830 CATHEPSIN G; CTSG
;;CATG
*FIELD* TX
CLONING
Neutrophilic polymorphonuclear leukocytes contain specialized azurophil
read moregranules whose contents, including the serine proteases cathepsin G and
elastase, may participate in the killing and digestion of engulfed
pathogens, and in connective tissue remodeling at sites of inflammation.
Cathepsin G is a 26,000-Da protease. Using mRNA from a leukemic cell
line, Salvesen et al. (1987) isolated and determined the sequence of a
cDNA clone encoding CTSG.
Using human CTSG cDNA as a probe, Heusel et al. (1993) cloned and
characterized a novel related murine hematopoietic serine protease gene
which was highly homologous to the human gene at nucleotide and amino
acid levels.
GENE STRUCTURE
Hohn et al. (1989) found that the CTSG gene spans 2.7 kb of genomic DNA
and consists of 5 exons and 4 introns. The genomic organization is
similar to that of neutrophil elastase.
MAPPING
Using in situ hybridization, Hohn et al. (1989) localized the CTSG gene
to 14q11.2. Heusel et al. (1993) assigned the Ctsg gene to mouse
chromosome 14, tightly linked to the Ctla1 gene.
GENE FUNCTION
In transgenic mice, Grisolano et al. (1994) found that the human CTSG
gene was expressed in early myeloid precursors in a manner coordinate
with the expression of the endogenous murine gene in the bone marrow and
spleen.
The antiinflammatory properties of preparations of frankincense, a gum
resin derived from Boswellia species, are largely due to boswellic acids
(BAs). Using BA affinity chromatography, Tausch et al. (2009) showed
selective precipitation of a 26-kD protein from neutrophils that they
identified as CATG by mass spectrometry and Western blot analysis.
Automated docking analysis revealed that BAs bound, like synthetic
inhibitors, to the active center of CATG. BAs potently and reversibly
suppressed the activity of CATG, whereas related serine proteases,
including leukocyte elastase (ELANE; 130130), chymotrypsin (see CTRB1;
118890), and proteinase-3 (PRTN3; 177020), were much less sensitive to
BAs, and others, including tryptase (see TPSAB1; 191080) and chymase
(CMA1; 118938), were not affected by BAs at all. BAs did not inhibit
neutrophil chemotaxis, but they inhibited invasion through a synthetic
matrix. They also inhibited Ca(2+) mobilization in platelets induced by
CATG. Oral administration of frankincense extracts to healthy volunteers
reduced CATG activity in blood ex vivo. Tausch et al. (2009) concluded
that CATG is a functional and pharmacologically relevant target of BAs
and that interference with CATG may explain some of the antiinflammatory
properties of frankincense.
Using a mouse model of acute inflammation, Chmelar et al. (2011) found
that a salivary protein, termed Irs2, from the tick Ixodes ricinus, the
vector for Lyme disease in Europe, inhibited edema formation and
neutrophil influx in inflamed tissue. Using a panel of human proteins,
they found that Irs2 primarily inhibited CTSG and CMA1. Human platelet
aggregation assays showed that Irs2 inhibited CTSG-induced and thrombin
(F2; 176930)-induced platelet aggregation. Structural analysis revealed
that Irs2 resembles mammalian serpins, including bovine antithrombin III
(SERPINC1; 107300) and human alpha-1-antichymotrypsin (SERPINA3; 107280)
and alpha-1-antitrypsin (SERPINA1; 107400).
MOLECULAR GENETICS
Since one form of Alzheimer disease, AD3 (607822), maps to 14q24.3, the
lysosomal serine protease cathepsin G, which also maps to 14q, is a
candidate for the site of the mutation. A defect in the cellular
processing of amyloid precursor protein in familial Alzheimer disease
has been postulated. Wong et al. (1993) analyzed the nucleotide sequence
of the entire open reading frame of the CTSG gene and found no
abnormality in 1 clinically affected member from each of 5 large FAD
pedigrees that showed significant or nearly significant lod scores with
one or more markers on chromosome 14. The sequence was compared with
that of his/her unaffected living parent in each case and no differences
were found.
ANIMAL MODEL
Using mice deficient in Ctsg and/or Ela2 (130130), Reeves et al. (2002)
confirmed data originally generated by Tkalcevic et al. (2000) and
Belaaouaj et al. (1998) that Ctsg -/- mice resist Candida but not
Staphylococcal infection, whereas the reverse is true in Ela2 -/- mice.
Both organisms were more virulent in double-knockout mice. Purified
neutrophils from these mice mirrored these results in vitro in spite of
exhibiting normal phagocytosis, degranulation, oxidase activity,
superoxide production, and myeloperoxidase (MPO; 606989) activity.
Reeves et al. (2002) hypothesized that reactive oxygen species (ROS) and
proteases act together since deficiencies in either lead to comparable
reductions in killing efficiency. They determined that conditions in the
phagocytic vacuole after activation provoke the influx of enormous
concentrations of ROS compensated by a surge of K+ ions crossing the
membrane in a pH-dependent manner. The resulting rise in ionic strength
induces the release of cationic granule proteins, including Ctsg and
Ela2, from the highly charged anionic sulfated proteoglycan matrix
within the granules. Reeves et al. (2002) concluded that it is essential
for the volume of the vacuole to be restricted for the requisite
hypertonicity to develop. They proposed that disruption of the integrity
of the cytoskeletal network by microbial products could offer a
mechanism of virulence by inhibiting the activation of granule proteins.
They also suggested that a role of MPO may be to protect proteases,
notably CTSG, from oxidative damage. In a commentary, Gratzer (2002)
noted that mycobacteria may evade the innate immune response by their
ability to disrupt actin filaments as demonstrated by Guerin and de
Chastellier (2000).
*FIELD* RF
1. Belaaouaj, A.; McCarthy, R.; Baumann, M.; Gao, Z.; Ley, T. J.;
Abraham, S. N.; Shapiro, S. D.: Mice lacking neutrophil elastase
reveal impaired host defense against gram negative bacterial sepsis. Nature
Med. 4: 615-618, 1998.
2. Chmelar, J.; Oliveira, C. J.; Rezacova, P.; Francischetti, I. M.
B.; Kovarova, Z.; Pejler, G.; Kopacek, P.; Ribeiro, J. M. C.; Mares,
M.; Kopecky, J.; Kotsyfakis, M.: A tick salivary protein targets
cathepsin G and chymase and inhibits host inflammation and platelet
aggregation. Blood 117: 736-744, 2011.
3. Gratzer, W.: Immunology: the Wright stuff. Nature 416: 275-277,
2002.
4. Grisolano, J. L.; Sclar, G. M.; Ley, T. J.: Early myeloid cell-specific
expression of the human cathepsin G gene in transgenic mice. Proc.
Nat. Acad. Sci. 91: 8989-8993, 1994.
5. Guerin, I.; de Chastellier, C.: Pathogenic mycobacteria disrupt
the macrophage actin filament network. Infect. Immun. 68: 2655-2662,
2000.
6. Heusel, J. W.; Scarpati, E. M.; Jenkins, N. A.; Gilbert, D. J.;
Copeland, N. G.; Shapiro, S. D.; Ley, T. J.: Molecular cloning, chromosomal
location, and tissue-specific expression of the murine cathepsin G
gene. Blood 81: 1614-1623, 1993.
7. Hohn, P. A.; Popescu, N. C.; Hanson, R. D.; Salvesen, G.; Ley,
T. J.: Genomic organization and chromosomal localization of the human
cathepsin G gene. J. Biol. Chem. 264: 13412-13419, 1989.
8. Reeves, E. P.; Lu, H.; Jacobs, H. L.; Messina, C. G. M.; Bolsover,
S.; Gabella, G.; Potma, E. O.; Warley, A.; Roes, J.; Segal, A. W.
: Killing activity of neutrophils is mediated through activation of
proteases by K+ flux. Nature 416: 291-297, 2002.
9. Salvesen, G.; Farley, D.; Shuman, J.; Przybyla, A.; Reilly, C.;
Travis, J.: Molecular cloning of human cathepsin G: structural similarity
to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry 26:
2289-2293, 1987.
10. Tausch, L.; Henkel, A.; Siemoneit, U.; Poeckel, D.; Kather, N.;
Franke, L.; Hofmann, B.; Schneider, G.; Angioni, C.; Geisslinger,
G.; Skarke, C.; Holtmeier, W.; Beckhaus, T.; Karas, M.; Jauch, J.;
Werz, O.: Identification of human cathepsin G as a functional target
of boswellic acids from the anit-inflammatory remedy frankincense. J.
Immun. 183: 3433-3442, 2009.
11. Tkalcevic, J.; Novelli, M.; Phylactides, M.; Iredale, J. P.; Segal,
A. W.; Roes, J.: Impaired immunity and enhanced resistance to endotoxin
in the absence of neutrophil elastase and cathepsin G. Immunity 12:
201-210, 2000.
12. Wong, L.; Liang, Y.; Jiang, L.; Tsuda, T.; Fong, Q.; Galway, G.;
Alexandrova, N.; Rogaeva, E.; Lukiw, W.; Smith, J.; Rogaev, E.; Crapper
McLachlan, D.; St. George-Hyslop, P.: Mutation of the gene for the
human lysosomal serine protease cathepsin G is not the cause of aberrant
APP processing in familial Alzheimer disease. Neurosci. Lett. 152:
96-98, 1993.
*FIELD* CN
Paul J. Converse - updated: 10/31/2011
Paul J. Converse - updated: 11/17/2010
Paul J. Converse - updated: 4/9/2002
*FIELD* CD
Victor A. McKusick: 5/26/1987
*FIELD* ED
mgross: 11/02/2011
terry: 10/31/2011
mgross: 11/17/2010
terry: 11/17/2010
ckniffin: 5/28/2003
ckniffin: 5/29/2002
alopez: 4/9/2002
carol: 11/14/1994
warfield: 3/31/1994
carol: 6/3/1993
carol: 5/14/1993
supermim: 3/16/1992
supermim: 3/20/1990