Full text data of CD55
CD55
(CR, DAF)
[Confidence: high (a blood group or CD marker)]
Complement decay-accelerating factor (CD55; Flags: Precursor)
Complement decay-accelerating factor (CD55; Flags: Precursor)
hRBCD
IPI00216550
IPI00216550 Splice isoform 1 of P08174 Complement decay-accelerating factor precursor Splice isoform 1 of P08174 Complement decay-accelerating factor precursor membrane n/a n/a 1 n/a n/a n/a 3 2 n/a n/a 2 2 n/a 2 n/a n/a n/a n/a 1 1 Attached to the membrane by a GPI-anchor. n/a found at its expected molecular weight found at molecular weight
IPI00216550 Splice isoform 1 of P08174 Complement decay-accelerating factor precursor Splice isoform 1 of P08174 Complement decay-accelerating factor precursor membrane n/a n/a 1 n/a n/a n/a 3 2 n/a n/a 2 2 n/a 2 n/a n/a n/a n/a 1 1 Attached to the membrane by a GPI-anchor. n/a found at its expected molecular weight found at molecular weight
BGMUT
cromer
150 cromer DAF DAF reference reference Cr(a+) ~100% 2433596 M31516 Caras et al. GPI-linked glycoprotein 2005-06-28 NA
150 cromer DAF DAF reference reference Cr(a+) ~100% 2433596 M31516 Caras et al. GPI-linked glycoprotein 2005-06-28 NA
Comments
Isoform P08174-2 was detected.
Isoform P08174-2 was detected.
UniProt
P08174
ID DAF_HUMAN Reviewed; 381 AA.
AC P08174; B1AP14; D3DT83; D3DT84; E7ER69; P09679; P78361; Q14UF2;
read moreAC Q14UF3; Q14UF4; Q14UF5; Q14UF6;
DT 01-AUG-1988, integrated into UniProtKB/Swiss-Prot.
DT 01-MAR-2005, sequence version 4.
DT 22-JAN-2014, entry version 164.
DE RecName: Full=Complement decay-accelerating factor;
DE AltName: CD_antigen=CD55;
DE Flags: Precursor;
GN Name=CD55; Synonyms=CR, DAF;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2).
RX PubMed=2433596; DOI=10.1038/325545a0;
RA Caras I.W., Davitz M.A., Rhee L., Weddell G., Martin D.W. Jr.,
RA Nussenzweig V.;
RT "Cloning of decay-accelerating factor suggests novel use of splicing
RT to generate two proteins.";
RL Nature 325:545-549(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 3; 4; 5; 6 AND 7), AND
RP SUBCELLULAR LOCATION (ISOFORMS 3; 4; 5; 6 AND 7).
RC TISSUE=Lung;
RX PubMed=16503113; DOI=10.1016/j.ygeno.2006.01.006;
RA Osuka F., Endo Y., Higuchi M., Suzuki H., Shio Y., Fujiu K., Kanno R.,
RA Oishi A., Terashima M., Fujita T., Gotoh M.;
RT "Molecular cloning and characterization of novel splicing variants of
RT human decay-accelerating factor.";
RL Genomics 88:316-322(2006).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT LEU-52.
RG SeattleSNPs variation discovery resource;
RL Submitted (DEC-2004) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Cervix;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-100.
RX PubMed=1711208; DOI=10.1073/pnas.88.11.4675;
RA Ewulonu U.K., Ravi L., Medof M.E.;
RT "Characterization of the decay-accelerating factor gene promoter
RT region.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:4675-4679(1991).
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-381 (ISOFORM 2).
RX PubMed=2436222; DOI=10.1073/pnas.84.7.2007;
RA Medof M.E., Lublin D.M., Holers V.M., Ayers D.J., Getty R.R.,
RA Leykam J.F., Atkinson J.P., Tykocinski M.L.;
RT "Cloning and characterization of cDNAs encoding the complete sequence
RT of decay-accelerating factor of human complement.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:2007-2011(1987).
RN [10]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 35-381 (ISOFORM 2).
RC TISSUE=Hippocampus;
RA Kumar V.B., Hyung C., Nakra R., Walters M., Sasser T., Bernardo A.;
RT "Decay-acceleration factor (DAF; CD 55) in the brain of Alzheimer's
RT disease patients.";
RL Submitted (FEB-1997) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP PROTEIN SEQUENCE OF 35-63.
RX PubMed=2428813;
RA Sugita Y., Negoro T., Matsuda T., Sakamoto T., Tomita M.;
RT "Improved method for the isolation and preliminary characterization of
RT human DAF (decay-accelerating factor).";
RL J. Biochem. 100:143-150(1986).
RN [12]
RP PROTEIN SEQUENCE OF 35-46.
RC TISSUE=Urine;
RX PubMed=1712233; DOI=10.1016/0304-4165(91)90171-C;
RA Nakano Y., Sugita Y., Ishikawa Y., Choi N.-H., Tobe T., Tomita M.;
RT "Isolation of two forms of decay-accelerating factor (DAF) from human
RT urine.";
RL Biochim. Biophys. Acta 1074:326-330(1991).
RN [13]
RP GPI-ANCHOR AT SER-353.
RX PubMed=1824699;
RA Moran P., Raab H., Kohr W.J., Caras I.W.;
RT "Glycophospholipid membrane anchor attachment. Molecular analysis of
RT the cleavage/attachment site.";
RL J. Biol. Chem. 266:1250-1257(1991).
RN [14]
RP DISULFIDE BONDS IN SUSHI DOMAINS.
RX PubMed=1377029; DOI=10.1016/0304-4165(92)90016-N;
RA Nakano Y., Sumida K., Kikuta N., Miura N.-H., Tobe T., Tomita M.;
RT "Complete determination of disulfide bonds localized within the short
RT consensus repeat units of decay accelerating factor (CD55 antigen).";
RL Biochim. Biophys. Acta 1116:235-240(1992).
RN [15]
RP FUNCTION AS AN ECHOVIRUS RECEPTOR.
RX PubMed=7525274;
RA Ward T., Pipkin P.A., Clarkson N.A., Stone D.M., Minor P.D.,
RA Almond J.W.;
RT "Decay-accelerating factor CD55 is identified as the receptor for
RT echovirus 7 using CELICS, a rapid immuno-focal cloning method.";
RL EMBO J. 13:5070-5074(1994).
RN [16]
RP INTERACTION WITH HUMAN ECHOVIRUSES 6/7/11/12/20/21 CAPSID PROTEINS.
RX PubMed=7517044; DOI=10.1073/pnas.91.13.6245;
RA Bergelson J.M., Chan M., Solomon K.R., St John N.F., Lin H.,
RA Finberg R.W.;
RT "Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-
RT anchored complement regulatory protein, is a receptor for several
RT echoviruses.";
RL Proc. Natl. Acad. Sci. U.S.A. 91:6245-6248(1994).
RN [17]
RP INTERACTION WITH COXSACKIEVIRUSES B1/B3/B5 CAPSID PROTEINS.
RX PubMed=7538177;
RA Shafren D.R., Bates R.C., Agrez M.V., Herd R.L., Burns G.F.,
RA Barry R.D.;
RT "Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a
RT receptor for cell attachment.";
RL J. Virol. 69:3873-3877(1995).
RN [18]
RP INTERACTION WITH HUMAN ENTEROVIRUS 70 CAPSID PROTEINS.
RX PubMed=8764022;
RA Karnauchow T.M., Tolson D.L., Harrison B.A., Altman E., Lublin D.M.,
RA Dimock K.;
RT "The HeLa cell receptor for enterovirus 70 is decay-accelerating
RT factor (CD55).";
RL J. Virol. 70:5143-5152(1996).
RN [19]
RP INTERACTION WITH COXSACKIEVIRUS A21 CAPSID PROTEINS.
RX PubMed=9151867;
RA Shafren D.R., Dorahy D.J., Ingham R.A., Burns G.F., Barry R.D.;
RT "Coxsackievirus A21 binds to decay-accelerating factor but requires
RT intercellular adhesion molecule 1 for cell entry.";
RL J. Virol. 71:4736-4743(1997).
RN [20]
RP GPI-ANCHOR [LARGE SCALE ANALYSIS], AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=14517339; DOI=10.1074/mcp.M300079-MCP200;
RA Elortza F., Nuehse T.S., Foster L.J., Stensballe A., Peck S.C.,
RA Jensen O.N.;
RT "Proteomic analysis of glycosylphosphatidylinositol-anchored membrane
RT proteins.";
RL Mol. Cell. Proteomics 2:1261-1270(2003).
RN [21]
RP GPI-ANCHOR [LARGE SCALE ANALYSIS], AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16602701; DOI=10.1021/pr050419u;
RA Elortza F., Mohammed S., Bunkenborg J., Foster L.J., Nuehse T.S.,
RA Brodbeck U., Peck S.C., Jensen O.N.;
RT "Modification-specific proteomics of plasma membrane proteins:
RT identification and characterization of glycosylphosphatidylinositol-
RT anchored proteins released upon phospholipase D treatment.";
RL J. Proteome Res. 5:935-943(2006).
RN [22]
RP INTERACTION WITH COXSACKIEVIRUS B3 CAPSID PROTEINS.
RX PubMed=17804498; DOI=10.1128/JVI.00931-07;
RA Hafenstein S., Bowman V.D., Chipman P.R., Bator Kelly C.M., Lin F.,
RA Medof M.E., Rossmann M.G.;
RT "Interaction of decay-accelerating factor with coxsackievirus B3.";
RL J. Virol. 81:12927-12935(2007).
RN [23]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-95, AND MASS SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=19159218; DOI=10.1021/pr8008012;
RA Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.;
RT "Glycoproteomics analysis of human liver tissue by combination of
RT multiple enzyme digestion and hydrazide chemistry.";
RL J. Proteome Res. 8:651-661(2009).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [25]
RP VARIANT BLOOD GROUP DR(A-) LEU-199.
RX PubMed=7519480;
RA Lublin D.M., Mallinson G., Poole J., Reid M.E., Thompson E.S.,
RA Ferdman B.R., Telen M.J., Anstee D.J., Tanner M.J.A.;
RT "Molecular basis of reduced or absent expression of decay-accelerating
RT factor in Cromer blood group phenotypes.";
RL Blood 84:1276-1282(1994).
RN [26]
RP VARIANT BLOOD GROUP GUTI(-) HIS-240.
RX PubMed=12675719; DOI=10.1046/j.1537-2995.2003.00319.x;
RA Storry J.R., Sausais L., Hue-Roye K., Mudiwa F., Ferrer Z.,
RA Blajchman M.A., Lublin D.M., Ma B.W., Miquel J.F., Nervi F.,
RA Pereira J., Reid M.E.;
RT "GUTI: a new antigen in the Cromer blood group system.";
RL Transfusion 43:340-344(2003).
RN [27]
RP INVOLVEMENT IN BLOOD GROUP INAB.
RX PubMed=1720702;
RA Reid M.E., Mallinson G., Sim R.B., Poole J., Pausch V., Merry A.H.,
RA Liew Y.W., Tanner M.J.A.;
RT "Biochemical studies on red blood cells from a patient with the Inab
RT phenotype (decay-accelerating factor deficiency).";
RL Blood 78:3291-3297(1991).
RN [28]
RP X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 161-285.
RX PubMed=12499389; DOI=10.1074/jbc.M212561200;
RA Williams P., Chaudhry Y., Goodfellow I.G., Billington J., Powell R.,
RA Spiller O.B., Evans D.J., Lea S.;
RT "Mapping CD55 function. The structure of two pathogen-binding domains
RT at 1.7 A.";
RL J. Biol. Chem. 278:10691-10696(2003).
RN [29]
RP X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF OF 35-286.
RX PubMed=14734808; DOI=10.1073/pnas.0307200101;
RA Lukacik P., Roversi P., White J., Esser D., Smith G.P., Billington J.,
RA Williams P.A., Rudd P.M., Wormald M.R., Harvey D.J., Crispin M.D.,
RA Radcliffe C.M., Dwek R.A., Evans D.J., Morgan B.P., Smith R.A.,
RA Lea S.M.;
RT "Complement regulation at the molecular level: the structure of decay-
RT accelerating factor.";
RL Proc. Natl. Acad. Sci. U.S.A. 101:1279-1284(2004).
RN [30]
RP STRUCTURE BY NMR OF 95-223.
RX PubMed=12672958; DOI=10.1073/pnas.0730844100;
RA Uhrinova S., Lin F., Ball G., Bromek K., Uhrin D., Medof M.E.,
RA Barlow P.N.;
RT "Solution structure of a functionally active fragment of decay-
RT accelerating factor.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:4718-4723(2003).
CC -!- FUNCTION: This protein recognizes C4b and C3b fragments that
CC condense with cell-surface hydroxyl or amino groups when nascent
CC C4b and C3b are locally generated during C4 and c3 activation.
CC Interaction of daf with cell-associated C4b and C3b polypeptides
CC interferes with their ability to catalyze the conversion of C2 and
CC factor B to enzymatically active C2a and Bb and thereby prevents
CC the formation of C4b2a and C3bBb, the amplification convertases of
CC the complement cascade.
CC -!- SUBUNIT: Monomer (major form) and non-disulfide-linked, covalent
CC homodimer (minor form). Binds to coxsackievirus A21,
CC coxsackieviruses B1, B3 and B5, human enterovirus 70, human
CC echoviruses 6, 7, 11, 12, 20 and 21 capsid proteins and acts as a
CC receptor for these viruses.
CC -!- SUBCELLULAR LOCATION: Isoform 1: Cell membrane; Single-pass type I
CC membrane protein.
CC -!- SUBCELLULAR LOCATION: Isoform 2: Cell membrane; Lipid-anchor, GPI-
CC anchor.
CC -!- SUBCELLULAR LOCATION: Isoform 3: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 4: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 5: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 6: Cell membrane; Lipid-anchor, GPI-
CC anchor (Probable).
CC -!- SUBCELLULAR LOCATION: Isoform 7: Cell membrane; Lipid-anchor, GPI-
CC anchor (Probable).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=7;
CC Name=2; Synonyms=DAF-2;
CC IsoId=P08174-1; Sequence=Displayed;
CC Name=1; Synonyms=DAF-1;
CC IsoId=P08174-2; Sequence=VSP_001200;
CC Name=3; Synonyms=VDAF3;
CC IsoId=P08174-3; Sequence=VSP_047636;
CC Name=4; Synonyms=VDAF2;
CC IsoId=P08174-4; Sequence=VSP_047637;
CC Name=5; Synonyms=VDAF1;
CC IsoId=P08174-5; Sequence=VSP_047638;
CC Name=6; Synonyms=VDAF4;
CC IsoId=P08174-6; Sequence=VSP_047635;
CC Note=Includes partial sequence of the intron 7;
CC Name=7; Synonyms=VDAF5;
CC IsoId=P08174-7; Sequence=VSP_047634;
CC Note=Includes full sequence of the intron 7;
CC -!- TISSUE SPECIFICITY: Expressed on the plasma membranes of all cell
CC types that are in intimate contact with plasma complement
CC proteins. It is also found on the surfaces of epithelial cells
CC lining extracellular compartments, and variants of the molecule
CC are present in body fluids and in extracellular matrix.
CC -!- DOMAIN: The first Sushi domain (SCR1) is not necessary for
CC function. SCR2 and SCR4 provide the proper conformation for the
CC active site on SCR3 (By similarity).
CC -!- PTM: The Ser/Thr-rich domain is heavily O-glycosylated.
CC -!- POLYMORPHISM: Responsible for the Cromer blood group system (CROM)
CC [MIM:613793]. It consists of at least 8 high-incidence (Cr(a),
CC Tc(a), Dr(a), Es(a), WES(b), UMC, IFC and GUTI) and three low-
CC incidence (Tc(b), Tc(c) and WES(a)) antigens that reside on DAF.
CC In the Cromer phenotypes Dr(a-) and Inab there is reduced or
CC absent expression of DAF, respectively. In the case of the Dr(a-)
CC phenotype, a single nucleotide substitution within exon 5 accounts
CC for two changes: a simple amino acid substitution, Leu-199 that is
CC the basis of the antigenic variation, and an alternative splicing
CC event that underlies the decreased expression of DAF in this
CC phenotype. The Inab phenotype is a very rare one in which the red
CC blood cells lack all Cromer system antigens. The red blood cells
CC of individuals with Inab phenotype have a deficiency of DAF, but
CC these individuals are not known to have any associated hematologic
CC or other abnormalities.
CC -!- SIMILARITY: Belongs to the receptors of complement activation
CC (RCA) family.
CC -!- SIMILARITY: Contains 4 Sushi (CCP/SCR) domains.
CC -!- WEB RESOURCE: Name=dbRBC/BGMUT; Note=Blood group antigen gene
CC mutation database;
CC URL="http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/systems_info&system;=cromer";
CC -!- WEB RESOURCE: Name=CD55base; Note=CD55 mutation db;
CC URL="http://bioinf.uta.fi/CD55base/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Decay-accelerating factor
CC entry;
CC URL="http://en.wikipedia.org/wiki/Decay_accelerating_factor";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/daf/";
CC -!- WEB RESOURCE: Name=Virus Particle ExploreR db; Note=Icosahedral
CC capsid structure;
CC URL="http://viperdb.scripps.edu/info_page.php?VDB=1upn";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M31516; AAA52169.1; -; mRNA.
DR EMBL; M30142; AAA52168.1; -; mRNA.
DR EMBL; AB240566; BAE97422.1; -; mRNA.
DR EMBL; AB240567; BAE97423.1; -; mRNA.
DR EMBL; AB240568; BAE97424.1; -; mRNA.
DR EMBL; AB240569; BAE97425.1; -; mRNA.
DR EMBL; AB240570; BAE97426.1; -; mRNA.
DR EMBL; BT007159; AAP35823.1; -; mRNA.
DR EMBL; AY851161; AAW29942.1; -; Genomic_DNA.
DR EMBL; AL391597; CAH72946.1; -; Genomic_DNA.
DR EMBL; AL596218; CAH72946.1; JOINED; Genomic_DNA.
DR EMBL; AL596218; CAI16463.1; -; Genomic_DNA.
DR EMBL; AL391597; CAI16463.1; JOINED; Genomic_DNA.
DR EMBL; CH471100; EAW93485.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93487.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93488.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93491.1; -; Genomic_DNA.
DR EMBL; BC001288; AAH01288.1; -; mRNA.
DR EMBL; M64653; AAA52170.1; -; Genomic_DNA.
DR EMBL; M64356; AAA52170.1; JOINED; Genomic_DNA.
DR EMBL; M15799; AAA52167.1; -; mRNA.
DR EMBL; U88576; AAB48622.1; -; mRNA.
DR EMBL; S72858; AAC60633.1; -; Genomic_DNA.
DR PIR; A26359; A26359.
DR PIR; B26359; B26359.
DR RefSeq; NP_000565.1; NM_000574.3.
DR RefSeq; NP_001108224.1; NM_001114752.1.
DR RefSeq; XP_005273135.1; XM_005273078.1.
DR RefSeq; XP_005273136.1; XM_005273079.1.
DR UniGene; Hs.126517; -.
DR PDB; 1H03; X-ray; 1.70 A; P/Q=161-285.
DR PDB; 1H04; X-ray; 2.00 A; P=161-285.
DR PDB; 1H2P; X-ray; 2.80 A; P=161-285.
DR PDB; 1H2Q; X-ray; 3.00 A; P=161-285.
DR PDB; 1M11; EM; 16.00 A; R=35-277.
DR PDB; 1NWV; NMR; -; A=96-222.
DR PDB; 1OJV; X-ray; 2.30 A; A/B=35-285.
DR PDB; 1OJW; X-ray; 2.30 A; A/B=35-285.
DR PDB; 1OJY; X-ray; 2.60 A; A/B/C/D=35-285.
DR PDB; 1OK1; X-ray; 2.60 A; A/B=35-285.
DR PDB; 1OK2; X-ray; 2.50 A; A/B=35-285.
DR PDB; 1OK3; X-ray; 2.20 A; A/B=35-285.
DR PDB; 1OK9; X-ray; 3.00 A; A/B=35-285.
DR PDB; 1UOT; X-ray; 3.00 A; P=161-285.
DR PDB; 1UPN; EM; 16.00 A; E=157-285.
DR PDB; 2C8I; EM; 14.00 A; E=35-285.
DR PDB; 2QZD; EM; -; A=222-285.
DR PDB; 2QZF; EM; -; A=35-94.
DR PDB; 2QZH; EM; 14.00 A; A=96-222.
DR PDB; 3IYP; EM; -; F=1-381.
DR PDB; 3J24; EM; 9.00 A; B=35-285.
DR PDBsum; 1H03; -.
DR PDBsum; 1H04; -.
DR PDBsum; 1H2P; -.
DR PDBsum; 1H2Q; -.
DR PDBsum; 1M11; -.
DR PDBsum; 1NWV; -.
DR PDBsum; 1OJV; -.
DR PDBsum; 1OJW; -.
DR PDBsum; 1OJY; -.
DR PDBsum; 1OK1; -.
DR PDBsum; 1OK2; -.
DR PDBsum; 1OK3; -.
DR PDBsum; 1OK9; -.
DR PDBsum; 1UOT; -.
DR PDBsum; 1UPN; -.
DR PDBsum; 2C8I; -.
DR PDBsum; 2QZD; -.
DR PDBsum; 2QZF; -.
DR PDBsum; 2QZH; -.
DR PDBsum; 3IYP; -.
DR PDBsum; 3J24; -.
DR ProteinModelPortal; P08174; -.
DR SMR; P08174; 35-285.
DR IntAct; P08174; 5.
DR STRING; 9606.ENSP00000316333; -.
DR DrugBank; DB00446; Chloramphenicol.
DR PhosphoSite; P08174; -.
DR DMDM; 60416353; -.
DR PaxDb; P08174; -.
DR PRIDE; P08174; -.
DR DNASU; 1604; -.
DR Ensembl; ENST00000314754; ENSP00000316333; ENSG00000196352.
DR Ensembl; ENST00000367062; ENSP00000356029; ENSG00000196352.
DR Ensembl; ENST00000367064; ENSP00000356031; ENSG00000196352.
DR Ensembl; ENST00000367065; ENSP00000356032; ENSG00000196352.
DR Ensembl; ENST00000391920; ENSP00000375787; ENSG00000196352.
DR GeneID; 1604; -.
DR KEGG; hsa:1604; -.
DR UCSC; uc001hfq.4; human.
DR CTD; 1604; -.
DR GeneCards; GC01P207494; -.
DR HGNC; HGNC:2665; CD55.
DR HPA; CAB010454; -.
DR HPA; HPA002190; -.
DR HPA; HPA024386; -.
DR MIM; 125240; gene.
DR MIM; 613793; phenotype.
DR neXtProt; NX_P08174; -.
DR PharmGKB; PA27137; -.
DR eggNOG; NOG150769; -.
DR HOGENOM; HOG000237360; -.
DR HOVERGEN; HBG001406; -.
DR KO; K04006; -.
DR OMA; GHTCLIT; -.
DR OrthoDB; EOG78WKS7; -.
DR Reactome; REACT_111102; Signal Transduction.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; CD55; human.
DR EvolutionaryTrace; P08174; -.
DR GeneWiki; Decay-accelerating_factor; -.
DR GenomeRNAi; 1604; -.
DR NextBio; 6582; -.
DR PRO; PR:P08174; -.
DR ArrayExpress; P08174; -.
DR Bgee; P08174; -.
DR CleanEx; HS_CD55; -.
DR Genevestigator; P08174; -.
DR GO; GO:0031225; C:anchored to membrane; IEA:UniProtKB-KW.
DR GO; GO:0016324; C:apical plasma membrane; IEA:Ensembl.
DR GO; GO:0009986; C:cell surface; IDA:UniProtKB.
DR GO; GO:0005576; C:extracellular region; TAS:Reactome.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0045121; C:membrane raft; IDA:UniProtKB.
DR GO; GO:0004857; F:enzyme inhibitor activity; IEA:Ensembl.
DR GO; GO:0001618; F:virus receptor activity; IEA:UniProtKB-KW.
DR GO; GO:0006958; P:complement activation, classical pathway; IEA:UniProtKB-KW.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0060137; P:maternal process involved in parturition; IEA:Ensembl.
DR GO; GO:0045916; P:negative regulation of complement activation; IEA:Ensembl.
DR GO; GO:0007204; P:positive regulation of cytosolic calcium ion concentration; IDA:UniProtKB.
DR GO; GO:0030449; P:regulation of complement activation; TAS:Reactome.
DR GO; GO:0045730; P:respiratory burst; NAS:UniProtKB.
DR GO; GO:0043434; P:response to peptide hormone stimulus; IEA:Ensembl.
DR GO; GO:0009615; P:response to virus; IEA:GOC.
DR GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
DR InterPro; IPR000436; Sushi_SCR_CCP.
DR Pfam; PF00084; Sushi; 4.
DR SMART; SM00032; CCP; 4.
DR SUPFAM; SSF57535; SSF57535; 4.
DR PROSITE; PS50923; SUSHI; 4.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Blood group antigen;
KW Cell membrane; Complement pathway; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein; GPI-anchor;
KW Host cell receptor for virus entry; Immunity; Innate immunity;
KW Lipoprotein; Membrane; Polymorphism; Receptor; Reference proteome;
KW Repeat; Secreted; Signal; Sushi.
FT SIGNAL 1 34
FT CHAIN 35 353 Complement decay-accelerating factor.
FT /FTId=PRO_0000006000.
FT PROPEP 354 381 Removed in mature form.
FT /FTId=PRO_0000006001.
FT DOMAIN 35 96 Sushi 1.
FT DOMAIN 96 160 Sushi 2.
FT DOMAIN 161 222 Sushi 3.
FT DOMAIN 223 285 Sushi 4.
FT COMPBIAS 287 356 Ser/Thr-rich.
FT LIPID 353 353 GPI-anchor amidated serine.
FT CARBOHYD 95 95 N-linked (GlcNAc...).
FT DISULFID 36 81
FT DISULFID 65 94
FT DISULFID 98 145
FT DISULFID 129 158
FT DISULFID 163 204
FT DISULFID 190 220
FT DISULFID 225 267
FT DISULFID 253 283
FT VAR_SEQ 326 326 Q -> QGTETPSVLQKHTTENVSATRTPPTPQKPTTVNVPA
FT TIVTPTPQKPTTINVPATGVSSTPQRHTIVNVSATGTLPTL
FT QKPTRANDSATKSPAAAQTSFISKTLSTKTPSAAQNPMMTN
FT ASATQATLTAQKFTTAKVAFTQSPSAARKSTNVHSPVTNGL
FT KSTQRFPSAHIT (in isoform 7).
FT /FTId=VSP_047634.
FT VAR_SEQ 327 327 A -> GTETPSVLQKHTTENVSATRTPPTPQKPTTVNVPAT
FT IVTPTPQKPTTINVPATGVSSTPQRHTIVNVSATGTLPTLQ
FT KPTRANDSATKSPAAAQTSFISKTLSTKTPSAAQNPMMTNA
FT SATQATLTAQKFTTAKVAFTQSPSAAP (in isoform
FT 6).
FT /FTId=VSP_047635.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> ALQVRPFEVSGSSHIS
FT SKKMMCIL (in isoform 3).
FT /FTId=VSP_047636.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> VLFM (in isoform
FT 4).
FT /FTId=VSP_047637.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> ETVFHRVIQDGLDLLA
FT SRSACLGLPKCWDYRREPPHLARAHVFHVDRFAWDASNHGL
FT ADLAKEELRRKYTQVYRLFLVS (in isoform 5).
FT /FTId=VSP_047638.
FT VAR_SEQ 362 381 HTCFTLTGLLGTLVTMGLLT -> SRPVTQAGMRWCDRSSL
FT QSRTPGFKRSFHFSLPSSWYYRAHVFHVDRFAWDASNHGLA
FT DLAKEELRRKYTQVYRLFLVS (in isoform 1).
FT /FTId=VSP_001200.
FT VARIANT 52 52 R -> L (in Tc(b) antigen;
FT dbSNP:rs28371588).
FT /FTId=VAR_001997.
FT VARIANT 52 52 R -> P (in Tc(c) antigen;
FT dbSNP:rs28371588).
FT /FTId=VAR_001998.
FT VARIANT 82 82 L -> R (in WES(a) antigen;
FT dbSNP:rs147474393).
FT /FTId=VAR_001999.
FT VARIANT 199 199 S -> L (in Dr(a-) antigen;
FT dbSNP:rs56283594).
FT /FTId=VAR_002000.
FT VARIANT 227 227 A -> P (in Cr(a-) antigen;
FT dbSNP:rs60822373).
FT /FTId=VAR_002001.
FT VARIANT 240 240 R -> H (in GUTI(-) antigen).
FT /FTId=VAR_015884.
FT CONFLICT 80 80 I -> T (in Ref. 8; AAA52170 and 9;
FT AAA52167).
FT CONFLICT 85 85 S -> M (in Ref. 9; AAA52167).
FT CONFLICT 187 187 S -> T (in Ref. 10; AAB48622).
FT CONFLICT 297 297 Q -> H (in Ref. 10; AAB48622).
FT STRAND 45 47
FT STRAND 60 65
FT STRAND 69 71
FT STRAND 78 82
FT TURN 83 85
FT STRAND 94 98
FT STRAND 105 109
FT HELIX 113 115
FT STRAND 124 129
FT STRAND 133 135
FT STRAND 136 138
FT STRAND 142 145
FT STRAND 149 151
FT STRAND 157 160
FT STRAND 172 175
FT TURN 177 180
FT STRAND 185 190
FT STRAND 194 198
FT STRAND 200 207
FT STRAND 210 215
FT STRAND 219 222
FT STRAND 234 236
FT STRAND 241 244
FT STRAND 248 253
FT STRAND 258 261
FT STRAND 263 270
FT STRAND 273 278
FT STRAND 282 284
SQ SEQUENCE 381 AA; 41400 MW; C1CBE5300F60C176 CRC64;
MTVARPSVPA ALPLLGELPR LLLLVLLCLP AVWGDCGLPP DVPNAQPALE GRTSFPEDTV
ITYKCEESFV KIPGEKDSVI CLKGSQWSDI EEFCNRSCEV PTRLNSASLK QPYITQNYFP
VGTVVEYECR PGYRREPSLS PKLTCLQNLK WSTAVEFCKK KSCPNPGEIR NGQIDVPGGI
LFGATISFSC NTGYKLFGST SSFCLISGSS VQWSDPLPEC REIYCPAPPQ IDNGIIQGER
DHYGYRQSVT YACNKGFTMI GEHSIYCTVN NDEGEWSGPP PECRGKSLTS KVPPTVQKPT
TVNVPTTEVS PTSQKTTTKT TTPNAQATRS TPVSRTTKHF HETTPNKGSG TTSGTTRLLS
GHTCFTLTGL LGTLVTMGLL T
//
ID DAF_HUMAN Reviewed; 381 AA.
AC P08174; B1AP14; D3DT83; D3DT84; E7ER69; P09679; P78361; Q14UF2;
read moreAC Q14UF3; Q14UF4; Q14UF5; Q14UF6;
DT 01-AUG-1988, integrated into UniProtKB/Swiss-Prot.
DT 01-MAR-2005, sequence version 4.
DT 22-JAN-2014, entry version 164.
DE RecName: Full=Complement decay-accelerating factor;
DE AltName: CD_antigen=CD55;
DE Flags: Precursor;
GN Name=CD55; Synonyms=CR, DAF;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2).
RX PubMed=2433596; DOI=10.1038/325545a0;
RA Caras I.W., Davitz M.A., Rhee L., Weddell G., Martin D.W. Jr.,
RA Nussenzweig V.;
RT "Cloning of decay-accelerating factor suggests novel use of splicing
RT to generate two proteins.";
RL Nature 325:545-549(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 3; 4; 5; 6 AND 7), AND
RP SUBCELLULAR LOCATION (ISOFORMS 3; 4; 5; 6 AND 7).
RC TISSUE=Lung;
RX PubMed=16503113; DOI=10.1016/j.ygeno.2006.01.006;
RA Osuka F., Endo Y., Higuchi M., Suzuki H., Shio Y., Fujiu K., Kanno R.,
RA Oishi A., Terashima M., Fujita T., Gotoh M.;
RT "Molecular cloning and characterization of novel splicing variants of
RT human decay-accelerating factor.";
RL Genomics 88:316-322(2006).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT LEU-52.
RG SeattleSNPs variation discovery resource;
RL Submitted (DEC-2004) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Cervix;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-100.
RX PubMed=1711208; DOI=10.1073/pnas.88.11.4675;
RA Ewulonu U.K., Ravi L., Medof M.E.;
RT "Characterization of the decay-accelerating factor gene promoter
RT region.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:4675-4679(1991).
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-381 (ISOFORM 2).
RX PubMed=2436222; DOI=10.1073/pnas.84.7.2007;
RA Medof M.E., Lublin D.M., Holers V.M., Ayers D.J., Getty R.R.,
RA Leykam J.F., Atkinson J.P., Tykocinski M.L.;
RT "Cloning and characterization of cDNAs encoding the complete sequence
RT of decay-accelerating factor of human complement.";
RL Proc. Natl. Acad. Sci. U.S.A. 84:2007-2011(1987).
RN [10]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 35-381 (ISOFORM 2).
RC TISSUE=Hippocampus;
RA Kumar V.B., Hyung C., Nakra R., Walters M., Sasser T., Bernardo A.;
RT "Decay-acceleration factor (DAF; CD 55) in the brain of Alzheimer's
RT disease patients.";
RL Submitted (FEB-1997) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP PROTEIN SEQUENCE OF 35-63.
RX PubMed=2428813;
RA Sugita Y., Negoro T., Matsuda T., Sakamoto T., Tomita M.;
RT "Improved method for the isolation and preliminary characterization of
RT human DAF (decay-accelerating factor).";
RL J. Biochem. 100:143-150(1986).
RN [12]
RP PROTEIN SEQUENCE OF 35-46.
RC TISSUE=Urine;
RX PubMed=1712233; DOI=10.1016/0304-4165(91)90171-C;
RA Nakano Y., Sugita Y., Ishikawa Y., Choi N.-H., Tobe T., Tomita M.;
RT "Isolation of two forms of decay-accelerating factor (DAF) from human
RT urine.";
RL Biochim. Biophys. Acta 1074:326-330(1991).
RN [13]
RP GPI-ANCHOR AT SER-353.
RX PubMed=1824699;
RA Moran P., Raab H., Kohr W.J., Caras I.W.;
RT "Glycophospholipid membrane anchor attachment. Molecular analysis of
RT the cleavage/attachment site.";
RL J. Biol. Chem. 266:1250-1257(1991).
RN [14]
RP DISULFIDE BONDS IN SUSHI DOMAINS.
RX PubMed=1377029; DOI=10.1016/0304-4165(92)90016-N;
RA Nakano Y., Sumida K., Kikuta N., Miura N.-H., Tobe T., Tomita M.;
RT "Complete determination of disulfide bonds localized within the short
RT consensus repeat units of decay accelerating factor (CD55 antigen).";
RL Biochim. Biophys. Acta 1116:235-240(1992).
RN [15]
RP FUNCTION AS AN ECHOVIRUS RECEPTOR.
RX PubMed=7525274;
RA Ward T., Pipkin P.A., Clarkson N.A., Stone D.M., Minor P.D.,
RA Almond J.W.;
RT "Decay-accelerating factor CD55 is identified as the receptor for
RT echovirus 7 using CELICS, a rapid immuno-focal cloning method.";
RL EMBO J. 13:5070-5074(1994).
RN [16]
RP INTERACTION WITH HUMAN ECHOVIRUSES 6/7/11/12/20/21 CAPSID PROTEINS.
RX PubMed=7517044; DOI=10.1073/pnas.91.13.6245;
RA Bergelson J.M., Chan M., Solomon K.R., St John N.F., Lin H.,
RA Finberg R.W.;
RT "Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-
RT anchored complement regulatory protein, is a receptor for several
RT echoviruses.";
RL Proc. Natl. Acad. Sci. U.S.A. 91:6245-6248(1994).
RN [17]
RP INTERACTION WITH COXSACKIEVIRUSES B1/B3/B5 CAPSID PROTEINS.
RX PubMed=7538177;
RA Shafren D.R., Bates R.C., Agrez M.V., Herd R.L., Burns G.F.,
RA Barry R.D.;
RT "Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a
RT receptor for cell attachment.";
RL J. Virol. 69:3873-3877(1995).
RN [18]
RP INTERACTION WITH HUMAN ENTEROVIRUS 70 CAPSID PROTEINS.
RX PubMed=8764022;
RA Karnauchow T.M., Tolson D.L., Harrison B.A., Altman E., Lublin D.M.,
RA Dimock K.;
RT "The HeLa cell receptor for enterovirus 70 is decay-accelerating
RT factor (CD55).";
RL J. Virol. 70:5143-5152(1996).
RN [19]
RP INTERACTION WITH COXSACKIEVIRUS A21 CAPSID PROTEINS.
RX PubMed=9151867;
RA Shafren D.R., Dorahy D.J., Ingham R.A., Burns G.F., Barry R.D.;
RT "Coxsackievirus A21 binds to decay-accelerating factor but requires
RT intercellular adhesion molecule 1 for cell entry.";
RL J. Virol. 71:4736-4743(1997).
RN [20]
RP GPI-ANCHOR [LARGE SCALE ANALYSIS], AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=14517339; DOI=10.1074/mcp.M300079-MCP200;
RA Elortza F., Nuehse T.S., Foster L.J., Stensballe A., Peck S.C.,
RA Jensen O.N.;
RT "Proteomic analysis of glycosylphosphatidylinositol-anchored membrane
RT proteins.";
RL Mol. Cell. Proteomics 2:1261-1270(2003).
RN [21]
RP GPI-ANCHOR [LARGE SCALE ANALYSIS], AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16602701; DOI=10.1021/pr050419u;
RA Elortza F., Mohammed S., Bunkenborg J., Foster L.J., Nuehse T.S.,
RA Brodbeck U., Peck S.C., Jensen O.N.;
RT "Modification-specific proteomics of plasma membrane proteins:
RT identification and characterization of glycosylphosphatidylinositol-
RT anchored proteins released upon phospholipase D treatment.";
RL J. Proteome Res. 5:935-943(2006).
RN [22]
RP INTERACTION WITH COXSACKIEVIRUS B3 CAPSID PROTEINS.
RX PubMed=17804498; DOI=10.1128/JVI.00931-07;
RA Hafenstein S., Bowman V.D., Chipman P.R., Bator Kelly C.M., Lin F.,
RA Medof M.E., Rossmann M.G.;
RT "Interaction of decay-accelerating factor with coxsackievirus B3.";
RL J. Virol. 81:12927-12935(2007).
RN [23]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-95, AND MASS SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=19159218; DOI=10.1021/pr8008012;
RA Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.;
RT "Glycoproteomics analysis of human liver tissue by combination of
RT multiple enzyme digestion and hydrazide chemistry.";
RL J. Proteome Res. 8:651-661(2009).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [25]
RP VARIANT BLOOD GROUP DR(A-) LEU-199.
RX PubMed=7519480;
RA Lublin D.M., Mallinson G., Poole J., Reid M.E., Thompson E.S.,
RA Ferdman B.R., Telen M.J., Anstee D.J., Tanner M.J.A.;
RT "Molecular basis of reduced or absent expression of decay-accelerating
RT factor in Cromer blood group phenotypes.";
RL Blood 84:1276-1282(1994).
RN [26]
RP VARIANT BLOOD GROUP GUTI(-) HIS-240.
RX PubMed=12675719; DOI=10.1046/j.1537-2995.2003.00319.x;
RA Storry J.R., Sausais L., Hue-Roye K., Mudiwa F., Ferrer Z.,
RA Blajchman M.A., Lublin D.M., Ma B.W., Miquel J.F., Nervi F.,
RA Pereira J., Reid M.E.;
RT "GUTI: a new antigen in the Cromer blood group system.";
RL Transfusion 43:340-344(2003).
RN [27]
RP INVOLVEMENT IN BLOOD GROUP INAB.
RX PubMed=1720702;
RA Reid M.E., Mallinson G., Sim R.B., Poole J., Pausch V., Merry A.H.,
RA Liew Y.W., Tanner M.J.A.;
RT "Biochemical studies on red blood cells from a patient with the Inab
RT phenotype (decay-accelerating factor deficiency).";
RL Blood 78:3291-3297(1991).
RN [28]
RP X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 161-285.
RX PubMed=12499389; DOI=10.1074/jbc.M212561200;
RA Williams P., Chaudhry Y., Goodfellow I.G., Billington J., Powell R.,
RA Spiller O.B., Evans D.J., Lea S.;
RT "Mapping CD55 function. The structure of two pathogen-binding domains
RT at 1.7 A.";
RL J. Biol. Chem. 278:10691-10696(2003).
RN [29]
RP X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF OF 35-286.
RX PubMed=14734808; DOI=10.1073/pnas.0307200101;
RA Lukacik P., Roversi P., White J., Esser D., Smith G.P., Billington J.,
RA Williams P.A., Rudd P.M., Wormald M.R., Harvey D.J., Crispin M.D.,
RA Radcliffe C.M., Dwek R.A., Evans D.J., Morgan B.P., Smith R.A.,
RA Lea S.M.;
RT "Complement regulation at the molecular level: the structure of decay-
RT accelerating factor.";
RL Proc. Natl. Acad. Sci. U.S.A. 101:1279-1284(2004).
RN [30]
RP STRUCTURE BY NMR OF 95-223.
RX PubMed=12672958; DOI=10.1073/pnas.0730844100;
RA Uhrinova S., Lin F., Ball G., Bromek K., Uhrin D., Medof M.E.,
RA Barlow P.N.;
RT "Solution structure of a functionally active fragment of decay-
RT accelerating factor.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:4718-4723(2003).
CC -!- FUNCTION: This protein recognizes C4b and C3b fragments that
CC condense with cell-surface hydroxyl or amino groups when nascent
CC C4b and C3b are locally generated during C4 and c3 activation.
CC Interaction of daf with cell-associated C4b and C3b polypeptides
CC interferes with their ability to catalyze the conversion of C2 and
CC factor B to enzymatically active C2a and Bb and thereby prevents
CC the formation of C4b2a and C3bBb, the amplification convertases of
CC the complement cascade.
CC -!- SUBUNIT: Monomer (major form) and non-disulfide-linked, covalent
CC homodimer (minor form). Binds to coxsackievirus A21,
CC coxsackieviruses B1, B3 and B5, human enterovirus 70, human
CC echoviruses 6, 7, 11, 12, 20 and 21 capsid proteins and acts as a
CC receptor for these viruses.
CC -!- SUBCELLULAR LOCATION: Isoform 1: Cell membrane; Single-pass type I
CC membrane protein.
CC -!- SUBCELLULAR LOCATION: Isoform 2: Cell membrane; Lipid-anchor, GPI-
CC anchor.
CC -!- SUBCELLULAR LOCATION: Isoform 3: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 4: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 5: Secreted.
CC -!- SUBCELLULAR LOCATION: Isoform 6: Cell membrane; Lipid-anchor, GPI-
CC anchor (Probable).
CC -!- SUBCELLULAR LOCATION: Isoform 7: Cell membrane; Lipid-anchor, GPI-
CC anchor (Probable).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=7;
CC Name=2; Synonyms=DAF-2;
CC IsoId=P08174-1; Sequence=Displayed;
CC Name=1; Synonyms=DAF-1;
CC IsoId=P08174-2; Sequence=VSP_001200;
CC Name=3; Synonyms=VDAF3;
CC IsoId=P08174-3; Sequence=VSP_047636;
CC Name=4; Synonyms=VDAF2;
CC IsoId=P08174-4; Sequence=VSP_047637;
CC Name=5; Synonyms=VDAF1;
CC IsoId=P08174-5; Sequence=VSP_047638;
CC Name=6; Synonyms=VDAF4;
CC IsoId=P08174-6; Sequence=VSP_047635;
CC Note=Includes partial sequence of the intron 7;
CC Name=7; Synonyms=VDAF5;
CC IsoId=P08174-7; Sequence=VSP_047634;
CC Note=Includes full sequence of the intron 7;
CC -!- TISSUE SPECIFICITY: Expressed on the plasma membranes of all cell
CC types that are in intimate contact with plasma complement
CC proteins. It is also found on the surfaces of epithelial cells
CC lining extracellular compartments, and variants of the molecule
CC are present in body fluids and in extracellular matrix.
CC -!- DOMAIN: The first Sushi domain (SCR1) is not necessary for
CC function. SCR2 and SCR4 provide the proper conformation for the
CC active site on SCR3 (By similarity).
CC -!- PTM: The Ser/Thr-rich domain is heavily O-glycosylated.
CC -!- POLYMORPHISM: Responsible for the Cromer blood group system (CROM)
CC [MIM:613793]. It consists of at least 8 high-incidence (Cr(a),
CC Tc(a), Dr(a), Es(a), WES(b), UMC, IFC and GUTI) and three low-
CC incidence (Tc(b), Tc(c) and WES(a)) antigens that reside on DAF.
CC In the Cromer phenotypes Dr(a-) and Inab there is reduced or
CC absent expression of DAF, respectively. In the case of the Dr(a-)
CC phenotype, a single nucleotide substitution within exon 5 accounts
CC for two changes: a simple amino acid substitution, Leu-199 that is
CC the basis of the antigenic variation, and an alternative splicing
CC event that underlies the decreased expression of DAF in this
CC phenotype. The Inab phenotype is a very rare one in which the red
CC blood cells lack all Cromer system antigens. The red blood cells
CC of individuals with Inab phenotype have a deficiency of DAF, but
CC these individuals are not known to have any associated hematologic
CC or other abnormalities.
CC -!- SIMILARITY: Belongs to the receptors of complement activation
CC (RCA) family.
CC -!- SIMILARITY: Contains 4 Sushi (CCP/SCR) domains.
CC -!- WEB RESOURCE: Name=dbRBC/BGMUT; Note=Blood group antigen gene
CC mutation database;
CC URL="http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/systems_info&system;=cromer";
CC -!- WEB RESOURCE: Name=CD55base; Note=CD55 mutation db;
CC URL="http://bioinf.uta.fi/CD55base/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Decay-accelerating factor
CC entry;
CC URL="http://en.wikipedia.org/wiki/Decay_accelerating_factor";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/daf/";
CC -!- WEB RESOURCE: Name=Virus Particle ExploreR db; Note=Icosahedral
CC capsid structure;
CC URL="http://viperdb.scripps.edu/info_page.php?VDB=1upn";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M31516; AAA52169.1; -; mRNA.
DR EMBL; M30142; AAA52168.1; -; mRNA.
DR EMBL; AB240566; BAE97422.1; -; mRNA.
DR EMBL; AB240567; BAE97423.1; -; mRNA.
DR EMBL; AB240568; BAE97424.1; -; mRNA.
DR EMBL; AB240569; BAE97425.1; -; mRNA.
DR EMBL; AB240570; BAE97426.1; -; mRNA.
DR EMBL; BT007159; AAP35823.1; -; mRNA.
DR EMBL; AY851161; AAW29942.1; -; Genomic_DNA.
DR EMBL; AL391597; CAH72946.1; -; Genomic_DNA.
DR EMBL; AL596218; CAH72946.1; JOINED; Genomic_DNA.
DR EMBL; AL596218; CAI16463.1; -; Genomic_DNA.
DR EMBL; AL391597; CAI16463.1; JOINED; Genomic_DNA.
DR EMBL; CH471100; EAW93485.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93487.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93488.1; -; Genomic_DNA.
DR EMBL; CH471100; EAW93491.1; -; Genomic_DNA.
DR EMBL; BC001288; AAH01288.1; -; mRNA.
DR EMBL; M64653; AAA52170.1; -; Genomic_DNA.
DR EMBL; M64356; AAA52170.1; JOINED; Genomic_DNA.
DR EMBL; M15799; AAA52167.1; -; mRNA.
DR EMBL; U88576; AAB48622.1; -; mRNA.
DR EMBL; S72858; AAC60633.1; -; Genomic_DNA.
DR PIR; A26359; A26359.
DR PIR; B26359; B26359.
DR RefSeq; NP_000565.1; NM_000574.3.
DR RefSeq; NP_001108224.1; NM_001114752.1.
DR RefSeq; XP_005273135.1; XM_005273078.1.
DR RefSeq; XP_005273136.1; XM_005273079.1.
DR UniGene; Hs.126517; -.
DR PDB; 1H03; X-ray; 1.70 A; P/Q=161-285.
DR PDB; 1H04; X-ray; 2.00 A; P=161-285.
DR PDB; 1H2P; X-ray; 2.80 A; P=161-285.
DR PDB; 1H2Q; X-ray; 3.00 A; P=161-285.
DR PDB; 1M11; EM; 16.00 A; R=35-277.
DR PDB; 1NWV; NMR; -; A=96-222.
DR PDB; 1OJV; X-ray; 2.30 A; A/B=35-285.
DR PDB; 1OJW; X-ray; 2.30 A; A/B=35-285.
DR PDB; 1OJY; X-ray; 2.60 A; A/B/C/D=35-285.
DR PDB; 1OK1; X-ray; 2.60 A; A/B=35-285.
DR PDB; 1OK2; X-ray; 2.50 A; A/B=35-285.
DR PDB; 1OK3; X-ray; 2.20 A; A/B=35-285.
DR PDB; 1OK9; X-ray; 3.00 A; A/B=35-285.
DR PDB; 1UOT; X-ray; 3.00 A; P=161-285.
DR PDB; 1UPN; EM; 16.00 A; E=157-285.
DR PDB; 2C8I; EM; 14.00 A; E=35-285.
DR PDB; 2QZD; EM; -; A=222-285.
DR PDB; 2QZF; EM; -; A=35-94.
DR PDB; 2QZH; EM; 14.00 A; A=96-222.
DR PDB; 3IYP; EM; -; F=1-381.
DR PDB; 3J24; EM; 9.00 A; B=35-285.
DR PDBsum; 1H03; -.
DR PDBsum; 1H04; -.
DR PDBsum; 1H2P; -.
DR PDBsum; 1H2Q; -.
DR PDBsum; 1M11; -.
DR PDBsum; 1NWV; -.
DR PDBsum; 1OJV; -.
DR PDBsum; 1OJW; -.
DR PDBsum; 1OJY; -.
DR PDBsum; 1OK1; -.
DR PDBsum; 1OK2; -.
DR PDBsum; 1OK3; -.
DR PDBsum; 1OK9; -.
DR PDBsum; 1UOT; -.
DR PDBsum; 1UPN; -.
DR PDBsum; 2C8I; -.
DR PDBsum; 2QZD; -.
DR PDBsum; 2QZF; -.
DR PDBsum; 2QZH; -.
DR PDBsum; 3IYP; -.
DR PDBsum; 3J24; -.
DR ProteinModelPortal; P08174; -.
DR SMR; P08174; 35-285.
DR IntAct; P08174; 5.
DR STRING; 9606.ENSP00000316333; -.
DR DrugBank; DB00446; Chloramphenicol.
DR PhosphoSite; P08174; -.
DR DMDM; 60416353; -.
DR PaxDb; P08174; -.
DR PRIDE; P08174; -.
DR DNASU; 1604; -.
DR Ensembl; ENST00000314754; ENSP00000316333; ENSG00000196352.
DR Ensembl; ENST00000367062; ENSP00000356029; ENSG00000196352.
DR Ensembl; ENST00000367064; ENSP00000356031; ENSG00000196352.
DR Ensembl; ENST00000367065; ENSP00000356032; ENSG00000196352.
DR Ensembl; ENST00000391920; ENSP00000375787; ENSG00000196352.
DR GeneID; 1604; -.
DR KEGG; hsa:1604; -.
DR UCSC; uc001hfq.4; human.
DR CTD; 1604; -.
DR GeneCards; GC01P207494; -.
DR HGNC; HGNC:2665; CD55.
DR HPA; CAB010454; -.
DR HPA; HPA002190; -.
DR HPA; HPA024386; -.
DR MIM; 125240; gene.
DR MIM; 613793; phenotype.
DR neXtProt; NX_P08174; -.
DR PharmGKB; PA27137; -.
DR eggNOG; NOG150769; -.
DR HOGENOM; HOG000237360; -.
DR HOVERGEN; HBG001406; -.
DR KO; K04006; -.
DR OMA; GHTCLIT; -.
DR OrthoDB; EOG78WKS7; -.
DR Reactome; REACT_111102; Signal Transduction.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; CD55; human.
DR EvolutionaryTrace; P08174; -.
DR GeneWiki; Decay-accelerating_factor; -.
DR GenomeRNAi; 1604; -.
DR NextBio; 6582; -.
DR PRO; PR:P08174; -.
DR ArrayExpress; P08174; -.
DR Bgee; P08174; -.
DR CleanEx; HS_CD55; -.
DR Genevestigator; P08174; -.
DR GO; GO:0031225; C:anchored to membrane; IEA:UniProtKB-KW.
DR GO; GO:0016324; C:apical plasma membrane; IEA:Ensembl.
DR GO; GO:0009986; C:cell surface; IDA:UniProtKB.
DR GO; GO:0005576; C:extracellular region; TAS:Reactome.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0045121; C:membrane raft; IDA:UniProtKB.
DR GO; GO:0004857; F:enzyme inhibitor activity; IEA:Ensembl.
DR GO; GO:0001618; F:virus receptor activity; IEA:UniProtKB-KW.
DR GO; GO:0006958; P:complement activation, classical pathway; IEA:UniProtKB-KW.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0060137; P:maternal process involved in parturition; IEA:Ensembl.
DR GO; GO:0045916; P:negative regulation of complement activation; IEA:Ensembl.
DR GO; GO:0007204; P:positive regulation of cytosolic calcium ion concentration; IDA:UniProtKB.
DR GO; GO:0030449; P:regulation of complement activation; TAS:Reactome.
DR GO; GO:0045730; P:respiratory burst; NAS:UniProtKB.
DR GO; GO:0043434; P:response to peptide hormone stimulus; IEA:Ensembl.
DR GO; GO:0009615; P:response to virus; IEA:GOC.
DR GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
DR InterPro; IPR000436; Sushi_SCR_CCP.
DR Pfam; PF00084; Sushi; 4.
DR SMART; SM00032; CCP; 4.
DR SUPFAM; SSF57535; SSF57535; 4.
DR PROSITE; PS50923; SUSHI; 4.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Blood group antigen;
KW Cell membrane; Complement pathway; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein; GPI-anchor;
KW Host cell receptor for virus entry; Immunity; Innate immunity;
KW Lipoprotein; Membrane; Polymorphism; Receptor; Reference proteome;
KW Repeat; Secreted; Signal; Sushi.
FT SIGNAL 1 34
FT CHAIN 35 353 Complement decay-accelerating factor.
FT /FTId=PRO_0000006000.
FT PROPEP 354 381 Removed in mature form.
FT /FTId=PRO_0000006001.
FT DOMAIN 35 96 Sushi 1.
FT DOMAIN 96 160 Sushi 2.
FT DOMAIN 161 222 Sushi 3.
FT DOMAIN 223 285 Sushi 4.
FT COMPBIAS 287 356 Ser/Thr-rich.
FT LIPID 353 353 GPI-anchor amidated serine.
FT CARBOHYD 95 95 N-linked (GlcNAc...).
FT DISULFID 36 81
FT DISULFID 65 94
FT DISULFID 98 145
FT DISULFID 129 158
FT DISULFID 163 204
FT DISULFID 190 220
FT DISULFID 225 267
FT DISULFID 253 283
FT VAR_SEQ 326 326 Q -> QGTETPSVLQKHTTENVSATRTPPTPQKPTTVNVPA
FT TIVTPTPQKPTTINVPATGVSSTPQRHTIVNVSATGTLPTL
FT QKPTRANDSATKSPAAAQTSFISKTLSTKTPSAAQNPMMTN
FT ASATQATLTAQKFTTAKVAFTQSPSAARKSTNVHSPVTNGL
FT KSTQRFPSAHIT (in isoform 7).
FT /FTId=VSP_047634.
FT VAR_SEQ 327 327 A -> GTETPSVLQKHTTENVSATRTPPTPQKPTTVNVPAT
FT IVTPTPQKPTTINVPATGVSSTPQRHTIVNVSATGTLPTLQ
FT KPTRANDSATKSPAAAQTSFISKTLSTKTPSAAQNPMMTNA
FT SATQATLTAQKFTTAKVAFTQSPSAAP (in isoform
FT 6).
FT /FTId=VSP_047635.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> ALQVRPFEVSGSSHIS
FT SKKMMCIL (in isoform 3).
FT /FTId=VSP_047636.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> VLFM (in isoform
FT 4).
FT /FTId=VSP_047637.
FT VAR_SEQ 361 381 GHTCFTLTGLLGTLVTMGLLT -> ETVFHRVIQDGLDLLA
FT SRSACLGLPKCWDYRREPPHLARAHVFHVDRFAWDASNHGL
FT ADLAKEELRRKYTQVYRLFLVS (in isoform 5).
FT /FTId=VSP_047638.
FT VAR_SEQ 362 381 HTCFTLTGLLGTLVTMGLLT -> SRPVTQAGMRWCDRSSL
FT QSRTPGFKRSFHFSLPSSWYYRAHVFHVDRFAWDASNHGLA
FT DLAKEELRRKYTQVYRLFLVS (in isoform 1).
FT /FTId=VSP_001200.
FT VARIANT 52 52 R -> L (in Tc(b) antigen;
FT dbSNP:rs28371588).
FT /FTId=VAR_001997.
FT VARIANT 52 52 R -> P (in Tc(c) antigen;
FT dbSNP:rs28371588).
FT /FTId=VAR_001998.
FT VARIANT 82 82 L -> R (in WES(a) antigen;
FT dbSNP:rs147474393).
FT /FTId=VAR_001999.
FT VARIANT 199 199 S -> L (in Dr(a-) antigen;
FT dbSNP:rs56283594).
FT /FTId=VAR_002000.
FT VARIANT 227 227 A -> P (in Cr(a-) antigen;
FT dbSNP:rs60822373).
FT /FTId=VAR_002001.
FT VARIANT 240 240 R -> H (in GUTI(-) antigen).
FT /FTId=VAR_015884.
FT CONFLICT 80 80 I -> T (in Ref. 8; AAA52170 and 9;
FT AAA52167).
FT CONFLICT 85 85 S -> M (in Ref. 9; AAA52167).
FT CONFLICT 187 187 S -> T (in Ref. 10; AAB48622).
FT CONFLICT 297 297 Q -> H (in Ref. 10; AAB48622).
FT STRAND 45 47
FT STRAND 60 65
FT STRAND 69 71
FT STRAND 78 82
FT TURN 83 85
FT STRAND 94 98
FT STRAND 105 109
FT HELIX 113 115
FT STRAND 124 129
FT STRAND 133 135
FT STRAND 136 138
FT STRAND 142 145
FT STRAND 149 151
FT STRAND 157 160
FT STRAND 172 175
FT TURN 177 180
FT STRAND 185 190
FT STRAND 194 198
FT STRAND 200 207
FT STRAND 210 215
FT STRAND 219 222
FT STRAND 234 236
FT STRAND 241 244
FT STRAND 248 253
FT STRAND 258 261
FT STRAND 263 270
FT STRAND 273 278
FT STRAND 282 284
SQ SEQUENCE 381 AA; 41400 MW; C1CBE5300F60C176 CRC64;
MTVARPSVPA ALPLLGELPR LLLLVLLCLP AVWGDCGLPP DVPNAQPALE GRTSFPEDTV
ITYKCEESFV KIPGEKDSVI CLKGSQWSDI EEFCNRSCEV PTRLNSASLK QPYITQNYFP
VGTVVEYECR PGYRREPSLS PKLTCLQNLK WSTAVEFCKK KSCPNPGEIR NGQIDVPGGI
LFGATISFSC NTGYKLFGST SSFCLISGSS VQWSDPLPEC REIYCPAPPQ IDNGIIQGER
DHYGYRQSVT YACNKGFTMI GEHSIYCTVN NDEGEWSGPP PECRGKSLTS KVPPTVQKPT
TVNVPTTEVS PTSQKTTTKT TTPNAQATRS TPVSRTTKHF HETTPNKGSG TTSGTTRLLS
GHTCFTLTGL LGTLVTMGLL T
//
MIM
125240
*RECORD*
*FIELD* NO
125240
*FIELD* TI
*125240 CD55 ANTIGEN; CD55
;;DECAY-ACCELERATING FACTOR FOR COMPLEMENT; DAF
*FIELD* TX
read more
DESCRIPTION
The major isoform of DAF, or CD55, is a 70-kD plasma membrane protein
that is widely distributed on all blood cells and on endothelial and
epithelial tissues. The physiologic role of DAF is to inhibit the
complement cascade at the level of the critical C3 (120700) convertase
step. By this mechanism, DAF protects autologous cells and tissues from
complement-mediated damage and thereby plays a role in preventing or
modulating autoimmune disease and inflammation. DAF also serves as a
receptor for certain strains of E. coli and certain types of
enteroviruses. Variation in DAF forms the basis of the Cromer blood
group system (CROM; 613793) (review by Lublin, 2005). In addition to the
major membrane-bound isoform of DAF, several other minor soluble and
membrane-bound DAF isoforms are produced by alternative splicing (Osuka
et al., 2006)
CLONING
Avoidance by host tissues of attack by autologous complement proteins is
dependent in part on the activities of membrane regulatory factors. One
molecule involved in this control is a 70-kD glycoprotein termed
decay-accelerating factor (DAF). Interruption by DAF of the complement
sequence at an early step in activation effectively halts progression of
the cascade and prevents consequent cell injury. In man, a
glycolipid-anchored form of DAF is expressed on the plasma membrane of
all cell types that are in intimate contact with plasma complement
proteins. DAF is also found on the surfaces of epithelial cells lining
extracellular compartments, and variants of DAF are present in body
fluids and in extracellular matrix. Medof et al. (1987) cloned cDNAs for
human DAF. The deduced 376-amino acid protein contains a 29-amino acid
N-terminal leader peptide, followed by 4 approximately 61-amino acid
repeats of internal homology, a 70-amino acid serine- and threonine-rich
segment with multiple potential O-glycosylation sites, and a C-terminal
hydrophobic segment. However, the sequence lacks an initiation codon,
indicating it is incomplete. Northern blot analysis of HeLa cells and
myeloid leukemia cells detected transcripts of 3.1, 2.7, and 2.0 kb.
Osuka et al. (2006) noted that glycosylphosphatidylinositol
(GPI)-anchored DAF (gDAF) and soluble DAF (sDAF) are generated by
alternative splicing. Insertion of a unique exon (exon 10) into the sDAF
cDNA causes a frameshift that results in a unique C-terminal sequence
lacking the GPI-anchored portion of gDAF. By RT-PCR of a lung cDNA
library, Osuka et al. (2006) cloned 5 additional minor DAF variants.
Three of the variants, vDAF1, vDAF2, and vDAF3, include novel exons
(exons 11, 12, and 13, respectively) compared with gDAF and, like sDAF,
encode proteins lacking the GPI-anchored portion in the C terminus.
Variants vDAF4 and vDAF5 include part or all of intron 7, respectively,
and encode proteins that retain the GPI-anchored portion of the C
terminus but have expanded central STP-rich regions. PCR analysis
detected expression of the DAF variants in almost all tissues examined,
with higher expression of all variants in lung, liver, and peripheral
blood compared with colon and stomach. The main band was derived from
gDAF. Transfection of vDAF1, vDAF2, and vDAF3 into Chinese hamster ovary
cells resulted in the secretion of these isoforms into the culture
medium. Each was highly O-glycosylated prior to secretion. vDAF4 was
expressed as a highly O-glycosylated membrane-bound protein.
GENE FUNCTION
CD55 is deficient in red blood cells from patients with paroxysmal
nocturnal hemoglobinuria (300818). Hamann et al. (1996) found that CD55
is the cellular ligand for CD97 (601211). Erythrocytes from patients
with paroxysmal nocturnal hemoglobinuria failed to adhere to cells
expressing CD97.
The placenta is an immunologically privileged site. Using DNA
microarrays to compare gene expression patterns, Sood et al. (2006)
found that 3 regulators of complement, CD55, CD59 (107271), and MCP, are
expressed at higher levels in normal placental villus sections compared
with other normal human tissues. Within the placenta, CD55 and CD59 are
expressed at greatest levels in amnion, followed by chorion and villus
sections, whereas MCP is expressed at higher levels only in villus
sections. These inhibitors of complement are expressed on
syncytiotrophoblasts, the specialized placental cells lining the villi
that are in direct contact with maternal blood. The amnion compared with
chorion is remarkably nonimmunogenic, and the immune properties of the
amnion are intriguing because it is not in direct contact with maternal
cells. Sood et al. (2006) suggested that the amnion may secrete the
complement inhibitors themselves or in the form of protected exosomes
into the amniotic fluid or the neighboring maternofetal junction.
Capasso et al. (2006) showed that stimulation of CD4 (186940) cells
through engagement of CD55, either with monoclonal antibodies or with
CD97, together with anti-CD3, led to enhanced T-cell proliferation,
cytokine production, and expression of activation markers. This
activation did not affect CD55-mediated complement inhibition and
suggested a novel role for CD55.
Using differential display PCR, Brandt et al. (2005) identified a CD55
splice variant that was overexpressed in a breast cancer cell line
displaying increased transendothelial invasiveness. In situ
hybridization of tissue microarrays and RT-PCR analysis showed the
splice variant was expressed in a proportion of invasive breast cancer
tissues but not in normal mammary tissue. Western blot analysis detected
the dominant full-length protein at an apparent molecular mass of 70 kD
and the isoform at about 45 kD. The isoform was detected in cytoplasm
and secreted into the culture medium.
Group B coxsackieviruses (CVBs) must cross the epithelium to initiate
infection. Coxsackievirus and adenovirus receptor (CAR, or CXADR;
602621), which mediates attachment and infection by all CVBs, is a
component of the tight junction (TJ) and is inaccessible to virus
approaching from the apical surface. Using Caco2 human colorectal
carcinoma cells, Coyne and Bergelson (2006) showed that CVB attachment
to DAF on the apical cell surface activated ABL (189980), triggering
RAC1 (602048)-dependent actin rearrangements that permitted virus
movement to the TJ. Within the TJ, interaction with CAR promoted
conformational changes in the virus capsid that were essential for virus
entry and release of viral RNA. Interaction with DAF also activated FYN
(137025), which was required for phosphorylation of caveolin-1 (CAV1;
601047) and transport of the virus into the cell within caveolar
vesicles. Coyne and Bergelson (2006) concluded that CVBs exploit
DAF-mediated signaling pathways to surmount the epithelial barrier.
GENE STRUCTURE
Osuka et al. (2006) determined that the CD55 gene contains 14 exons.
MAPPING
Lublin et al. (1987) and Lemons et al. (1987) found by study of
hamster-human somatic cell hybrids with DAF cDNA clones and by in situ
hybridization using the same clones that the gene is located at 1q32.
Thus, DAF is closely linked to structural genes for 4 other complement
proteins, C4-binding protein (C4BPA; 120830), CR1 (120620), CR2
(120650), and factor H (CFH; 134370), with which it shares 60-amino acid
repeats as well as functional similarities. Their close genetic linkage
suggests that this complement regulatory gene family evolved from an
ancestral C3b-binding molecule.
Hourcade et al. (1992) described 9 overlapping YACs that encompassed a
genomic region of 800 kb, encoding 4 RCA (regulator of complement
activation) genes and 3 RCA-gene-like elements. An arrangement of CR1,
MCP-like, CR1-like, and MCP (120920), in that order, strongly suggested
that this region of 1q was generated by a single duplication of
neighboring CR1/CR1-like and MCP/MCP-like forerunners.
MOLECULAR GENETICS
- Cromer Blood Group System: Inab Phenotype
The Cromer Inab phenotype, or Cromer null, in which red blood cells lack
all Cromer system antigens, is very rare. The red blood cells of
individuals with Inab phenotype have a deficiency of DAF, but they are
not known to have any associated hematologic or other abnormalities. In
the individual in which the Inab phenotype was first detected, Lublin et
al. (1994) demonstrated a nonsense mutation in exon 2 of the DAF gene
(125240.0001). The mutation truncated DAF near the N terminus,
explaining the complete absence of surface DAF in the red cells of the
individual.
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene (125240.0002). This substitution resulted in an mRNA
with a 26-bp deletion, which introduced a frameshift and created a stop
codon immediately downstream of the deletion. Translation of the mRNA
would be terminated at the first amino acid of the second short
consensus repeat (SCR2) domain of DAF. The woman and her brother, who
also had the Cromer-null phenotype, had no history of intestinal
disease.
ANIMAL MODEL
Lin et al. (2002) demonstrated enhanced susceptibility to experimental
autoimmune myasthenia gravis (254200) in mice lacking Daf. Following
anti-AChR Ab injection, Daf1 -/- mice (devoid of neuromuscular DAF
protein) showed dramatically greater muscle weakness than their Daf1 +/+
littermates. Reversal of the weakness by edrophonium was consistent with
a myasthenic disorder. Immunohistochemistry revealed greatly augmented
C3b deposition localized at postsynaptic junctions, and
radioimmunoassays showed more profound reductions in AChR levels.
Electron microscopy demonstrated markedly greater junctional damage in
the Daf1 -/- mice compared with the Daf1 +/+ littermates.
Liu et al. (2005) found that Daf -/- mice had significantly enhanced
T-cell responses after immunization. This phenotype was characterized by
hypersecretion of Ifng (147570) and Il2 (147680), as well as
downregulation of Il10 (124092) upon restimulation of lymphocytes in
vitro. Daf1 -/- mice also displayed exacerbated disease progression and
pathology in the T cell-dependent experimental autoimmune
encephalomyelitis (EAE) model. Both T-cell responses and EAE disease
severity could be attenuated by neutralization of the complement system.
Liu et al. (2005) concluded that there is a critical link between the
complement system and T-cell immunity and proposed that DAF may have a
role in organ transplantation and vaccine development.
*FIELD* AV
.0001
CROMER BLOOD GROUP SYSTEM, Inab PHENOTYPE
CD55, TRP53TER
In the first individual discovered to have the Cromer Inab phenotype
(613793), i.e., absence of all Cromer system antigens on red blood
cells, Lublin et al. (1994) found a G-to-A transition, converting codon
53 in the CD55 gene from TGG (trp) to TGA (stop). The resulting
truncation near the amino terminus explained the complete absence of
surface DAF in the subject.
.0002
CROMER BLOOD GROUP SYSTEM, Inab PHENOTYPE
CD55, 26-BP DEL
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype (613793) was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene. This substitution caused the activation of a novel
cryptic splice site and resulted in the production of mRNA with a 26-bp
deletion. The deletion introduced a frameshift and created a stop codon
immediately downstream of the deletion. Translation of mRNA would be
terminated at the first amino acid residue of the second short consensus
repeat (SCR2) domain (exon 3) of DAF. The functional domains of DAF's
complement regulatory activity and the C-terminal signal domains for
glycosylphosphatidylinositol (GPI) anchoring were predicted to be
lacking in the subject. The subject and her brother, who also had the
Cromer-null phenotype, had no history of intestinal disease.
*FIELD* SA
Reid et al. (1996)
*FIELD* RF
1. Brandt, B.; Mikesch, J.-H.; Simon, R.; Rotger, A.; Kemming, D.;
Schier, K.; Sauter, G.; Burger, H.: Selective expression of a splice
variant of decay-accelerating factor in c-erbB-2-positive mammary
carcinoma cells showing increased transendothelial invasiveness. Biochem.
Biophys. Res. Commun. 329: 318-323, 2005.
2. Capasso, M.; Durrant, L. G.; Stacey, M.; Gordon, S.; Ramage, J.;
Spendlove, I.: Costimulation via CD55 on human CD4+ T cells mediated
by CD97. J. Immun. 177: 1070-1077, 2006.
3. Coyne, C. B.; Bergelson, J. M.: Virus-induced Abl and Fyn kinase
signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:
119-131, 2006.
4. Hamann, J.; Vogel, B.; van Schijndel, G. M.; van Lier, R. A.:
The seven-span transmembrane receptor CD97 has a cellular ligand (CD55,
DAF). J. Exp. Med. 184: 1185-1189, 1996.
5. Hourcade, D.; Garcia, A. D.; Post, T. W.; Taillon-Miller, P.; Holers,
V. M.; Wagner, L. M.; Bora, N. S.; Atkinson, J. P.: Analysis of the
human regulators of complement activation (RCA) gene cluster with
yeast artificial chromosomes (YACs). Genomics 12: 289-300, 1992.
6. Lemons, R. S.; Le Beau, M. M.; Lublin, D. M.; Holers, V. M.; Tykocinski,
M. L.; Medof, M. E.; Atkinson, J. P.: The gene encoding decay-accelerating
factor (DAF) is located in the complement regulatory locus on the
long arm of chromosome 1. (Abstract) Cytogenet. Cell Genet. 46:
646-647, 1987.
7. Lin, F.; Kaminski, H. J.; Conti-Fine, B. M.; Wang, W.; Richmonds,
C.; Medof, M. E.: Markedly enhanced susceptibility to experimental
autoimmune myasthenia gravis in the absence of decay-accelerating
factor protection. J. Clin. Invest. 110: 1269-1274, 2002.
8. Liu, J.; Miwa, T.; Hilliard, B.; Chen, Y.; Lambris, J. D.; Wells,
A. D.; Song, W.-C.: The complement inhibitory protein DAF (CD55)
suppresses T cell immunity in vivo. J. Exp. Med. 201: 567-577, 2005.
9. Lublin, D. M.: Review: Cromer and DAF: role in health and disease. Immunohematology 21:
39-47, 2005.
10. Lublin, D. M.; Lemons, R. S.; Le Beau, M. M.; Holers, V. M.; Tykocinski,
M. L.; Medof, M. E.; Atkinson, J. P.: The gene encoding decay-accelerating
factor (DAF) is located in the complement-regulatory locus on the
long arm of chromosome 1. J. Exp. Med. 165: 1731-1736, 1987.
11. Lublin, D. M.; Mallinson, G.; Poole, J.; Reid, M. E.; Thompson,
E. S.; Ferdman, B. R.; Telen, M. J.; Anstee, D. J.; Tanner, M. J.
A.: Molecular basis of reduced or absent expression of decay-accelerating
factor in Cromer blood group phenotypes. Blood 84: 1276-1282, 1994.
12. Medof, M. E.; Lublin, D. M.; Holers, V. M.; Ayers, D. J.; Getty,
R. R.; Leykam, J. F.; Atkinson, J. P.; Tykocinski, M. L.: Cloning
and characterization of cDNAs encoding the complete sequence of decay-accelerating
factor of human complement. Proc. Nat. Acad. Sci. 84: 2007-2011,
1987.
13. Osuka, F.; Endo, Y.; Higuchi, M.; Suzuki, H.; Shio, Y.; Fujiu,
K.; Kanno, R.; Oishi, A.; Terashima, M.; Fujita, T.; Gotoh, M.: Molecular
cloning and characterization of novel splicing variants of human decay-accelerating
factor. Genomics 88: 316-322, 2006.
14. Reid, M. E.; Chandrasekaran, V.; Sausais, L.; Pierre, J.; Bullock,
R.: Disappearance of antibodies to Cromer blood group system antigens
during mid pregnancy. Vox Sang. 71: 48-50, 1996.
15. Sood, R.; Zehnder, J. L.; Druzin, M. L.; Brown, P. O.: Gene expression
patterns in human placenta. Proc. Nat. Acad. Sci. 103: 5478-5483,
2006.
16. Wang, L.; Uchikawa, M.; Tsuneyama, H.; Tokunaga, K.; Tadokoro,
K.; Juji, T.: Molecular cloning and characterization of decay-accelerating
factor deficiency in Cromer blood group Inab phenotype. Blood 91:
680-684, 1998.
*FIELD* CN
Matthew B. Gross - updated: 3/4/2011
Matthew B. Gross - updated: 5/14/2009
Patricia A. Hartz - updated: 7/23/2008
Paul J. Converse - updated: 4/4/2007
Paul J. Converse - updated: 10/30/2006
Patricia A. Hartz - updated: 10/3/2006
Anne M. Stumpf - updated: 8/8/2006
Ada Hamosh - updated: 8/8/2006
Denise L. M. Goh - updated: 1/6/2003
Rebekah S. Rasooly - updated: 8/10/1999
Victor A. McKusick - updated: 3/31/1998
*FIELD* CD
Victor A. McKusick: 4/29/1987
*FIELD* ED
carol: 03/10/2011
mgross: 3/4/2011
mgross: 7/1/2010
wwang: 5/29/2009
mgross: 5/14/2009
wwang: 7/25/2008
terry: 7/23/2008
mgross: 4/10/2007
terry: 4/4/2007
mgross: 10/30/2006
mgross: 10/4/2006
terry: 10/3/2006
alopez: 8/8/2006
carol: 3/10/2006
joanna: 11/5/2004
carol: 2/5/2003
carol: 1/6/2003
mgross: 8/10/1999
dholmes: 4/17/1998
alopez: 3/31/1998
terry: 3/24/1998
jamie: 1/15/1997
terry: 1/10/1997
terry: 11/15/1996
terry: 11/4/1996
supermim: 3/16/1992
carol: 2/11/1992
carol: 2/1/1992
carol: 1/31/1992
supermim: 3/20/1990
ddp: 10/26/1989
*RECORD*
*FIELD* NO
125240
*FIELD* TI
*125240 CD55 ANTIGEN; CD55
;;DECAY-ACCELERATING FACTOR FOR COMPLEMENT; DAF
*FIELD* TX
read more
DESCRIPTION
The major isoform of DAF, or CD55, is a 70-kD plasma membrane protein
that is widely distributed on all blood cells and on endothelial and
epithelial tissues. The physiologic role of DAF is to inhibit the
complement cascade at the level of the critical C3 (120700) convertase
step. By this mechanism, DAF protects autologous cells and tissues from
complement-mediated damage and thereby plays a role in preventing or
modulating autoimmune disease and inflammation. DAF also serves as a
receptor for certain strains of E. coli and certain types of
enteroviruses. Variation in DAF forms the basis of the Cromer blood
group system (CROM; 613793) (review by Lublin, 2005). In addition to the
major membrane-bound isoform of DAF, several other minor soluble and
membrane-bound DAF isoforms are produced by alternative splicing (Osuka
et al., 2006)
CLONING
Avoidance by host tissues of attack by autologous complement proteins is
dependent in part on the activities of membrane regulatory factors. One
molecule involved in this control is a 70-kD glycoprotein termed
decay-accelerating factor (DAF). Interruption by DAF of the complement
sequence at an early step in activation effectively halts progression of
the cascade and prevents consequent cell injury. In man, a
glycolipid-anchored form of DAF is expressed on the plasma membrane of
all cell types that are in intimate contact with plasma complement
proteins. DAF is also found on the surfaces of epithelial cells lining
extracellular compartments, and variants of DAF are present in body
fluids and in extracellular matrix. Medof et al. (1987) cloned cDNAs for
human DAF. The deduced 376-amino acid protein contains a 29-amino acid
N-terminal leader peptide, followed by 4 approximately 61-amino acid
repeats of internal homology, a 70-amino acid serine- and threonine-rich
segment with multiple potential O-glycosylation sites, and a C-terminal
hydrophobic segment. However, the sequence lacks an initiation codon,
indicating it is incomplete. Northern blot analysis of HeLa cells and
myeloid leukemia cells detected transcripts of 3.1, 2.7, and 2.0 kb.
Osuka et al. (2006) noted that glycosylphosphatidylinositol
(GPI)-anchored DAF (gDAF) and soluble DAF (sDAF) are generated by
alternative splicing. Insertion of a unique exon (exon 10) into the sDAF
cDNA causes a frameshift that results in a unique C-terminal sequence
lacking the GPI-anchored portion of gDAF. By RT-PCR of a lung cDNA
library, Osuka et al. (2006) cloned 5 additional minor DAF variants.
Three of the variants, vDAF1, vDAF2, and vDAF3, include novel exons
(exons 11, 12, and 13, respectively) compared with gDAF and, like sDAF,
encode proteins lacking the GPI-anchored portion in the C terminus.
Variants vDAF4 and vDAF5 include part or all of intron 7, respectively,
and encode proteins that retain the GPI-anchored portion of the C
terminus but have expanded central STP-rich regions. PCR analysis
detected expression of the DAF variants in almost all tissues examined,
with higher expression of all variants in lung, liver, and peripheral
blood compared with colon and stomach. The main band was derived from
gDAF. Transfection of vDAF1, vDAF2, and vDAF3 into Chinese hamster ovary
cells resulted in the secretion of these isoforms into the culture
medium. Each was highly O-glycosylated prior to secretion. vDAF4 was
expressed as a highly O-glycosylated membrane-bound protein.
GENE FUNCTION
CD55 is deficient in red blood cells from patients with paroxysmal
nocturnal hemoglobinuria (300818). Hamann et al. (1996) found that CD55
is the cellular ligand for CD97 (601211). Erythrocytes from patients
with paroxysmal nocturnal hemoglobinuria failed to adhere to cells
expressing CD97.
The placenta is an immunologically privileged site. Using DNA
microarrays to compare gene expression patterns, Sood et al. (2006)
found that 3 regulators of complement, CD55, CD59 (107271), and MCP, are
expressed at higher levels in normal placental villus sections compared
with other normal human tissues. Within the placenta, CD55 and CD59 are
expressed at greatest levels in amnion, followed by chorion and villus
sections, whereas MCP is expressed at higher levels only in villus
sections. These inhibitors of complement are expressed on
syncytiotrophoblasts, the specialized placental cells lining the villi
that are in direct contact with maternal blood. The amnion compared with
chorion is remarkably nonimmunogenic, and the immune properties of the
amnion are intriguing because it is not in direct contact with maternal
cells. Sood et al. (2006) suggested that the amnion may secrete the
complement inhibitors themselves or in the form of protected exosomes
into the amniotic fluid or the neighboring maternofetal junction.
Capasso et al. (2006) showed that stimulation of CD4 (186940) cells
through engagement of CD55, either with monoclonal antibodies or with
CD97, together with anti-CD3, led to enhanced T-cell proliferation,
cytokine production, and expression of activation markers. This
activation did not affect CD55-mediated complement inhibition and
suggested a novel role for CD55.
Using differential display PCR, Brandt et al. (2005) identified a CD55
splice variant that was overexpressed in a breast cancer cell line
displaying increased transendothelial invasiveness. In situ
hybridization of tissue microarrays and RT-PCR analysis showed the
splice variant was expressed in a proportion of invasive breast cancer
tissues but not in normal mammary tissue. Western blot analysis detected
the dominant full-length protein at an apparent molecular mass of 70 kD
and the isoform at about 45 kD. The isoform was detected in cytoplasm
and secreted into the culture medium.
Group B coxsackieviruses (CVBs) must cross the epithelium to initiate
infection. Coxsackievirus and adenovirus receptor (CAR, or CXADR;
602621), which mediates attachment and infection by all CVBs, is a
component of the tight junction (TJ) and is inaccessible to virus
approaching from the apical surface. Using Caco2 human colorectal
carcinoma cells, Coyne and Bergelson (2006) showed that CVB attachment
to DAF on the apical cell surface activated ABL (189980), triggering
RAC1 (602048)-dependent actin rearrangements that permitted virus
movement to the TJ. Within the TJ, interaction with CAR promoted
conformational changes in the virus capsid that were essential for virus
entry and release of viral RNA. Interaction with DAF also activated FYN
(137025), which was required for phosphorylation of caveolin-1 (CAV1;
601047) and transport of the virus into the cell within caveolar
vesicles. Coyne and Bergelson (2006) concluded that CVBs exploit
DAF-mediated signaling pathways to surmount the epithelial barrier.
GENE STRUCTURE
Osuka et al. (2006) determined that the CD55 gene contains 14 exons.
MAPPING
Lublin et al. (1987) and Lemons et al. (1987) found by study of
hamster-human somatic cell hybrids with DAF cDNA clones and by in situ
hybridization using the same clones that the gene is located at 1q32.
Thus, DAF is closely linked to structural genes for 4 other complement
proteins, C4-binding protein (C4BPA; 120830), CR1 (120620), CR2
(120650), and factor H (CFH; 134370), with which it shares 60-amino acid
repeats as well as functional similarities. Their close genetic linkage
suggests that this complement regulatory gene family evolved from an
ancestral C3b-binding molecule.
Hourcade et al. (1992) described 9 overlapping YACs that encompassed a
genomic region of 800 kb, encoding 4 RCA (regulator of complement
activation) genes and 3 RCA-gene-like elements. An arrangement of CR1,
MCP-like, CR1-like, and MCP (120920), in that order, strongly suggested
that this region of 1q was generated by a single duplication of
neighboring CR1/CR1-like and MCP/MCP-like forerunners.
MOLECULAR GENETICS
- Cromer Blood Group System: Inab Phenotype
The Cromer Inab phenotype, or Cromer null, in which red blood cells lack
all Cromer system antigens, is very rare. The red blood cells of
individuals with Inab phenotype have a deficiency of DAF, but they are
not known to have any associated hematologic or other abnormalities. In
the individual in which the Inab phenotype was first detected, Lublin et
al. (1994) demonstrated a nonsense mutation in exon 2 of the DAF gene
(125240.0001). The mutation truncated DAF near the N terminus,
explaining the complete absence of surface DAF in the red cells of the
individual.
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene (125240.0002). This substitution resulted in an mRNA
with a 26-bp deletion, which introduced a frameshift and created a stop
codon immediately downstream of the deletion. Translation of the mRNA
would be terminated at the first amino acid of the second short
consensus repeat (SCR2) domain of DAF. The woman and her brother, who
also had the Cromer-null phenotype, had no history of intestinal
disease.
ANIMAL MODEL
Lin et al. (2002) demonstrated enhanced susceptibility to experimental
autoimmune myasthenia gravis (254200) in mice lacking Daf. Following
anti-AChR Ab injection, Daf1 -/- mice (devoid of neuromuscular DAF
protein) showed dramatically greater muscle weakness than their Daf1 +/+
littermates. Reversal of the weakness by edrophonium was consistent with
a myasthenic disorder. Immunohistochemistry revealed greatly augmented
C3b deposition localized at postsynaptic junctions, and
radioimmunoassays showed more profound reductions in AChR levels.
Electron microscopy demonstrated markedly greater junctional damage in
the Daf1 -/- mice compared with the Daf1 +/+ littermates.
Liu et al. (2005) found that Daf -/- mice had significantly enhanced
T-cell responses after immunization. This phenotype was characterized by
hypersecretion of Ifng (147570) and Il2 (147680), as well as
downregulation of Il10 (124092) upon restimulation of lymphocytes in
vitro. Daf1 -/- mice also displayed exacerbated disease progression and
pathology in the T cell-dependent experimental autoimmune
encephalomyelitis (EAE) model. Both T-cell responses and EAE disease
severity could be attenuated by neutralization of the complement system.
Liu et al. (2005) concluded that there is a critical link between the
complement system and T-cell immunity and proposed that DAF may have a
role in organ transplantation and vaccine development.
*FIELD* AV
.0001
CROMER BLOOD GROUP SYSTEM, Inab PHENOTYPE
CD55, TRP53TER
In the first individual discovered to have the Cromer Inab phenotype
(613793), i.e., absence of all Cromer system antigens on red blood
cells, Lublin et al. (1994) found a G-to-A transition, converting codon
53 in the CD55 gene from TGG (trp) to TGA (stop). The resulting
truncation near the amino terminus explained the complete absence of
surface DAF in the subject.
.0002
CROMER BLOOD GROUP SYSTEM, Inab PHENOTYPE
CD55, 26-BP DEL
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype (613793) was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene. This substitution caused the activation of a novel
cryptic splice site and resulted in the production of mRNA with a 26-bp
deletion. The deletion introduced a frameshift and created a stop codon
immediately downstream of the deletion. Translation of mRNA would be
terminated at the first amino acid residue of the second short consensus
repeat (SCR2) domain (exon 3) of DAF. The functional domains of DAF's
complement regulatory activity and the C-terminal signal domains for
glycosylphosphatidylinositol (GPI) anchoring were predicted to be
lacking in the subject. The subject and her brother, who also had the
Cromer-null phenotype, had no history of intestinal disease.
*FIELD* SA
Reid et al. (1996)
*FIELD* RF
1. Brandt, B.; Mikesch, J.-H.; Simon, R.; Rotger, A.; Kemming, D.;
Schier, K.; Sauter, G.; Burger, H.: Selective expression of a splice
variant of decay-accelerating factor in c-erbB-2-positive mammary
carcinoma cells showing increased transendothelial invasiveness. Biochem.
Biophys. Res. Commun. 329: 318-323, 2005.
2. Capasso, M.; Durrant, L. G.; Stacey, M.; Gordon, S.; Ramage, J.;
Spendlove, I.: Costimulation via CD55 on human CD4+ T cells mediated
by CD97. J. Immun. 177: 1070-1077, 2006.
3. Coyne, C. B.; Bergelson, J. M.: Virus-induced Abl and Fyn kinase
signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:
119-131, 2006.
4. Hamann, J.; Vogel, B.; van Schijndel, G. M.; van Lier, R. A.:
The seven-span transmembrane receptor CD97 has a cellular ligand (CD55,
DAF). J. Exp. Med. 184: 1185-1189, 1996.
5. Hourcade, D.; Garcia, A. D.; Post, T. W.; Taillon-Miller, P.; Holers,
V. M.; Wagner, L. M.; Bora, N. S.; Atkinson, J. P.: Analysis of the
human regulators of complement activation (RCA) gene cluster with
yeast artificial chromosomes (YACs). Genomics 12: 289-300, 1992.
6. Lemons, R. S.; Le Beau, M. M.; Lublin, D. M.; Holers, V. M.; Tykocinski,
M. L.; Medof, M. E.; Atkinson, J. P.: The gene encoding decay-accelerating
factor (DAF) is located in the complement regulatory locus on the
long arm of chromosome 1. (Abstract) Cytogenet. Cell Genet. 46:
646-647, 1987.
7. Lin, F.; Kaminski, H. J.; Conti-Fine, B. M.; Wang, W.; Richmonds,
C.; Medof, M. E.: Markedly enhanced susceptibility to experimental
autoimmune myasthenia gravis in the absence of decay-accelerating
factor protection. J. Clin. Invest. 110: 1269-1274, 2002.
8. Liu, J.; Miwa, T.; Hilliard, B.; Chen, Y.; Lambris, J. D.; Wells,
A. D.; Song, W.-C.: The complement inhibitory protein DAF (CD55)
suppresses T cell immunity in vivo. J. Exp. Med. 201: 567-577, 2005.
9. Lublin, D. M.: Review: Cromer and DAF: role in health and disease. Immunohematology 21:
39-47, 2005.
10. Lublin, D. M.; Lemons, R. S.; Le Beau, M. M.; Holers, V. M.; Tykocinski,
M. L.; Medof, M. E.; Atkinson, J. P.: The gene encoding decay-accelerating
factor (DAF) is located in the complement-regulatory locus on the
long arm of chromosome 1. J. Exp. Med. 165: 1731-1736, 1987.
11. Lublin, D. M.; Mallinson, G.; Poole, J.; Reid, M. E.; Thompson,
E. S.; Ferdman, B. R.; Telen, M. J.; Anstee, D. J.; Tanner, M. J.
A.: Molecular basis of reduced or absent expression of decay-accelerating
factor in Cromer blood group phenotypes. Blood 84: 1276-1282, 1994.
12. Medof, M. E.; Lublin, D. M.; Holers, V. M.; Ayers, D. J.; Getty,
R. R.; Leykam, J. F.; Atkinson, J. P.; Tykocinski, M. L.: Cloning
and characterization of cDNAs encoding the complete sequence of decay-accelerating
factor of human complement. Proc. Nat. Acad. Sci. 84: 2007-2011,
1987.
13. Osuka, F.; Endo, Y.; Higuchi, M.; Suzuki, H.; Shio, Y.; Fujiu,
K.; Kanno, R.; Oishi, A.; Terashima, M.; Fujita, T.; Gotoh, M.: Molecular
cloning and characterization of novel splicing variants of human decay-accelerating
factor. Genomics 88: 316-322, 2006.
14. Reid, M. E.; Chandrasekaran, V.; Sausais, L.; Pierre, J.; Bullock,
R.: Disappearance of antibodies to Cromer blood group system antigens
during mid pregnancy. Vox Sang. 71: 48-50, 1996.
15. Sood, R.; Zehnder, J. L.; Druzin, M. L.; Brown, P. O.: Gene expression
patterns in human placenta. Proc. Nat. Acad. Sci. 103: 5478-5483,
2006.
16. Wang, L.; Uchikawa, M.; Tsuneyama, H.; Tokunaga, K.; Tadokoro,
K.; Juji, T.: Molecular cloning and characterization of decay-accelerating
factor deficiency in Cromer blood group Inab phenotype. Blood 91:
680-684, 1998.
*FIELD* CN
Matthew B. Gross - updated: 3/4/2011
Matthew B. Gross - updated: 5/14/2009
Patricia A. Hartz - updated: 7/23/2008
Paul J. Converse - updated: 4/4/2007
Paul J. Converse - updated: 10/30/2006
Patricia A. Hartz - updated: 10/3/2006
Anne M. Stumpf - updated: 8/8/2006
Ada Hamosh - updated: 8/8/2006
Denise L. M. Goh - updated: 1/6/2003
Rebekah S. Rasooly - updated: 8/10/1999
Victor A. McKusick - updated: 3/31/1998
*FIELD* CD
Victor A. McKusick: 4/29/1987
*FIELD* ED
carol: 03/10/2011
mgross: 3/4/2011
mgross: 7/1/2010
wwang: 5/29/2009
mgross: 5/14/2009
wwang: 7/25/2008
terry: 7/23/2008
mgross: 4/10/2007
terry: 4/4/2007
mgross: 10/30/2006
mgross: 10/4/2006
terry: 10/3/2006
alopez: 8/8/2006
carol: 3/10/2006
joanna: 11/5/2004
carol: 2/5/2003
carol: 1/6/2003
mgross: 8/10/1999
dholmes: 4/17/1998
alopez: 3/31/1998
terry: 3/24/1998
jamie: 1/15/1997
terry: 1/10/1997
terry: 11/15/1996
terry: 11/4/1996
supermim: 3/16/1992
carol: 2/11/1992
carol: 2/1/1992
carol: 1/31/1992
supermim: 3/20/1990
ddp: 10/26/1989
MIM
613793
*RECORD*
*FIELD* NO
613793
*FIELD* TI
#613793 BLOOD GROUP, CROMER SYSTEM; CROM
;;CROMER BLOOD GROUP SYSTEM
*FIELD* TX
A number sign (#) is used with this entry because the Cromer blood group
read moresystem is based on variation in the CD55 gene (CD55; 125240).
DESCRIPTION
The Cromer blood group system (CROM) consists of 12 high-prevalence and
3 low-prevalence antigens that reside on decay-accelerating factor (DAF,
or CD55; 125240), a regulator of complement activation. Nearly all
Cromer antigens result from SNPs in the DAF gene. The red blood cells
(RBCs) of people with the Cromer-null phenotype, Inab, lack DAF but do
not appear to show increased susceptibility to hemolysis. Antibodies to
Cromer antigens are rarely encountered, although evidence suggests that
the antibodies may cause accelerated destruction of transfused RBCs.
Cromer system antibodies are not associated with hemolytic disease of
the newborn, because placenta is a rich source of fetally derived DAF,
which is thought to absorb the antibodies (review by Storry et al.,
2010).
CLINICAL FEATURES
Reid et al. (1996) studied 2 cases in which strongly reactive Cromer
system antibodies, anti-Cr(a) and anti-Dr(a), became undetectable during
the second and third trimesters of pregnancy.
MOLECULAR GENETICS
- Inab Phenotype
The Inab phenotype, or Cromer null, in which RBCs lack all Cromer system
antigens, is very rare. The RBCs of individuals with Inab phenotype have
a deficiency of DAF, but they are not known to have any associated
hematologic or other abnormalities. In the individual in which the Inab
phenotype was first detected, Lublin et al. (1994) demonstrated a
nonsense mutation in exon 2 of the DAF gene (125240.0001). The mutation
truncated DAF near the N terminus, explaining the complete absence of
surface DAF in the red cells of the individual.
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene (125240.0002). This substitution resulted in an mRNA
with a 26-bp deletion, which introduced a frameshift and created a stop
codon immediately downstream of the deletion. Translation of the mRNA
would be terminated at the first amino acid of the second short
consensus repeat (SCR2) domain of DAF. The woman and her brother, who
also had the Cromer-null phenotype, had no history of intestinal
disease.
*FIELD* RF
1. Lublin, D. M.; Mallinson, G.; Poole, J.; Reid, M. E.; Thompson,
E. S.; Ferdman, B. R.; Telen, M. J.; Anstee, D. J.; Tanner, M. J.
A.: Molecular basis of reduced or absent expression of decay-accelerating
factor in Cromer blood group phenotypes. Blood 84: 1276-1282, 1994.
2. Reid, M. E.; Chandrasekaran, V.; Sausais, L.; Pierre, J.; Bullock,
R.: Disappearance of antibodies to Cromer blood group system antigens
during mid pregnancy. Vox Sang. 71: 48-50, 1996.
3. Storry, J. R.; Reid, M. E.; Yazer, M. H.: The Cromer blood group
system: a review. Immunohematology 26: 109-118, 2010.
4. Wang, L.; Uchikawa, M.; Tsuneyama, H.; Tokunaga, K.; Tadokoro,
K.; Juji, T.: Molecular cloning and characterization of decay-accelerating
factor deficiency in Cromer blood group Inab phenotype. Blood 91:
680-684, 1998.
*FIELD* CD
Matthew B. Gross: 3/4/2011
*FIELD* ED
terry: 03/09/2011
mgross: 3/4/2011
*RECORD*
*FIELD* NO
613793
*FIELD* TI
#613793 BLOOD GROUP, CROMER SYSTEM; CROM
;;CROMER BLOOD GROUP SYSTEM
*FIELD* TX
A number sign (#) is used with this entry because the Cromer blood group
read moresystem is based on variation in the CD55 gene (CD55; 125240).
DESCRIPTION
The Cromer blood group system (CROM) consists of 12 high-prevalence and
3 low-prevalence antigens that reside on decay-accelerating factor (DAF,
or CD55; 125240), a regulator of complement activation. Nearly all
Cromer antigens result from SNPs in the DAF gene. The red blood cells
(RBCs) of people with the Cromer-null phenotype, Inab, lack DAF but do
not appear to show increased susceptibility to hemolysis. Antibodies to
Cromer antigens are rarely encountered, although evidence suggests that
the antibodies may cause accelerated destruction of transfused RBCs.
Cromer system antibodies are not associated with hemolytic disease of
the newborn, because placenta is a rich source of fetally derived DAF,
which is thought to absorb the antibodies (review by Storry et al.,
2010).
CLINICAL FEATURES
Reid et al. (1996) studied 2 cases in which strongly reactive Cromer
system antibodies, anti-Cr(a) and anti-Dr(a), became undetectable during
the second and third trimesters of pregnancy.
MOLECULAR GENETICS
- Inab Phenotype
The Inab phenotype, or Cromer null, in which RBCs lack all Cromer system
antigens, is very rare. The RBCs of individuals with Inab phenotype have
a deficiency of DAF, but they are not known to have any associated
hematologic or other abnormalities. In the individual in which the Inab
phenotype was first detected, Lublin et al. (1994) demonstrated a
nonsense mutation in exon 2 of the DAF gene (125240.0001). The mutation
truncated DAF near the N terminus, explaining the complete absence of
surface DAF in the red cells of the individual.
In a 28-year-old Japanese woman, Wang et al. (1998) demonstrated that
the Cromer Inab phenotype was due to homozygosity for a 1579C-A
transversion at the position 24 bp upstream of the 3-prime end of exon 2
of the CD55 gene (125240.0002). This substitution resulted in an mRNA
with a 26-bp deletion, which introduced a frameshift and created a stop
codon immediately downstream of the deletion. Translation of the mRNA
would be terminated at the first amino acid of the second short
consensus repeat (SCR2) domain of DAF. The woman and her brother, who
also had the Cromer-null phenotype, had no history of intestinal
disease.
*FIELD* RF
1. Lublin, D. M.; Mallinson, G.; Poole, J.; Reid, M. E.; Thompson,
E. S.; Ferdman, B. R.; Telen, M. J.; Anstee, D. J.; Tanner, M. J.
A.: Molecular basis of reduced or absent expression of decay-accelerating
factor in Cromer blood group phenotypes. Blood 84: 1276-1282, 1994.
2. Reid, M. E.; Chandrasekaran, V.; Sausais, L.; Pierre, J.; Bullock,
R.: Disappearance of antibodies to Cromer blood group system antigens
during mid pregnancy. Vox Sang. 71: 48-50, 1996.
3. Storry, J. R.; Reid, M. E.; Yazer, M. H.: The Cromer blood group
system: a review. Immunohematology 26: 109-118, 2010.
4. Wang, L.; Uchikawa, M.; Tsuneyama, H.; Tokunaga, K.; Tadokoro,
K.; Juji, T.: Molecular cloning and characterization of decay-accelerating
factor deficiency in Cromer blood group Inab phenotype. Blood 91:
680-684, 1998.
*FIELD* CD
Matthew B. Gross: 3/4/2011
*FIELD* ED
terry: 03/09/2011
mgross: 3/4/2011