Full text data of DDX17
DDX17
[Confidence: low (only semi-automatic identification from reviews)]
Probable ATP-dependent RNA helicase DDX17; 3.6.4.13 (DEAD box protein 17; DEAD box protein p72; RNA-dependent helicase p72)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Probable ATP-dependent RNA helicase DDX17; 3.6.4.13 (DEAD box protein 17; DEAD box protein p72; RNA-dependent helicase p72)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
Q92841
ID DDX17_HUMAN Reviewed; 729 AA.
AC Q92841; B1AHM0; Q69YT1; Q6ICD6;
DT 15-JUL-1998, integrated into UniProtKB/Swiss-Prot.
read moreDT 21-MAR-2012, sequence version 2.
DT 22-JAN-2014, entry version 145.
DE RecName: Full=Probable ATP-dependent RNA helicase DDX17;
DE EC=3.6.4.13;
DE AltName: Full=DEAD box protein 17;
DE AltName: Full=DEAD box protein p72;
DE AltName: Full=RNA-dependent helicase p72;
GN Name=DDX17;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2).
RX PubMed=8871553; DOI=10.1093/nar/24.19.3739;
RA Lamm G.M., Nicol S.M., Fuller-Pace F.V., Lamond A.I.;
RT "p72: a human nuclear DEAD box protein highly related to p68.";
RL Nucleic Acids Res. 24:3739-3747(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
RX PubMed=15461802; DOI=10.1186/gb-2004-5-10-r84;
RA Collins J.E., Wright C.L., Edwards C.A., Davis M.P., Grinham J.A.,
RA Cole C.G., Goward M.E., Aguado B., Mallya M., Mokrab Y., Huckle E.J.,
RA Beare D.M., Dunham I.;
RT "A genome annotation-driven approach to cloning the human ORFeome.";
RL Genome Biol. 5:R84.1-R84.11(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3).
RC TISSUE=Amygdala;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=10591208; DOI=10.1038/990031;
RA Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M.,
RA Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K.,
RA Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P.,
RA Bird C.P., Blakey S.E., Bridgeman A.M., Buck D., Burgess J.,
RA Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G.,
RA Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R.,
RA Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E.,
RA Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G.,
RA Evans K.L., Fey J.M., Fleming K., French L., Garner A.A.,
RA Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C.,
RA Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S.,
RA Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A.,
RA Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M.,
RA Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T.,
RA Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J.,
RA Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T.,
RA Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T.,
RA Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L.,
RA Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M.,
RA Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L.,
RA Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L.,
RA Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N.,
RA Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J.,
RA Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S.,
RA Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T.,
RA Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I.,
RA Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H.,
RA Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L.,
RA Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z.,
RA Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P.,
RA Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S.,
RA Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J.,
RA Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T.,
RA Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J.,
RA Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R.,
RA Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S.,
RA Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E.,
RA Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P.,
RA Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E.,
RA O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X.,
RA Khan A.S., Lane L., Tilahun Y., Wright H.;
RT "The DNA sequence of human chromosome 22.";
RL Nature 402:489-495(1999).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP ALTERNATIVE INITIATION (ISOFORM 1).
RX PubMed=11675387; DOI=10.1074/jbc.M107535200;
RA Uhlmann-Schiffler H., Rossler O.G., Stahl H.;
RT "The mRNA of DEAD box protein p72 is alternatively translated into an
RT 82-kDa RNA helicase.";
RL J. Biol. Chem. 277:1066-1075(2002).
RN [8]
RP FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, AND INTERACTION WITH ESR1;
RP NCOA1; NCOA2 AND NCOA3.
RX PubMed=11250900; DOI=10.1093/emboj/20.6.1341;
RA Watanabe M., Yanagisawa J., Kitagawa H., Takeyama K., Ogawa S.,
RA Arao Y., Suzawa M., Kobayashi Y., Yano T., Yoshikawa H., Masuhiro Y.,
RA Kato S.;
RT "A subfamily of RNA-binding DEAD-box proteins acts as an estrogen
RT receptor alpha coactivator through the N-terminal activation domain
RT (AF-1) with an RNA coactivator, SRA.";
RL EMBO J. 20:1341-1352(2001).
RN [9]
RP SELF-ASSOCIATION, AND INTERACTION WITH DDX5.
RX PubMed=12595555; DOI=10.1093/nar/gkg236;
RA Ogilvie V.C., Wilson B.J., Nicol S.M., Morrice N.A., Saunders L.R.,
RA Barber G.N., Fuller-Pace F.V.;
RT "The highly related DEAD box RNA helicases p68 and p72 exist as
RT heterodimers in cells.";
RL Nucleic Acids Res. 31:1470-1480(2003).
RN [10]
RP FUNCTION IN TRANSCRIPTIONAL REPRESSION, AND INTERACTION WITH HDAC1.
RX PubMed=15298701; DOI=10.1186/1471-2199-5-11;
RA Wilson B.J., Bates G.J., Nicol S.M., Gregory D.J., Perkins N.D.,
RA Fuller-Pace F.V.;
RT "The p68 and p72 DEAD box RNA helicases interact with HDAC1 and
RT repress transcription in a promoter-specific manner.";
RL BMC Mol. Biol. 5:11-11(2004).
RN [11]
RP INTERACTION WITH TP53.
RX PubMed=15660129; DOI=10.1038/sj.emboj.7600550;
RA Bates G.J., Nicol S.M., Wilson B.J., Jacobs A.M., Bourdon J.C.,
RA Wardrop J., Gregory D.J., Lane D.P., Perkins N.D., Fuller-Pace F.V.;
RT "The DEAD box protein p68: a novel transcriptional coactivator of the
RT p53 tumour suppressor.";
RL EMBO J. 24:543-553(2005).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [13]
RP FUNCTION, AND INTERACTION WITH MYOD1.
RX PubMed=17011493; DOI=10.1016/j.devcel.2006.08.003;
RA Caretti G., Schiltz R.L., Dilworth F.J., Di Padova M., Zhao P.,
RA Ogryzko V., Fuller-Pace F.V., Hoffman E.P., Tapscott S.J.,
RA Sartorelli V.;
RT "The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators
RT of MyoD and skeletal muscle differentiation.";
RL Dev. Cell 11:547-560(2006).
RN [14]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-523, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16964243; DOI=10.1038/nbt1240;
RA Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
RT "A probability-based approach for high-throughput protein
RT phosphorylation analysis and site localization.";
RL Nat. Biotechnol. 24:1285-1292(2006).
RN [15]
RP FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, AND INTERACTION WITH EP300;
RP CREBBP AND KAT2B.
RX PubMed=17226766; DOI=10.1002/jcb.21250;
RA Shin S., Janknecht R.;
RT "Concerted activation of the Mdm2 promoter by p72 RNA helicase and the
RT coactivators p300 and P/CAF.";
RL J. Cell. Biochem. 101:1252-1265(2007).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Embryonic kidney;
RX PubMed=17525332; DOI=10.1126/science.1140321;
RA Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
RA Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
RA Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
RT "ATM and ATR substrate analysis reveals extensive protein networks
RT responsive to DNA damage.";
RL Science 316:1160-1166(2007).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [18]
RP FUNCTION, AND INTERACTION WITH ZC3HAV1; EXOSC3 AND EXOSC5.
RX PubMed=18334637; DOI=10.1073/pnas.0712276105;
RA Chen G., Guo X., Lv F., Xu Y., Gao G.;
RT "p72 DEAD box RNA helicase is required for optimal function of the
RT zinc-finger antiviral protein.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:4352-4357(2008).
RN [19]
RP FUNCTION, AND INTERACTION WITH ESR1.
RX PubMed=19718048; DOI=10.1038/onc.2009.261;
RA Wortham N.C., Ahamed E., Nicol S.M., Thomas R.S., Periyasamy M.,
RA Jiang J., Ochocka A.M., Shousha S., Huson L., Bray S.E., Coombes R.C.,
RA Ali S., Fuller-Pace F.V.;
RT "The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent
RT transcription and cell growth, and is associated with improved
RT survival in ERalpha-positive breast cancer.";
RL Oncogene 28:4053-4064(2009).
RN [20]
RP SUMOYLATION AT LYS-129, AND MUTAGENESIS OF LYS-129.
RX PubMed=19995069; DOI=10.1021/bi901263m;
RA Mooney S.M., Grande J.P., Salisbury J.L., Janknecht R.;
RT "Sumoylation of p68 and p72 RNA helicases affects protein stability
RT and transactivation potential.";
RL Biochemistry 49:1-10(2010).
RN [21]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-64, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP INTERACTION WITH DCP1A AND DCP2.
RX PubMed=21876179; DOI=10.1073/pnas.1101676108;
RA Zhu Y., Chen G., Lv F., Wang X., Ji X., Xu Y., Sun J., Wu L.,
RA Zheng Y.T., Gao G.;
RT "Zinc-finger antiviral protein inhibits HIV-1 infection by selectively
RT targeting multiply spliced viral mRNAs for degradation.";
RL Proc. Natl. Acad. Sci. U.S.A. 108:15834-15839(2011).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [25]
RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
RX PubMed=22002106; DOI=10.1074/mcp.M111.013680;
RA Ahmad Y., Boisvert F.M., Lundberg E., Uhlen M., Lamond A.I.;
RT "Systematic analysis of protein pools, isoforms, and modifications
RT affecting turnover and subcellular localization.";
RL Mol. Cell. Proteomics 11:M111.013680.01-M111.013680.15(2012).
CC -!- FUNCTION: RNA-dependent ATPase activity. Involved in
CC transcriptional regulation. Transcriptional coactivator for
CC estrogen receptor ESR1. Increases ESR1 AF-1 domain-mediated
CC transactivation. Synergizes with DDX5 and SRA1 RNA to activate
CC MYOD1 transcriptional activity and probably involved in skeletal
CC muscle differentiation. Required for zinc-finger antiviral protein
CC ZC3HAV1-mediated mRNA degradation.
CC -!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
CC -!- SUBUNIT: Interacts with ESR1. Interacts with NCOA1, NCOA2, NCOA3,
CC TP53 and HDAC1. Self-associates. Interacts with DDX5. Interacts
CC with DCP1A in an RNA-independent manner. Interacts with DCP2 in an
CC RNA-dependent manner. Interacts with ZC3HAV1 (via N-terminal
CC domain) in an RNA-independent manner. Interacts with EXOSC3 and
CC EXOSC5 only in the presence of ZC3HAV1 in an RNA-independent
CC manner.
CC -!- INTERACTION:
CC P03372:ESR1; NbExp=7; IntAct=EBI-746012, EBI-78473;
CC Q13547:HDAC1; NbExp=3; IntAct=EBI-5280703, EBI-301834;
CC Q15596:NCOA2; NbExp=2; IntAct=EBI-746012, EBI-81236;
CC Q9Y6Q9:NCOA3; NbExp=2; IntAct=EBI-746012, EBI-81196;
CC O94916:NFAT5; NbExp=3; IntAct=EBI-746012, EBI-308320;
CC Q9JKL7:Srek1 (xeno); NbExp=3; IntAct=EBI-746012, EBI-6452221;
CC P04637:TP53; NbExp=3; IntAct=EBI-746012, EBI-366083;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus, nucleolus.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing, Alternative initiation; Named isoforms=4;
CC Name=1; Synonyms=p82;
CC IsoId=Q92841-4; Sequence=Displayed;
CC Note=Starts at an alternative CUG codon;
CC Name=2; Synonyms=p72;
CC IsoId=Q92841-1; Sequence=VSP_042527;
CC Note=Produced by alternative initiation at Met-80 of isoform 1;
CC Name=3;
CC IsoId=Q92841-2; Sequence=VSP_042527, VSP_042528;
CC Note=Produced by alternative splicing of isoform 2. No
CC experimental confirmation available;
CC Name=4;
CC IsoId=Q92841-3; Sequence=VSP_042527, VSP_042529;
CC Note=Produced by alternative splicing of isoform 2. No
CC experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- PTM: Sumoylation significantly increases stability, it also
CC promotes interaction with HDAC1.
CC -!- SIMILARITY: Belongs to the DEAD box helicase family. DDX5/DBP2
CC subfamily.
CC -!- SIMILARITY: Contains 1 helicase ATP-binding domain.
CC -!- SIMILARITY: Contains 1 helicase C-terminal domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U59321; AAC50787.1; -; mRNA.
DR EMBL; CR456432; CAG30318.1; -; mRNA.
DR EMBL; AL713763; CAH10627.2; -; mRNA.
DR EMBL; Z97056; CAQ08924.1; -; Genomic_DNA.
DR EMBL; Z97056; CAB09792.1; -; Genomic_DNA.
DR EMBL; CH471095; EAW60243.1; -; Genomic_DNA.
DR EMBL; BC000595; AAH00595.2; -; mRNA.
DR PIR; S72367; S72367.
DR RefSeq; NP_006377.2; NM_006386.4.
DR UniGene; Hs.528305; -.
DR UniGene; Hs.706116; -.
DR ProteinModelPortal; Q92841; -.
DR SMR; Q92841; 148-544.
DR DIP; DIP-29843N; -.
DR IntAct; Q92841; 53.
DR MINT; MINT-4545892; -.
DR STRING; 9606.ENSP00000380033; -.
DR PhosphoSite; Q92841; -.
DR DMDM; 3122595; -.
DR REPRODUCTION-2DPAGE; IPI00023785; -.
DR PaxDb; Q92841; -.
DR PRIDE; Q92841; -.
DR DNASU; 10521; -.
DR Ensembl; ENST00000403230; ENSP00000385536; ENSG00000100201.
DR GeneID; 10521; -.
DR KEGG; hsa:10521; -.
DR UCSC; uc003avx.4; human.
DR CTD; 10521; -.
DR GeneCards; GC22M038879; -.
DR HGNC; HGNC:2740; DDX17.
DR HPA; CAB024908; -.
DR MIM; 608469; gene.
DR neXtProt; NX_Q92841; -.
DR PharmGKB; PA27206; -.
DR eggNOG; COG0513; -.
DR HOGENOM; HOG000268804; -.
DR HOVERGEN; HBG015893; -.
DR InParanoid; Q92841; -.
DR KO; K13178; -.
DR ChiTaRS; DDX17; human.
DR GeneWiki; DDX17; -.
DR GenomeRNAi; 10521; -.
DR NextBio; 39902; -.
DR PRO; PR:Q92841; -.
DR ArrayExpress; Q92841; -.
DR Bgee; Q92841; -.
DR CleanEx; HS_DDX17; -.
DR Genevestigator; Q92841; -.
DR GO; GO:0005730; C:nucleolus; IEA:UniProtKB-SubCell.
DR GO; GO:0005634; C:nucleus; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0008026; F:ATP-dependent helicase activity; IEA:InterPro.
DR GO; GO:0030331; F:estrogen receptor binding; IDA:UniProtKB.
DR GO; GO:0003723; F:RNA binding; TAS:ProtInc.
DR GO; GO:0003724; F:RNA helicase activity; TAS:ProtInc.
DR GO; GO:0008186; F:RNA-dependent ATPase activity; TAS:ProtInc.
DR GO; GO:0003713; F:transcription coactivator activity; IDA:UniProtKB.
DR GO; GO:0033148; P:positive regulation of intracellular estrogen receptor signaling pathway; IDA:UniProtKB.
DR GO; GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter; IDA:UniProtKB.
DR GO; GO:2001014; P:regulation of skeletal muscle cell differentiation; IMP:UniProtKB.
DR GO; GO:0006396; P:RNA processing; TAS:ProtInc.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR InterPro; IPR011545; DNA/RNA_helicase_DEAD/DEAH_N.
DR InterPro; IPR014001; Helicase_ATP-bd.
DR InterPro; IPR001650; Helicase_C.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR000629; RNA-helicase_DEAD-box_CS.
DR InterPro; IPR014014; RNA_helicase_DEAD_Q_motif.
DR Pfam; PF00270; DEAD; 1.
DR Pfam; PF00271; Helicase_C; 1.
DR SMART; SM00487; DEXDc; 1.
DR SMART; SM00490; HELICc; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR PROSITE; PS00039; DEAD_ATP_HELICASE; 1.
DR PROSITE; PS51192; HELICASE_ATP_BIND_1; 1.
DR PROSITE; PS51194; HELICASE_CTER; 1.
DR PROSITE; PS51195; Q_MOTIF; 1.
PE 1: Evidence at protein level;
KW Alternative initiation; Alternative splicing; ATP-binding;
KW Complete proteome; Helicase; Hydrolase; Isopeptide bond;
KW Nucleotide-binding; Nucleus; Phosphoprotein; Reference proteome;
KW RNA-binding; Transcription; Transcription regulation; Ubl conjugation.
FT CHAIN 1 729 Probable ATP-dependent RNA helicase
FT DDX17.
FT /FTId=PRO_0000054993.
FT DOMAIN 202 377 Helicase ATP-binding.
FT DOMAIN 405 552 Helicase C-terminal.
FT NP_BIND 215 222 ATP (By similarity).
FT REGION 547 729 Transactivation domain.
FT MOTIF 171 199 Q motif.
FT MOTIF 325 328 DEAD box.
FT COMPBIAS 101 104 Poly-Gly.
FT COMPBIAS 556 563 Poly-Gly.
FT COMPBIAS 718 726 Poly-Pro.
FT MOD_RES 64 64 Phosphoserine.
FT MOD_RES 523 523 Phosphothreonine.
FT CROSSLNK 129 129 Glycyl lysine isopeptide (Lys-Gly)
FT (interchain with G-Cter in SUMO).
FT VAR_SEQ 1 79 Missing (in isoform 2, isoform 3 and
FT isoform 4).
FT /FTId=VSP_042527.
FT VAR_SEQ 482 482 L -> LGL (in isoform 3).
FT /FTId=VSP_042528.
FT VAR_SEQ 562 562 G -> GKG (in isoform 4).
FT /FTId=VSP_042529.
FT MUTAGEN 129 129 K->R: Impaired sumoylation and decreased
FT stability.
SQ SEQUENCE 729 AA; 80272 MW; C819F53515B1BC39 CRC64;
MPTGFVAPIL CVLLPSPTRE AATVASATGD SASERESAAP AAAPTAEAPP PSVVTRPEPQ
ALPSPAIRAP LPDLYPFGTM RGGGFGDRDR DRDRGGFGAR GGGGLPPKKF GNPGERLRKK
KWDLSELPKF EKNFYVEHPE VARLTPYEVD ELRRKKEITV RGGDVCPKPV FAFHHANFPQ
YVMDVLMDQH FTEPTPIQCQ GFPLALSGRD MVGIAQTGSG KTLAYLLPAI VHINHQPYLE
RGDGPICLVL APTRELAQQV QQVADDYGKC SRLKSTCIYG GAPKGPQIRD LERGVEICIA
TPGRLIDFLE SGKTNLRRCT YLVLDEADRM LDMGFEPQIR KIVDQIRPDR QTLMWSATWP
KEVRQLAEDF LRDYTQINVG NLELSANHNI LQIVDVCMES EKDHKLIQLM EEIMAEKENK
TIIFVETKRR CDDLTRRMRR DGWPAMCIHG DKSQPERDWV LNEFRSGKAP ILIATDVASR
GLDVEDVKFV INYDYPNSSE DYVHRIGRTA RSTNKGTAYT FFTPGNLKQA RELIKVLEEA
NQAINPKLMQ LVDHRGGGGG GGGRSRYRTT SSANNPNLMY QDECDRRLRG VKDGGRRDSA
SYRDRSETDR AGYANGSGYG SPNSAFGAQA GQYTYGQGTY GAAAYGTSSY TAQEYGAGTY
GASSTTSTGR SSQSSSQQFS GIGRSGQQPQ PLMSQQFAQP PGATNMIGYM GQTAYQYPPP
PPPPPPSRK
//
ID DDX17_HUMAN Reviewed; 729 AA.
AC Q92841; B1AHM0; Q69YT1; Q6ICD6;
DT 15-JUL-1998, integrated into UniProtKB/Swiss-Prot.
read moreDT 21-MAR-2012, sequence version 2.
DT 22-JAN-2014, entry version 145.
DE RecName: Full=Probable ATP-dependent RNA helicase DDX17;
DE EC=3.6.4.13;
DE AltName: Full=DEAD box protein 17;
DE AltName: Full=DEAD box protein p72;
DE AltName: Full=RNA-dependent helicase p72;
GN Name=DDX17;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2).
RX PubMed=8871553; DOI=10.1093/nar/24.19.3739;
RA Lamm G.M., Nicol S.M., Fuller-Pace F.V., Lamond A.I.;
RT "p72: a human nuclear DEAD box protein highly related to p68.";
RL Nucleic Acids Res. 24:3739-3747(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
RX PubMed=15461802; DOI=10.1186/gb-2004-5-10-r84;
RA Collins J.E., Wright C.L., Edwards C.A., Davis M.P., Grinham J.A.,
RA Cole C.G., Goward M.E., Aguado B., Mallya M., Mokrab Y., Huckle E.J.,
RA Beare D.M., Dunham I.;
RT "A genome annotation-driven approach to cloning the human ORFeome.";
RL Genome Biol. 5:R84.1-R84.11(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3).
RC TISSUE=Amygdala;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=10591208; DOI=10.1038/990031;
RA Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M.,
RA Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K.,
RA Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P.,
RA Bird C.P., Blakey S.E., Bridgeman A.M., Buck D., Burgess J.,
RA Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G.,
RA Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R.,
RA Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E.,
RA Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G.,
RA Evans K.L., Fey J.M., Fleming K., French L., Garner A.A.,
RA Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C.,
RA Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S.,
RA Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A.,
RA Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M.,
RA Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T.,
RA Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J.,
RA Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T.,
RA Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T.,
RA Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L.,
RA Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M.,
RA Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L.,
RA Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L.,
RA Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N.,
RA Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J.,
RA Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S.,
RA Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T.,
RA Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I.,
RA Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H.,
RA Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L.,
RA Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z.,
RA Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P.,
RA Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S.,
RA Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J.,
RA Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T.,
RA Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J.,
RA Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R.,
RA Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S.,
RA Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E.,
RA Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P.,
RA Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E.,
RA O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X.,
RA Khan A.S., Lane L., Tilahun Y., Wright H.;
RT "The DNA sequence of human chromosome 22.";
RL Nature 402:489-495(1999).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP ALTERNATIVE INITIATION (ISOFORM 1).
RX PubMed=11675387; DOI=10.1074/jbc.M107535200;
RA Uhlmann-Schiffler H., Rossler O.G., Stahl H.;
RT "The mRNA of DEAD box protein p72 is alternatively translated into an
RT 82-kDa RNA helicase.";
RL J. Biol. Chem. 277:1066-1075(2002).
RN [8]
RP FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, AND INTERACTION WITH ESR1;
RP NCOA1; NCOA2 AND NCOA3.
RX PubMed=11250900; DOI=10.1093/emboj/20.6.1341;
RA Watanabe M., Yanagisawa J., Kitagawa H., Takeyama K., Ogawa S.,
RA Arao Y., Suzawa M., Kobayashi Y., Yano T., Yoshikawa H., Masuhiro Y.,
RA Kato S.;
RT "A subfamily of RNA-binding DEAD-box proteins acts as an estrogen
RT receptor alpha coactivator through the N-terminal activation domain
RT (AF-1) with an RNA coactivator, SRA.";
RL EMBO J. 20:1341-1352(2001).
RN [9]
RP SELF-ASSOCIATION, AND INTERACTION WITH DDX5.
RX PubMed=12595555; DOI=10.1093/nar/gkg236;
RA Ogilvie V.C., Wilson B.J., Nicol S.M., Morrice N.A., Saunders L.R.,
RA Barber G.N., Fuller-Pace F.V.;
RT "The highly related DEAD box RNA helicases p68 and p72 exist as
RT heterodimers in cells.";
RL Nucleic Acids Res. 31:1470-1480(2003).
RN [10]
RP FUNCTION IN TRANSCRIPTIONAL REPRESSION, AND INTERACTION WITH HDAC1.
RX PubMed=15298701; DOI=10.1186/1471-2199-5-11;
RA Wilson B.J., Bates G.J., Nicol S.M., Gregory D.J., Perkins N.D.,
RA Fuller-Pace F.V.;
RT "The p68 and p72 DEAD box RNA helicases interact with HDAC1 and
RT repress transcription in a promoter-specific manner.";
RL BMC Mol. Biol. 5:11-11(2004).
RN [11]
RP INTERACTION WITH TP53.
RX PubMed=15660129; DOI=10.1038/sj.emboj.7600550;
RA Bates G.J., Nicol S.M., Wilson B.J., Jacobs A.M., Bourdon J.C.,
RA Wardrop J., Gregory D.J., Lane D.P., Perkins N.D., Fuller-Pace F.V.;
RT "The DEAD box protein p68: a novel transcriptional coactivator of the
RT p53 tumour suppressor.";
RL EMBO J. 24:543-553(2005).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [13]
RP FUNCTION, AND INTERACTION WITH MYOD1.
RX PubMed=17011493; DOI=10.1016/j.devcel.2006.08.003;
RA Caretti G., Schiltz R.L., Dilworth F.J., Di Padova M., Zhao P.,
RA Ogryzko V., Fuller-Pace F.V., Hoffman E.P., Tapscott S.J.,
RA Sartorelli V.;
RT "The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators
RT of MyoD and skeletal muscle differentiation.";
RL Dev. Cell 11:547-560(2006).
RN [14]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-523, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16964243; DOI=10.1038/nbt1240;
RA Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
RT "A probability-based approach for high-throughput protein
RT phosphorylation analysis and site localization.";
RL Nat. Biotechnol. 24:1285-1292(2006).
RN [15]
RP FUNCTION AS TRANSCRIPTIONAL COACTIVATOR, AND INTERACTION WITH EP300;
RP CREBBP AND KAT2B.
RX PubMed=17226766; DOI=10.1002/jcb.21250;
RA Shin S., Janknecht R.;
RT "Concerted activation of the Mdm2 promoter by p72 RNA helicase and the
RT coactivators p300 and P/CAF.";
RL J. Cell. Biochem. 101:1252-1265(2007).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Embryonic kidney;
RX PubMed=17525332; DOI=10.1126/science.1140321;
RA Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
RA Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
RA Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
RT "ATM and ATR substrate analysis reveals extensive protein networks
RT responsive to DNA damage.";
RL Science 316:1160-1166(2007).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [18]
RP FUNCTION, AND INTERACTION WITH ZC3HAV1; EXOSC3 AND EXOSC5.
RX PubMed=18334637; DOI=10.1073/pnas.0712276105;
RA Chen G., Guo X., Lv F., Xu Y., Gao G.;
RT "p72 DEAD box RNA helicase is required for optimal function of the
RT zinc-finger antiviral protein.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:4352-4357(2008).
RN [19]
RP FUNCTION, AND INTERACTION WITH ESR1.
RX PubMed=19718048; DOI=10.1038/onc.2009.261;
RA Wortham N.C., Ahamed E., Nicol S.M., Thomas R.S., Periyasamy M.,
RA Jiang J., Ochocka A.M., Shousha S., Huson L., Bray S.E., Coombes R.C.,
RA Ali S., Fuller-Pace F.V.;
RT "The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent
RT transcription and cell growth, and is associated with improved
RT survival in ERalpha-positive breast cancer.";
RL Oncogene 28:4053-4064(2009).
RN [20]
RP SUMOYLATION AT LYS-129, AND MUTAGENESIS OF LYS-129.
RX PubMed=19995069; DOI=10.1021/bi901263m;
RA Mooney S.M., Grande J.P., Salisbury J.L., Janknecht R.;
RT "Sumoylation of p68 and p72 RNA helicases affects protein stability
RT and transactivation potential.";
RL Biochemistry 49:1-10(2010).
RN [21]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-64, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP INTERACTION WITH DCP1A AND DCP2.
RX PubMed=21876179; DOI=10.1073/pnas.1101676108;
RA Zhu Y., Chen G., Lv F., Wang X., Ji X., Xu Y., Sun J., Wu L.,
RA Zheng Y.T., Gao G.;
RT "Zinc-finger antiviral protein inhibits HIV-1 infection by selectively
RT targeting multiply spliced viral mRNAs for degradation.";
RL Proc. Natl. Acad. Sci. U.S.A. 108:15834-15839(2011).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [25]
RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
RX PubMed=22002106; DOI=10.1074/mcp.M111.013680;
RA Ahmad Y., Boisvert F.M., Lundberg E., Uhlen M., Lamond A.I.;
RT "Systematic analysis of protein pools, isoforms, and modifications
RT affecting turnover and subcellular localization.";
RL Mol. Cell. Proteomics 11:M111.013680.01-M111.013680.15(2012).
CC -!- FUNCTION: RNA-dependent ATPase activity. Involved in
CC transcriptional regulation. Transcriptional coactivator for
CC estrogen receptor ESR1. Increases ESR1 AF-1 domain-mediated
CC transactivation. Synergizes with DDX5 and SRA1 RNA to activate
CC MYOD1 transcriptional activity and probably involved in skeletal
CC muscle differentiation. Required for zinc-finger antiviral protein
CC ZC3HAV1-mediated mRNA degradation.
CC -!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
CC -!- SUBUNIT: Interacts with ESR1. Interacts with NCOA1, NCOA2, NCOA3,
CC TP53 and HDAC1. Self-associates. Interacts with DDX5. Interacts
CC with DCP1A in an RNA-independent manner. Interacts with DCP2 in an
CC RNA-dependent manner. Interacts with ZC3HAV1 (via N-terminal
CC domain) in an RNA-independent manner. Interacts with EXOSC3 and
CC EXOSC5 only in the presence of ZC3HAV1 in an RNA-independent
CC manner.
CC -!- INTERACTION:
CC P03372:ESR1; NbExp=7; IntAct=EBI-746012, EBI-78473;
CC Q13547:HDAC1; NbExp=3; IntAct=EBI-5280703, EBI-301834;
CC Q15596:NCOA2; NbExp=2; IntAct=EBI-746012, EBI-81236;
CC Q9Y6Q9:NCOA3; NbExp=2; IntAct=EBI-746012, EBI-81196;
CC O94916:NFAT5; NbExp=3; IntAct=EBI-746012, EBI-308320;
CC Q9JKL7:Srek1 (xeno); NbExp=3; IntAct=EBI-746012, EBI-6452221;
CC P04637:TP53; NbExp=3; IntAct=EBI-746012, EBI-366083;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus, nucleolus.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing, Alternative initiation; Named isoforms=4;
CC Name=1; Synonyms=p82;
CC IsoId=Q92841-4; Sequence=Displayed;
CC Note=Starts at an alternative CUG codon;
CC Name=2; Synonyms=p72;
CC IsoId=Q92841-1; Sequence=VSP_042527;
CC Note=Produced by alternative initiation at Met-80 of isoform 1;
CC Name=3;
CC IsoId=Q92841-2; Sequence=VSP_042527, VSP_042528;
CC Note=Produced by alternative splicing of isoform 2. No
CC experimental confirmation available;
CC Name=4;
CC IsoId=Q92841-3; Sequence=VSP_042527, VSP_042529;
CC Note=Produced by alternative splicing of isoform 2. No
CC experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- PTM: Sumoylation significantly increases stability, it also
CC promotes interaction with HDAC1.
CC -!- SIMILARITY: Belongs to the DEAD box helicase family. DDX5/DBP2
CC subfamily.
CC -!- SIMILARITY: Contains 1 helicase ATP-binding domain.
CC -!- SIMILARITY: Contains 1 helicase C-terminal domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U59321; AAC50787.1; -; mRNA.
DR EMBL; CR456432; CAG30318.1; -; mRNA.
DR EMBL; AL713763; CAH10627.2; -; mRNA.
DR EMBL; Z97056; CAQ08924.1; -; Genomic_DNA.
DR EMBL; Z97056; CAB09792.1; -; Genomic_DNA.
DR EMBL; CH471095; EAW60243.1; -; Genomic_DNA.
DR EMBL; BC000595; AAH00595.2; -; mRNA.
DR PIR; S72367; S72367.
DR RefSeq; NP_006377.2; NM_006386.4.
DR UniGene; Hs.528305; -.
DR UniGene; Hs.706116; -.
DR ProteinModelPortal; Q92841; -.
DR SMR; Q92841; 148-544.
DR DIP; DIP-29843N; -.
DR IntAct; Q92841; 53.
DR MINT; MINT-4545892; -.
DR STRING; 9606.ENSP00000380033; -.
DR PhosphoSite; Q92841; -.
DR DMDM; 3122595; -.
DR REPRODUCTION-2DPAGE; IPI00023785; -.
DR PaxDb; Q92841; -.
DR PRIDE; Q92841; -.
DR DNASU; 10521; -.
DR Ensembl; ENST00000403230; ENSP00000385536; ENSG00000100201.
DR GeneID; 10521; -.
DR KEGG; hsa:10521; -.
DR UCSC; uc003avx.4; human.
DR CTD; 10521; -.
DR GeneCards; GC22M038879; -.
DR HGNC; HGNC:2740; DDX17.
DR HPA; CAB024908; -.
DR MIM; 608469; gene.
DR neXtProt; NX_Q92841; -.
DR PharmGKB; PA27206; -.
DR eggNOG; COG0513; -.
DR HOGENOM; HOG000268804; -.
DR HOVERGEN; HBG015893; -.
DR InParanoid; Q92841; -.
DR KO; K13178; -.
DR ChiTaRS; DDX17; human.
DR GeneWiki; DDX17; -.
DR GenomeRNAi; 10521; -.
DR NextBio; 39902; -.
DR PRO; PR:Q92841; -.
DR ArrayExpress; Q92841; -.
DR Bgee; Q92841; -.
DR CleanEx; HS_DDX17; -.
DR Genevestigator; Q92841; -.
DR GO; GO:0005730; C:nucleolus; IEA:UniProtKB-SubCell.
DR GO; GO:0005634; C:nucleus; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0008026; F:ATP-dependent helicase activity; IEA:InterPro.
DR GO; GO:0030331; F:estrogen receptor binding; IDA:UniProtKB.
DR GO; GO:0003723; F:RNA binding; TAS:ProtInc.
DR GO; GO:0003724; F:RNA helicase activity; TAS:ProtInc.
DR GO; GO:0008186; F:RNA-dependent ATPase activity; TAS:ProtInc.
DR GO; GO:0003713; F:transcription coactivator activity; IDA:UniProtKB.
DR GO; GO:0033148; P:positive regulation of intracellular estrogen receptor signaling pathway; IDA:UniProtKB.
DR GO; GO:0045944; P:positive regulation of transcription from RNA polymerase II promoter; IDA:UniProtKB.
DR GO; GO:2001014; P:regulation of skeletal muscle cell differentiation; IMP:UniProtKB.
DR GO; GO:0006396; P:RNA processing; TAS:ProtInc.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR InterPro; IPR011545; DNA/RNA_helicase_DEAD/DEAH_N.
DR InterPro; IPR014001; Helicase_ATP-bd.
DR InterPro; IPR001650; Helicase_C.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR000629; RNA-helicase_DEAD-box_CS.
DR InterPro; IPR014014; RNA_helicase_DEAD_Q_motif.
DR Pfam; PF00270; DEAD; 1.
DR Pfam; PF00271; Helicase_C; 1.
DR SMART; SM00487; DEXDc; 1.
DR SMART; SM00490; HELICc; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR PROSITE; PS00039; DEAD_ATP_HELICASE; 1.
DR PROSITE; PS51192; HELICASE_ATP_BIND_1; 1.
DR PROSITE; PS51194; HELICASE_CTER; 1.
DR PROSITE; PS51195; Q_MOTIF; 1.
PE 1: Evidence at protein level;
KW Alternative initiation; Alternative splicing; ATP-binding;
KW Complete proteome; Helicase; Hydrolase; Isopeptide bond;
KW Nucleotide-binding; Nucleus; Phosphoprotein; Reference proteome;
KW RNA-binding; Transcription; Transcription regulation; Ubl conjugation.
FT CHAIN 1 729 Probable ATP-dependent RNA helicase
FT DDX17.
FT /FTId=PRO_0000054993.
FT DOMAIN 202 377 Helicase ATP-binding.
FT DOMAIN 405 552 Helicase C-terminal.
FT NP_BIND 215 222 ATP (By similarity).
FT REGION 547 729 Transactivation domain.
FT MOTIF 171 199 Q motif.
FT MOTIF 325 328 DEAD box.
FT COMPBIAS 101 104 Poly-Gly.
FT COMPBIAS 556 563 Poly-Gly.
FT COMPBIAS 718 726 Poly-Pro.
FT MOD_RES 64 64 Phosphoserine.
FT MOD_RES 523 523 Phosphothreonine.
FT CROSSLNK 129 129 Glycyl lysine isopeptide (Lys-Gly)
FT (interchain with G-Cter in SUMO).
FT VAR_SEQ 1 79 Missing (in isoform 2, isoform 3 and
FT isoform 4).
FT /FTId=VSP_042527.
FT VAR_SEQ 482 482 L -> LGL (in isoform 3).
FT /FTId=VSP_042528.
FT VAR_SEQ 562 562 G -> GKG (in isoform 4).
FT /FTId=VSP_042529.
FT MUTAGEN 129 129 K->R: Impaired sumoylation and decreased
FT stability.
SQ SEQUENCE 729 AA; 80272 MW; C819F53515B1BC39 CRC64;
MPTGFVAPIL CVLLPSPTRE AATVASATGD SASERESAAP AAAPTAEAPP PSVVTRPEPQ
ALPSPAIRAP LPDLYPFGTM RGGGFGDRDR DRDRGGFGAR GGGGLPPKKF GNPGERLRKK
KWDLSELPKF EKNFYVEHPE VARLTPYEVD ELRRKKEITV RGGDVCPKPV FAFHHANFPQ
YVMDVLMDQH FTEPTPIQCQ GFPLALSGRD MVGIAQTGSG KTLAYLLPAI VHINHQPYLE
RGDGPICLVL APTRELAQQV QQVADDYGKC SRLKSTCIYG GAPKGPQIRD LERGVEICIA
TPGRLIDFLE SGKTNLRRCT YLVLDEADRM LDMGFEPQIR KIVDQIRPDR QTLMWSATWP
KEVRQLAEDF LRDYTQINVG NLELSANHNI LQIVDVCMES EKDHKLIQLM EEIMAEKENK
TIIFVETKRR CDDLTRRMRR DGWPAMCIHG DKSQPERDWV LNEFRSGKAP ILIATDVASR
GLDVEDVKFV INYDYPNSSE DYVHRIGRTA RSTNKGTAYT FFTPGNLKQA RELIKVLEEA
NQAINPKLMQ LVDHRGGGGG GGGRSRYRTT SSANNPNLMY QDECDRRLRG VKDGGRRDSA
SYRDRSETDR AGYANGSGYG SPNSAFGAQA GQYTYGQGTY GAAAYGTSSY TAQEYGAGTY
GASSTTSTGR SSQSSSQQFS GIGRSGQQPQ PLMSQQFAQP PGATNMIGYM GQTAYQYPPP
PPPPPPSRK
//
MIM
608469
*RECORD*
*FIELD* NO
608469
*FIELD* TI
*608469 DEAD/H BOX 17; DDX17
;;RNA HELICASE, 70-KD; RH70;;
p72
*FIELD* TX
DESCRIPTION
read more
Members of the DEAD box (asp-glu-ala-asp/his) protein family of RNA
helicases are involved in diverse cellular functions including mRNA
splicing, ribosome assembly, translation initiation, mRNA stability, and
cell growth and division (Lamm et al., 1996).
CLONING
Lamm et al. (1996) cloned DDX17, which they designated p72, from a HeLa
cell cDNA library. The deduced 650-amino acid protein has a calculated
molecular mass of 71.9 kD. DDX17 contains 4 N-terminal RGG box repeats
followed by a central conserved DEAD box domain, a run of 7 glycines,
and a serine/glycine-rich C-terminal domain ending in 9 consecutive
prolines. RGG box repeats mediate RNA binding, and both the
serine/glycine-rich region and the proline-rich motif mediate
protein-protein interactions. DDX17 shares 69.7% identity with p68
(DDX5; 180630), with highest similarity in the DEAD box region. Northern
blot analysis detected ubiquitous expression of 5.3- and 9.3-kb
transcripts. Both transcripts were abundantly expressed in kidney and
pancreas, and the 5.3-kb transcript was also abundantly expressed in
skeletal muscle. Endogenous p72 isolated from HeLa cell nuclear extracts
and recombinant p72 expressed through in vitro translation yielded an
apparent 79-kD protein by SDS/PAGE and Western blot analysis.
From HeLa cell cDNA, Uhlmann-Schiffler et al. (2002) cloned a variant of
DDX17, which they designated p82. The deduced protein, translated from a
non-AUG start codon, contains an N-terminal extension of 80 to 90 amino
acids. Northern blot analysis detected this variant at about 9.3 kb in
HeLa cell RNA. Both HeLa cells and COS cells endogenously expressed both
DDX17 variants, which migrated at apparent molecular masses of 82 and 72
kD.
GENE FUNCTION
Lamm et al. (1996) confirmed that, like other DEAD box proteins, DDX17
hydrolyzed ATP in the presence of RNA. Several RNA species, including
total RNA, tRNA, E. coli rRNA, and both adenovirus and beta-globin
pre-mRNA, stimulated the ATPase activity. Single-stranded phage DNA also
stimulated a low level of ATP hydrolysis. No activity was observed in
the presence of total HeLa cell DNA or poly(U) RNA. These results led
Lamm et al. (1996) to hypothesize that the ATPase activity of DDX17 is
dependent on the secondary structure of RNA.
Uhlmann-Schiffler et al. (2002) determined that p82 DDX17 showed
RNA-dependent ATPase activity resembling that measured in p72 DDX17. The
p82 form also showed helicase activity against partial dsRNA substrates
in the presence of ATP. A 3-prime single-strand overhang was required,
and no helicase activity was observed with substrates containing a
5-prime single-strand overhang.
Using minigenes that undergo different types of alternative splicing,
Honig et al. (2002) demonstrated that p72 DDX17 affects the splicing of
alternative exons containing AC-rich exon enhancer elements. Mutation of
the ATP-binding sites or deletion of the C-terminal region reduced the
ability of DDX17 to effect variable exon splicing. Use of in vitro
extracts overexpressing p72 DDX17 showed that p72 becomes associated
with complexes containing precursor RNA. Honig et al. (2002) also found
evidence that DDX17 may alter protein-RNA interactions. They concluded
that DDX17 may be an alternative splicing regulatory factor.
Lee (2002) found that DDX17 catalyzed the unwinding of duplex RNA
containing single-stranded regions at either the 5-prime or 3-prime end.
DDX17 also copurified with U1snRNP (180740) from nuclear extracts of
HeLa cell suspension cultures. This association led Lee (2002) to
hypothesize that DDX17 may have a role in pre-mRNA splicing at the early
stages of the splicing reaction involving U1snRNP.
By immunoprecipitation analysis, Caretti et al. (2006) found that p68,
p72, and the noncoding RNA SRA (SRA1; 603819) associated with MYOD
(MYOD1; 159970) in MYOD-transfected HeLa cells. In vitro and in vivo
experiments identified p68, p72, and SRA as coactivators of MYOD, and
their knockdown in C2C12 mouse myoblast cells prevented proper muscle
gene expression and cell differentiation. Short hairpin RNA-mediated
knockdown of p68 and p72 in C2C12 cells led to reduced expression of a
broad spectrum of genes, including genes involved in muscle structure,
metabolism, neurophysiologic processes, transcription and chromatin
regulation, and signal transduction. Further experiments showed that p68
and p72 played critical roles in promoting the assembly of proteins
required for formation of the transcription initiation complex and
chromatin remodeling.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the DDX17
gene to chromosome 22 (TMAP STS-N22684).
*FIELD* RF
1. Caretti, G.; Schiltz, R. L.; Dilworth, F. J.; Di Padova, M.; Zhao,
P.; Ogryzko, V.; Fuller-Pace, F. V.; Hoffman, E. P.; Tapscott, S.
J.; Sartorelli, V.: The RNA helicases p68/p72 and the noncoding RNA
SRA are coregulators of MyoD and skeletal muscle differentiation. Dev.
Cell 11: 547-560, 2006.
2. Honig, A.; Auboeuf, D.; Parker, M. M.; O'Malley, B. W.; Berget,
S. M.: Regulation of alternative splicing by the ATP-dependent DEAD-box
RNA helicase p72. Molec. Cell. Biol. 22: 5698-5707, 2002.
3. Lamm, G. M.; Nicol, S. M.; Fuller-Pace, F. V.; Lamond, A. I.:
p72: a human nuclear DEAD box protein highly related to p68. Nucleic
Acids Res. 24: 3739-3747, 1996.
4. Lee, C.-G.: RH70, a bidirectional RNA helicase, co-purifies with
U1snRNP. J. Biol. Chem. 277: 39679-39683, 2002.
5. Uhlmann-Schiffler, H.; Rossler, O. G.; Stahl, H.: The mRNA of
DEAD box protein p72 is alternatively translated into an 82-kDa RNA
helicase. J. Biol. Chem. 277: 1066-1075, 2002.
*FIELD* CN
Patricia A. Hartz - updated: 01/02/2007
*FIELD* CD
Patricia A. Hartz: 2/17/2004
*FIELD* ED
mgross: 01/02/2007
alopez: 2/17/2004
*RECORD*
*FIELD* NO
608469
*FIELD* TI
*608469 DEAD/H BOX 17; DDX17
;;RNA HELICASE, 70-KD; RH70;;
p72
*FIELD* TX
DESCRIPTION
read more
Members of the DEAD box (asp-glu-ala-asp/his) protein family of RNA
helicases are involved in diverse cellular functions including mRNA
splicing, ribosome assembly, translation initiation, mRNA stability, and
cell growth and division (Lamm et al., 1996).
CLONING
Lamm et al. (1996) cloned DDX17, which they designated p72, from a HeLa
cell cDNA library. The deduced 650-amino acid protein has a calculated
molecular mass of 71.9 kD. DDX17 contains 4 N-terminal RGG box repeats
followed by a central conserved DEAD box domain, a run of 7 glycines,
and a serine/glycine-rich C-terminal domain ending in 9 consecutive
prolines. RGG box repeats mediate RNA binding, and both the
serine/glycine-rich region and the proline-rich motif mediate
protein-protein interactions. DDX17 shares 69.7% identity with p68
(DDX5; 180630), with highest similarity in the DEAD box region. Northern
blot analysis detected ubiquitous expression of 5.3- and 9.3-kb
transcripts. Both transcripts were abundantly expressed in kidney and
pancreas, and the 5.3-kb transcript was also abundantly expressed in
skeletal muscle. Endogenous p72 isolated from HeLa cell nuclear extracts
and recombinant p72 expressed through in vitro translation yielded an
apparent 79-kD protein by SDS/PAGE and Western blot analysis.
From HeLa cell cDNA, Uhlmann-Schiffler et al. (2002) cloned a variant of
DDX17, which they designated p82. The deduced protein, translated from a
non-AUG start codon, contains an N-terminal extension of 80 to 90 amino
acids. Northern blot analysis detected this variant at about 9.3 kb in
HeLa cell RNA. Both HeLa cells and COS cells endogenously expressed both
DDX17 variants, which migrated at apparent molecular masses of 82 and 72
kD.
GENE FUNCTION
Lamm et al. (1996) confirmed that, like other DEAD box proteins, DDX17
hydrolyzed ATP in the presence of RNA. Several RNA species, including
total RNA, tRNA, E. coli rRNA, and both adenovirus and beta-globin
pre-mRNA, stimulated the ATPase activity. Single-stranded phage DNA also
stimulated a low level of ATP hydrolysis. No activity was observed in
the presence of total HeLa cell DNA or poly(U) RNA. These results led
Lamm et al. (1996) to hypothesize that the ATPase activity of DDX17 is
dependent on the secondary structure of RNA.
Uhlmann-Schiffler et al. (2002) determined that p82 DDX17 showed
RNA-dependent ATPase activity resembling that measured in p72 DDX17. The
p82 form also showed helicase activity against partial dsRNA substrates
in the presence of ATP. A 3-prime single-strand overhang was required,
and no helicase activity was observed with substrates containing a
5-prime single-strand overhang.
Using minigenes that undergo different types of alternative splicing,
Honig et al. (2002) demonstrated that p72 DDX17 affects the splicing of
alternative exons containing AC-rich exon enhancer elements. Mutation of
the ATP-binding sites or deletion of the C-terminal region reduced the
ability of DDX17 to effect variable exon splicing. Use of in vitro
extracts overexpressing p72 DDX17 showed that p72 becomes associated
with complexes containing precursor RNA. Honig et al. (2002) also found
evidence that DDX17 may alter protein-RNA interactions. They concluded
that DDX17 may be an alternative splicing regulatory factor.
Lee (2002) found that DDX17 catalyzed the unwinding of duplex RNA
containing single-stranded regions at either the 5-prime or 3-prime end.
DDX17 also copurified with U1snRNP (180740) from nuclear extracts of
HeLa cell suspension cultures. This association led Lee (2002) to
hypothesize that DDX17 may have a role in pre-mRNA splicing at the early
stages of the splicing reaction involving U1snRNP.
By immunoprecipitation analysis, Caretti et al. (2006) found that p68,
p72, and the noncoding RNA SRA (SRA1; 603819) associated with MYOD
(MYOD1; 159970) in MYOD-transfected HeLa cells. In vitro and in vivo
experiments identified p68, p72, and SRA as coactivators of MYOD, and
their knockdown in C2C12 mouse myoblast cells prevented proper muscle
gene expression and cell differentiation. Short hairpin RNA-mediated
knockdown of p68 and p72 in C2C12 cells led to reduced expression of a
broad spectrum of genes, including genes involved in muscle structure,
metabolism, neurophysiologic processes, transcription and chromatin
regulation, and signal transduction. Further experiments showed that p68
and p72 played critical roles in promoting the assembly of proteins
required for formation of the transcription initiation complex and
chromatin remodeling.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the DDX17
gene to chromosome 22 (TMAP STS-N22684).
*FIELD* RF
1. Caretti, G.; Schiltz, R. L.; Dilworth, F. J.; Di Padova, M.; Zhao,
P.; Ogryzko, V.; Fuller-Pace, F. V.; Hoffman, E. P.; Tapscott, S.
J.; Sartorelli, V.: The RNA helicases p68/p72 and the noncoding RNA
SRA are coregulators of MyoD and skeletal muscle differentiation. Dev.
Cell 11: 547-560, 2006.
2. Honig, A.; Auboeuf, D.; Parker, M. M.; O'Malley, B. W.; Berget,
S. M.: Regulation of alternative splicing by the ATP-dependent DEAD-box
RNA helicase p72. Molec. Cell. Biol. 22: 5698-5707, 2002.
3. Lamm, G. M.; Nicol, S. M.; Fuller-Pace, F. V.; Lamond, A. I.:
p72: a human nuclear DEAD box protein highly related to p68. Nucleic
Acids Res. 24: 3739-3747, 1996.
4. Lee, C.-G.: RH70, a bidirectional RNA helicase, co-purifies with
U1snRNP. J. Biol. Chem. 277: 39679-39683, 2002.
5. Uhlmann-Schiffler, H.; Rossler, O. G.; Stahl, H.: The mRNA of
DEAD box protein p72 is alternatively translated into an 82-kDa RNA
helicase. J. Biol. Chem. 277: 1066-1075, 2002.
*FIELD* CN
Patricia A. Hartz - updated: 01/02/2007
*FIELD* CD
Patricia A. Hartz: 2/17/2004
*FIELD* ED
mgross: 01/02/2007
alopez: 2/17/2004