Full text data of GSR
GSR
(GLUR, GRD1)
[Confidence: medium (present in either hRBCD or BSc_CH or PM22954596)]
Glutathione reductase, mitochondrial; GR; GRase; 1.8.1.7; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Glutathione reductase, mitochondrial; GR; GRase; 1.8.1.7; Flags: Precursor
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00016862
IPI00016862 Glutathione reductase, mitochondrial precursor Maintains high levels of reduced glutathione in the cytosol, Erythrocyte, 2 glutathione + NADP+ = glutathione disulfide + NADPH soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a mitochondrial and cytoplasmic n/a expected molecular weight found in band found in band 98 kdDa
IPI00016862 Glutathione reductase, mitochondrial precursor Maintains high levels of reduced glutathione in the cytosol, Erythrocyte, 2 glutathione + NADP+ = glutathione disulfide + NADPH soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a mitochondrial and cytoplasmic n/a expected molecular weight found in band found in band 98 kdDa
UniProt
P00390
ID GSHR_HUMAN Reviewed; 522 AA.
AC P00390; C8KIL8; C8KIL9; C8KIM0; D3DSV3; Q7Z5C9; Q9NP63;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 11-JUL-2001, sequence version 2.
DT 22-JAN-2014, entry version 189.
DE RecName: Full=Glutathione reductase, mitochondrial;
DE Short=GR;
DE Short=GRase;
DE EC=1.8.1.7;
DE Flags: Precursor;
GN Name=GSR; Synonyms=GLUR, GRD1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM CYTOPLASMIC).
RC TISSUE=Placenta;
RX PubMed=2185014; DOI=10.1111/j.1432-1033.1990.tb15431.x;
RA Tutic M., Lu X.A., Schirmer R.H., Werner D.;
RT "Cloning and sequencing of mammalian glutathione reductase cDNA.";
RL Eur. J. Biochem. 188:523-528(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA] (ISOFORM MITOCHONDRIAL), AND
RP ALTERNATIVE INITIATION.
RX PubMed=10708558; DOI=10.1006/bbrc.2000.2267;
RA Kelner M.J., Montoya M.A.;
RT "Structural organization of the human glutathione reductase (GSR)
RT gene: determination of correct cDNA sequence and identification of a
RT mitochondrial leader sequence.";
RL Biochem. Biophys. Res. Commun. 269:366-368(2000).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS CYS-153; SER-232;
RP VAL-261 AND ASP-297.
RG NIEHS SNPs program;
RL Submitted (JUL-2003) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 2; 3 AND 4), ALTERNATIVE
RP SPLICING, AND TISSUE SPECIFICITY.
RX PubMed=20628807; DOI=10.1007/s10528-010-9362-z;
RA Satoh N., Watanabe N., Kanda A., Sugaya-Fukazawa M., Hisatomi H.;
RT "Expression of glutathione reductase splice variants in human
RT tissues.";
RL Biochem. Genet. 48:816-821(2010).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16421571; DOI=10.1038/nature04406;
RA Nusbaum C., Mikkelsen T.S., Zody M.C., Asakawa S., Taudien S.,
RA Garber M., Kodira C.D., Schueler M.G., Shimizu A., Whittaker C.A.,
RA Chang J.L., Cuomo C.A., Dewar K., FitzGerald M.G., Yang X.,
RA Allen N.R., Anderson S., Asakawa T., Blechschmidt K., Bloom T.,
RA Borowsky M.L., Butler J., Cook A., Corum B., DeArellano K.,
RA DeCaprio D., Dooley K.T., Dorris L. III, Engels R., Gloeckner G.,
RA Hafez N., Hagopian D.S., Hall J.L., Ishikawa S.K., Jaffe D.B.,
RA Kamat A., Kudoh J., Lehmann R., Lokitsang T., Macdonald P.,
RA Major J.E., Matthews C.D., Mauceli E., Menzel U., Mihalev A.H.,
RA Minoshima S., Murayama Y., Naylor J.W., Nicol R., Nguyen C.,
RA O'Leary S.B., O'Neill K., Parker S.C.J., Polley A., Raymond C.K.,
RA Reichwald K., Rodriguez J., Sasaki T., Schilhabel M., Siddiqui R.,
RA Smith C.L., Sneddon T.P., Talamas J.A., Tenzin P., Topham K.,
RA Venkataraman V., Wen G., Yamazaki S., Young S.K., Zeng Q.,
RA Zimmer A.R., Rosenthal A., Birren B.W., Platzer M., Shimizu N.,
RA Lander E.S.;
RT "DNA sequence and analysis of human chromosome 8.";
RL Nature 439:331-335(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM MITOCHONDRIAL).
RC TISSUE=Lung;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP PROTEIN SEQUENCE OF 45-522.
RX PubMed=7060551; DOI=10.1111/j.1432-1033.1982.tb05780.x;
RA Krauth-Siegel R.L., Blatterspiel R., Saleh M., Schiltz E.,
RA Schirmer R.H., Untucht-Grau R.;
RT "Glutathione reductase from human erythrocytes. The sequences of the
RT NADPH domain and of the interface domain.";
RL Eur. J. Biochem. 121:259-267(1982).
RN [9]
RP PROTEIN SEQUENCE OF 98-110.
RC TISSUE=Erythrocyte;
RX PubMed=923580; DOI=10.1111/j.1432-1033.1977.tb11856.x;
RA Krohne-Ehrich G., Schirmer R.H., Untucht-Grau R.;
RT "Glutathione reductase from human erythrocytes. Isolation of the
RT enzyme and sequence analysis of the redox-active peptide.";
RL Eur. J. Biochem. 80:65-71(1977).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [12]
RP X-RAY CRYSTALLOGRAPHY (2 ANGSTROMS) OF 45-522.
RX PubMed=7334521; DOI=10.1016/0022-2836(81)90126-1;
RA Thieme R., Pai E.F., Schirmer R.H., Schulz G.E.;
RT "Three-dimensional structure of glutathione reductase at 2-A
RT resolution.";
RL J. Mol. Biol. 152:763-782(1981).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (1.57 ANGSTROMS) OF 45-522.
RX PubMed=3656429; DOI=10.1016/0022-2836(87)90191-4;
RA Karplus P.A., Schulz G.E.;
RT "Refined structure of glutathione reductase at 1.54-A resolution.";
RL J. Mol. Biol. 195:701-729(1987).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 62-522, AND DISULFIDE BONDS.
RX PubMed=8626496; DOI=10.1074/jbc.271.14.8101;
RA Savvides S.N., Karplus P.A.;
RT "Kinetics and crystallographic analysis of human glutathione reductase
RT in complex with a xanthene inhibitor.";
RL J. Biol. Chem. 271:8101-8107(1996).
RN [15]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 62-522.
RX PubMed=9174360; DOI=10.1021/bi963074p;
RA Stoll V.S., Simpson S.J., Krauth-Siegel R.L., Walsh C.T., Pai E.F.;
RT "Glutathione reductase turned into trypanothione reductase: structural
RT analysis of an engineered change in substrate specificity.";
RL Biochemistry 36:6437-6447(1997).
RN [16]
RP X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 62-522.
RX PubMed=9546215; DOI=10.1038/nsb0498-267;
RA Becker K., Savvides S.N., Keese M., Schirmer R.H., Karplus P.A.;
RT "Enzyme inactivation through sulfhydryl oxidation by physiologic NO-
RT carriers.";
RL Nat. Struct. Biol. 5:267-271(1998).
CC -!- FUNCTION: Maintains high levels of reduced glutathione in the
CC cytosol.
CC -!- CATALYTIC ACTIVITY: 2 glutathione + NADP(+) = glutathione
CC disulfide + NADPH.
CC -!- COFACTOR: Binds 1 FAD per subunit.
CC -!- SUBUNIT: Homodimer; disulfide-linked.
CC -!- SUBCELLULAR LOCATION: Isoform Mitochondrial: Mitochondrion.
CC -!- SUBCELLULAR LOCATION: Isoform Cytoplasmic: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing, Alternative initiation; Named isoforms=5;
CC Name=Mitochondrial;
CC IsoId=P00390-1; Sequence=Displayed;
CC Name=Cytoplasmic;
CC IsoId=P00390-2; Sequence=VSP_018972;
CC Note=Produced by alternative initiation of isoform
CC Mitochondrial. Initiator Met-1 is removed. Acetylated at Ala-2;
CC Name=2; Synonyms=delta8;
CC IsoId=P00390-3; Sequence=VSP_042908;
CC Name=3; Synonyms=delta9;
CC IsoId=P00390-4; Sequence=VSP_042909;
CC Note=Expressed at very high levels in peripheral blood;
CC Name=4; Synonyms=delta8+9;
CC IsoId=P00390-5; Sequence=VSP_042908, VSP_042909;
CC -!- DOMAIN: Each subunit can be divided into 4 domains that are
CC consecutive along the polypeptide chain. Domains 1 and 2 bind FAD
CC and NADPH, respectively. Domain 4 forms the interface.
CC -!- MISCELLANEOUS: The active site is a redox-active disulfide bond.
CC -!- SIMILARITY: Belongs to the class-I pyridine nucleotide-disulfide
CC oxidoreductase family.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAP88037.1; Type=Erroneous initiation;
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/gsr/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Glutathione reductase entry;
CC URL="http://en.wikipedia.org/wiki/Glutathione_reductase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X15722; CAA33744.1; -; mRNA.
DR EMBL; AF228703; AAF37572.1; -; Genomic_DNA.
DR EMBL; AF228703; AAF37573.1; -; Genomic_DNA.
DR EMBL; AF228704; AAF37574.1; -; mRNA.
DR EMBL; AY338490; AAP88037.1; ALT_INIT; Genomic_DNA.
DR EMBL; AB519179; BAI43437.1; -; mRNA.
DR EMBL; AB519180; BAI43438.1; -; mRNA.
DR EMBL; AB519181; BAI43439.1; -; mRNA.
DR EMBL; AC009314; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC103959; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AF215848; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471080; EAW63443.1; -; Genomic_DNA.
DR EMBL; CH471080; EAW63445.1; -; Genomic_DNA.
DR EMBL; BC069244; AAH69244.1; -; mRNA.
DR PIR; S08979; RDHUU.
DR RefSeq; NP_000628.2; NM_000637.3.
DR RefSeq; NP_001182031.1; NM_001195102.1.
DR RefSeq; NP_001182032.1; NM_001195103.1.
DR RefSeq; NP_001182033.1; NM_001195104.1.
DR UniGene; Hs.271510; -.
DR PDB; 1ALG; NMR; -; A=480-503.
DR PDB; 1BWC; X-ray; 2.10 A; A=45-522.
DR PDB; 1DNC; X-ray; 1.70 A; A=45-522.
DR PDB; 1GRA; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRB; X-ray; 1.85 A; A=45-522.
DR PDB; 1GRE; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRF; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRG; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRH; X-ray; 3.00 A; A=45-522.
DR PDB; 1GRT; X-ray; 2.30 A; A=45-522.
DR PDB; 1GSN; X-ray; 1.70 A; A=45-522.
DR PDB; 1K4Q; X-ray; 1.90 A; A=62-522.
DR PDB; 1XAN; X-ray; 2.00 A; A=62-522.
DR PDB; 2AAQ; X-ray; 2.60 A; A=44-522.
DR PDB; 2GH5; X-ray; 1.70 A; A/B=45-522.
DR PDB; 2GRT; X-ray; 2.70 A; A=62-522.
DR PDB; 3DJG; X-ray; 1.80 A; X=62-522.
DR PDB; 3DJJ; X-ray; 1.10 A; A=45-522.
DR PDB; 3DK4; X-ray; 1.20 A; A=45-522.
DR PDB; 3DK8; X-ray; 1.10 A; A=62-522.
DR PDB; 3DK9; X-ray; 0.95 A; A=45-522.
DR PDB; 3GRS; X-ray; 1.54 A; A=45-522.
DR PDB; 3GRT; X-ray; 2.50 A; A=62-522.
DR PDB; 3SQP; X-ray; 2.21 A; A/B=45-522.
DR PDB; 4GR1; X-ray; 2.40 A; A=45-522.
DR PDB; 4GRT; X-ray; 2.80 A; A=62-522.
DR PDB; 5GRT; X-ray; 2.40 A; A=62-522.
DR PDBsum; 1ALG; -.
DR PDBsum; 1BWC; -.
DR PDBsum; 1DNC; -.
DR PDBsum; 1GRA; -.
DR PDBsum; 1GRB; -.
DR PDBsum; 1GRE; -.
DR PDBsum; 1GRF; -.
DR PDBsum; 1GRG; -.
DR PDBsum; 1GRH; -.
DR PDBsum; 1GRT; -.
DR PDBsum; 1GSN; -.
DR PDBsum; 1K4Q; -.
DR PDBsum; 1XAN; -.
DR PDBsum; 2AAQ; -.
DR PDBsum; 2GH5; -.
DR PDBsum; 2GRT; -.
DR PDBsum; 3DJG; -.
DR PDBsum; 3DJJ; -.
DR PDBsum; 3DK4; -.
DR PDBsum; 3DK8; -.
DR PDBsum; 3DK9; -.
DR PDBsum; 3GRS; -.
DR PDBsum; 3GRT; -.
DR PDBsum; 3SQP; -.
DR PDBsum; 4GR1; -.
DR PDBsum; 4GRT; -.
DR PDBsum; 5GRT; -.
DR ProteinModelPortal; P00390; -.
DR SMR; P00390; 61-522.
DR IntAct; P00390; 4.
DR MINT; MINT-5000460; -.
DR STRING; 9606.ENSP00000221130; -.
DR BindingDB; P00390; -.
DR ChEMBL; CHEMBL2755; -.
DR DrugBank; DB00262; Carmustine.
DR DrugBank; DB00143; Glutathione.
DR DrugBank; DB00157; NADH.
DR PhosphoSite; P00390; -.
DR DMDM; 14916998; -.
DR REPRODUCTION-2DPAGE; IPI00759575; -.
DR PaxDb; P00390; -.
DR PRIDE; P00390; -.
DR Ensembl; ENST00000221130; ENSP00000221130; ENSG00000104687.
DR Ensembl; ENST00000414019; ENSP00000390065; ENSG00000104687.
DR Ensembl; ENST00000537535; ENSP00000438845; ENSG00000104687.
DR Ensembl; ENST00000541648; ENSP00000444559; ENSG00000104687.
DR Ensembl; ENST00000546342; ENSP00000445516; ENSG00000104687.
DR GeneID; 2936; -.
DR KEGG; hsa:2936; -.
DR UCSC; uc003xih.2; human.
DR CTD; 2936; -.
DR GeneCards; GC08M030535; -.
DR HGNC; HGNC:4623; GSR.
DR HPA; CAB008632; -.
DR HPA; HPA001538; -.
DR MIM; 138300; gene+phenotype.
DR neXtProt; NX_P00390; -.
DR Orphanet; 90030; Hemolytic anemia due to glutathione reductase deficiency.
DR PharmGKB; PA29014; -.
DR eggNOG; COG1249; -.
DR HOGENOM; HOG000276712; -.
DR HOVERGEN; HBG004959; -.
DR InParanoid; P00390; -.
DR KO; K00383; -.
DR OMA; HRQPCKM; -.
DR OrthoDB; EOG7HHWS0; -.
DR PhylomeDB; P00390; -.
DR BioCyc; MetaCyc:HS02602-MONOMER; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P00390; -.
DR EvolutionaryTrace; P00390; -.
DR GeneWiki; Glutathione_reductase; -.
DR GenomeRNAi; 2936; -.
DR NextBio; 11635; -.
DR PRO; PR:P00390; -.
DR ArrayExpress; P00390; -.
DR Bgee; P00390; -.
DR CleanEx; HS_GSR; -.
DR Genevestigator; P00390; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005739; C:mitochondrion; IEA:UniProtKB-SubCell.
DR GO; GO:0009055; F:electron carrier activity; TAS:UniProtKB.
DR GO; GO:0050660; F:flavin adenine dinucleotide binding; IEA:InterPro.
DR GO; GO:0004362; F:glutathione-disulfide reductase activity; TAS:Reactome.
DR GO; GO:0050661; F:NADP binding; IEA:InterPro.
DR GO; GO:0045454; P:cell redox homeostasis; IEA:InterPro.
DR GO; GO:0006749; P:glutathione metabolic process; IEA:InterPro.
DR GO; GO:0015949; P:nucleobase-containing small molecule interconversion; TAS:Reactome.
DR Gene3D; 3.30.390.30; -; 1.
DR InterPro; IPR016156; FAD/NAD-linked_Rdtase_dimer.
DR InterPro; IPR013027; FAD_pyr_nucl-diS_OxRdtase.
DR InterPro; IPR006322; Glutathione_Rdtase_euk/bac.
DR InterPro; IPR004099; Pyr_nucl-diS_OxRdtase_dimer.
DR InterPro; IPR023753; Pyr_nucl-diS_OxRdtase_FAD/NAD.
DR InterPro; IPR012999; Pyr_OxRdtase_I_AS.
DR InterPro; IPR001327; Pyr_OxRdtase_NAD-bd_dom.
DR Pfam; PF00070; Pyr_redox; 1.
DR Pfam; PF07992; Pyr_redox_2; 1.
DR Pfam; PF02852; Pyr_redox_dim; 1.
DR PRINTS; PR00368; FADPNR.
DR SUPFAM; SSF55424; SSF55424; 1.
DR TIGRFAMs; TIGR01421; gluta_reduc_1; 1.
DR PROSITE; PS00076; PYRIDINE_REDOX_1; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative initiation;
KW Alternative splicing; Complete proteome; Cytoplasm;
KW Direct protein sequencing; Disulfide bond; FAD; Flavoprotein;
KW Mitochondrion; NADP; Oxidoreductase; Polymorphism;
KW Redox-active center; Reference proteome; Transit peptide.
FT TRANSIT 1 43 Mitochondrion (Potential).
FT CHAIN 44 522 Glutathione reductase, mitochondrial.
FT /FTId=PRO_0000030276.
FT NP_BIND 94 102 FAD.
FT ACT_SITE 511 511 Proton acceptor.
FT MOD_RES 97 97 N6-acetyllysine (By similarity).
FT DISULFID 102 107 Redox-active.
FT DISULFID 134 134 Interchain.
FT VAR_SEQ 1 43 Missing (in isoform Cytoplasmic).
FT /FTId=VSP_018972.
FT VAR_SEQ 266 294 Missing (in isoform 2 and isoform 4).
FT /FTId=VSP_042908.
FT VAR_SEQ 295 347 Missing (in isoform 3 and isoform 4).
FT /FTId=VSP_042909.
FT VARIANT 153 153 R -> C (in dbSNP:rs8190955).
FT /FTId=VAR_019079.
FT VARIANT 232 232 G -> R (in dbSNP:rs8190976).
FT /FTId=VAR_051775.
FT VARIANT 232 232 G -> S (in dbSNP:rs8190976).
FT /FTId=VAR_019080.
FT VARIANT 261 261 I -> V (in dbSNP:rs8190997).
FT /FTId=VAR_019081.
FT VARIANT 297 297 E -> D (in dbSNP:rs8191004).
FT /FTId=VAR_019082.
FT VARIANT 314 314 P -> H (in dbSNP:rs2020916).
FT /FTId=VAR_014554.
FT STRAND 62 64
FT STRAND 66 70
FT HELIX 74 85
FT STRAND 90 96
FT HELIX 100 105
FT HELIX 107 123
FT TURN 124 130
FT HELIX 140 164
FT STRAND 168 172
FT STRAND 174 176
FT STRAND 183 186
FT STRAND 189 192
FT STRAND 196 198
FT STRAND 202 204
FT TURN 209 211
FT HELIX 215 217
FT HELIX 221 224
FT STRAND 232 237
FT HELIX 241 252
FT STRAND 256 260
FT STRAND 262 266
FT HELIX 272 284
FT STRAND 288 290
FT STRAND 293 300
FT STRAND 302 311
FT STRAND 319 331
FT STRAND 335 338
FT TURN 340 343
FT HELIX 344 347
FT STRAND 370 372
FT HELIX 374 377
FT HELIX 383 398
FT STRAND 413 415
FT STRAND 417 419
FT STRAND 421 425
FT HELIX 428 435
FT HELIX 437 439
FT STRAND 440 447
FT HELIX 450 454
FT STRAND 461 468
FT TURN 469 472
FT STRAND 473 481
FT HELIX 484 496
FT HELIX 501 505
FT STRAND 511 514
FT HELIX 515 519
SQ SEQUENCE 522 AA; 56257 MW; DD8E2BA9D6E3757B CRC64;
MALLPRALSA GAGPSWRRAA RAFRGFLLLL PEPAALTRAL SRAMACRQEP QPQGPPPAAG
AVASYDYLVI GGGSGGLASA RRAAELGARA AVVESHKLGG TCVNVGCVPK KVMWNTAVHS
EFMHDHADYG FPSCEGKFNW RVIKEKRDAY VSRLNAIYQN NLTKSHIEII RGHAAFTSDP
KPTIEVSGKK YTAPHILIAT GGMPSTPHES QIPGASLGIT SDGFFQLEEL PGRSVIVGAG
YIAVEMAGIL SALGSKTSLM IRHDKVLRSF DSMISTNCTE ELENAGVEVL KFSQVKEVKK
TLSGLEVSMV TAVPGRLPVM TMIPDVDCLL WAIGRVPNTK DLSLNKLGIQ TDDKGHIIVD
EFQNTNVKGI YAVGDVCGKA LLTPVAIAAG RKLAHRLFEY KEDSKLDYNN IPTVVFSHPP
IGTVGLTEDE AIHKYGIENV KTYSTSFTPM YHAVTKRKTK CVMKMVCANK EEKVVGIHMQ
GLGCDEMLQG FAVAVKMGAT KADFDNTVAI HPTSSEELVT LR
//
ID GSHR_HUMAN Reviewed; 522 AA.
AC P00390; C8KIL8; C8KIL9; C8KIM0; D3DSV3; Q7Z5C9; Q9NP63;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 11-JUL-2001, sequence version 2.
DT 22-JAN-2014, entry version 189.
DE RecName: Full=Glutathione reductase, mitochondrial;
DE Short=GR;
DE Short=GRase;
DE EC=1.8.1.7;
DE Flags: Precursor;
GN Name=GSR; Synonyms=GLUR, GRD1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM CYTOPLASMIC).
RC TISSUE=Placenta;
RX PubMed=2185014; DOI=10.1111/j.1432-1033.1990.tb15431.x;
RA Tutic M., Lu X.A., Schirmer R.H., Werner D.;
RT "Cloning and sequencing of mammalian glutathione reductase cDNA.";
RL Eur. J. Biochem. 188:523-528(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA] (ISOFORM MITOCHONDRIAL), AND
RP ALTERNATIVE INITIATION.
RX PubMed=10708558; DOI=10.1006/bbrc.2000.2267;
RA Kelner M.J., Montoya M.A.;
RT "Structural organization of the human glutathione reductase (GSR)
RT gene: determination of correct cDNA sequence and identification of a
RT mitochondrial leader sequence.";
RL Biochem. Biophys. Res. Commun. 269:366-368(2000).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS CYS-153; SER-232;
RP VAL-261 AND ASP-297.
RG NIEHS SNPs program;
RL Submitted (JUL-2003) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 2; 3 AND 4), ALTERNATIVE
RP SPLICING, AND TISSUE SPECIFICITY.
RX PubMed=20628807; DOI=10.1007/s10528-010-9362-z;
RA Satoh N., Watanabe N., Kanda A., Sugaya-Fukazawa M., Hisatomi H.;
RT "Expression of glutathione reductase splice variants in human
RT tissues.";
RL Biochem. Genet. 48:816-821(2010).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16421571; DOI=10.1038/nature04406;
RA Nusbaum C., Mikkelsen T.S., Zody M.C., Asakawa S., Taudien S.,
RA Garber M., Kodira C.D., Schueler M.G., Shimizu A., Whittaker C.A.,
RA Chang J.L., Cuomo C.A., Dewar K., FitzGerald M.G., Yang X.,
RA Allen N.R., Anderson S., Asakawa T., Blechschmidt K., Bloom T.,
RA Borowsky M.L., Butler J., Cook A., Corum B., DeArellano K.,
RA DeCaprio D., Dooley K.T., Dorris L. III, Engels R., Gloeckner G.,
RA Hafez N., Hagopian D.S., Hall J.L., Ishikawa S.K., Jaffe D.B.,
RA Kamat A., Kudoh J., Lehmann R., Lokitsang T., Macdonald P.,
RA Major J.E., Matthews C.D., Mauceli E., Menzel U., Mihalev A.H.,
RA Minoshima S., Murayama Y., Naylor J.W., Nicol R., Nguyen C.,
RA O'Leary S.B., O'Neill K., Parker S.C.J., Polley A., Raymond C.K.,
RA Reichwald K., Rodriguez J., Sasaki T., Schilhabel M., Siddiqui R.,
RA Smith C.L., Sneddon T.P., Talamas J.A., Tenzin P., Topham K.,
RA Venkataraman V., Wen G., Yamazaki S., Young S.K., Zeng Q.,
RA Zimmer A.R., Rosenthal A., Birren B.W., Platzer M., Shimizu N.,
RA Lander E.S.;
RT "DNA sequence and analysis of human chromosome 8.";
RL Nature 439:331-335(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM MITOCHONDRIAL).
RC TISSUE=Lung;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP PROTEIN SEQUENCE OF 45-522.
RX PubMed=7060551; DOI=10.1111/j.1432-1033.1982.tb05780.x;
RA Krauth-Siegel R.L., Blatterspiel R., Saleh M., Schiltz E.,
RA Schirmer R.H., Untucht-Grau R.;
RT "Glutathione reductase from human erythrocytes. The sequences of the
RT NADPH domain and of the interface domain.";
RL Eur. J. Biochem. 121:259-267(1982).
RN [9]
RP PROTEIN SEQUENCE OF 98-110.
RC TISSUE=Erythrocyte;
RX PubMed=923580; DOI=10.1111/j.1432-1033.1977.tb11856.x;
RA Krohne-Ehrich G., Schirmer R.H., Untucht-Grau R.;
RT "Glutathione reductase from human erythrocytes. Isolation of the
RT enzyme and sequence analysis of the redox-active peptide.";
RL Eur. J. Biochem. 80:65-71(1977).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [12]
RP X-RAY CRYSTALLOGRAPHY (2 ANGSTROMS) OF 45-522.
RX PubMed=7334521; DOI=10.1016/0022-2836(81)90126-1;
RA Thieme R., Pai E.F., Schirmer R.H., Schulz G.E.;
RT "Three-dimensional structure of glutathione reductase at 2-A
RT resolution.";
RL J. Mol. Biol. 152:763-782(1981).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (1.57 ANGSTROMS) OF 45-522.
RX PubMed=3656429; DOI=10.1016/0022-2836(87)90191-4;
RA Karplus P.A., Schulz G.E.;
RT "Refined structure of glutathione reductase at 1.54-A resolution.";
RL J. Mol. Biol. 195:701-729(1987).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 62-522, AND DISULFIDE BONDS.
RX PubMed=8626496; DOI=10.1074/jbc.271.14.8101;
RA Savvides S.N., Karplus P.A.;
RT "Kinetics and crystallographic analysis of human glutathione reductase
RT in complex with a xanthene inhibitor.";
RL J. Biol. Chem. 271:8101-8107(1996).
RN [15]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 62-522.
RX PubMed=9174360; DOI=10.1021/bi963074p;
RA Stoll V.S., Simpson S.J., Krauth-Siegel R.L., Walsh C.T., Pai E.F.;
RT "Glutathione reductase turned into trypanothione reductase: structural
RT analysis of an engineered change in substrate specificity.";
RL Biochemistry 36:6437-6447(1997).
RN [16]
RP X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 62-522.
RX PubMed=9546215; DOI=10.1038/nsb0498-267;
RA Becker K., Savvides S.N., Keese M., Schirmer R.H., Karplus P.A.;
RT "Enzyme inactivation through sulfhydryl oxidation by physiologic NO-
RT carriers.";
RL Nat. Struct. Biol. 5:267-271(1998).
CC -!- FUNCTION: Maintains high levels of reduced glutathione in the
CC cytosol.
CC -!- CATALYTIC ACTIVITY: 2 glutathione + NADP(+) = glutathione
CC disulfide + NADPH.
CC -!- COFACTOR: Binds 1 FAD per subunit.
CC -!- SUBUNIT: Homodimer; disulfide-linked.
CC -!- SUBCELLULAR LOCATION: Isoform Mitochondrial: Mitochondrion.
CC -!- SUBCELLULAR LOCATION: Isoform Cytoplasmic: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing, Alternative initiation; Named isoforms=5;
CC Name=Mitochondrial;
CC IsoId=P00390-1; Sequence=Displayed;
CC Name=Cytoplasmic;
CC IsoId=P00390-2; Sequence=VSP_018972;
CC Note=Produced by alternative initiation of isoform
CC Mitochondrial. Initiator Met-1 is removed. Acetylated at Ala-2;
CC Name=2; Synonyms=delta8;
CC IsoId=P00390-3; Sequence=VSP_042908;
CC Name=3; Synonyms=delta9;
CC IsoId=P00390-4; Sequence=VSP_042909;
CC Note=Expressed at very high levels in peripheral blood;
CC Name=4; Synonyms=delta8+9;
CC IsoId=P00390-5; Sequence=VSP_042908, VSP_042909;
CC -!- DOMAIN: Each subunit can be divided into 4 domains that are
CC consecutive along the polypeptide chain. Domains 1 and 2 bind FAD
CC and NADPH, respectively. Domain 4 forms the interface.
CC -!- MISCELLANEOUS: The active site is a redox-active disulfide bond.
CC -!- SIMILARITY: Belongs to the class-I pyridine nucleotide-disulfide
CC oxidoreductase family.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAP88037.1; Type=Erroneous initiation;
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/gsr/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Glutathione reductase entry;
CC URL="http://en.wikipedia.org/wiki/Glutathione_reductase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X15722; CAA33744.1; -; mRNA.
DR EMBL; AF228703; AAF37572.1; -; Genomic_DNA.
DR EMBL; AF228703; AAF37573.1; -; Genomic_DNA.
DR EMBL; AF228704; AAF37574.1; -; mRNA.
DR EMBL; AY338490; AAP88037.1; ALT_INIT; Genomic_DNA.
DR EMBL; AB519179; BAI43437.1; -; mRNA.
DR EMBL; AB519180; BAI43438.1; -; mRNA.
DR EMBL; AB519181; BAI43439.1; -; mRNA.
DR EMBL; AC009314; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC103959; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AF215848; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471080; EAW63443.1; -; Genomic_DNA.
DR EMBL; CH471080; EAW63445.1; -; Genomic_DNA.
DR EMBL; BC069244; AAH69244.1; -; mRNA.
DR PIR; S08979; RDHUU.
DR RefSeq; NP_000628.2; NM_000637.3.
DR RefSeq; NP_001182031.1; NM_001195102.1.
DR RefSeq; NP_001182032.1; NM_001195103.1.
DR RefSeq; NP_001182033.1; NM_001195104.1.
DR UniGene; Hs.271510; -.
DR PDB; 1ALG; NMR; -; A=480-503.
DR PDB; 1BWC; X-ray; 2.10 A; A=45-522.
DR PDB; 1DNC; X-ray; 1.70 A; A=45-522.
DR PDB; 1GRA; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRB; X-ray; 1.85 A; A=45-522.
DR PDB; 1GRE; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRF; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRG; X-ray; 2.00 A; A=45-522.
DR PDB; 1GRH; X-ray; 3.00 A; A=45-522.
DR PDB; 1GRT; X-ray; 2.30 A; A=45-522.
DR PDB; 1GSN; X-ray; 1.70 A; A=45-522.
DR PDB; 1K4Q; X-ray; 1.90 A; A=62-522.
DR PDB; 1XAN; X-ray; 2.00 A; A=62-522.
DR PDB; 2AAQ; X-ray; 2.60 A; A=44-522.
DR PDB; 2GH5; X-ray; 1.70 A; A/B=45-522.
DR PDB; 2GRT; X-ray; 2.70 A; A=62-522.
DR PDB; 3DJG; X-ray; 1.80 A; X=62-522.
DR PDB; 3DJJ; X-ray; 1.10 A; A=45-522.
DR PDB; 3DK4; X-ray; 1.20 A; A=45-522.
DR PDB; 3DK8; X-ray; 1.10 A; A=62-522.
DR PDB; 3DK9; X-ray; 0.95 A; A=45-522.
DR PDB; 3GRS; X-ray; 1.54 A; A=45-522.
DR PDB; 3GRT; X-ray; 2.50 A; A=62-522.
DR PDB; 3SQP; X-ray; 2.21 A; A/B=45-522.
DR PDB; 4GR1; X-ray; 2.40 A; A=45-522.
DR PDB; 4GRT; X-ray; 2.80 A; A=62-522.
DR PDB; 5GRT; X-ray; 2.40 A; A=62-522.
DR PDBsum; 1ALG; -.
DR PDBsum; 1BWC; -.
DR PDBsum; 1DNC; -.
DR PDBsum; 1GRA; -.
DR PDBsum; 1GRB; -.
DR PDBsum; 1GRE; -.
DR PDBsum; 1GRF; -.
DR PDBsum; 1GRG; -.
DR PDBsum; 1GRH; -.
DR PDBsum; 1GRT; -.
DR PDBsum; 1GSN; -.
DR PDBsum; 1K4Q; -.
DR PDBsum; 1XAN; -.
DR PDBsum; 2AAQ; -.
DR PDBsum; 2GH5; -.
DR PDBsum; 2GRT; -.
DR PDBsum; 3DJG; -.
DR PDBsum; 3DJJ; -.
DR PDBsum; 3DK4; -.
DR PDBsum; 3DK8; -.
DR PDBsum; 3DK9; -.
DR PDBsum; 3GRS; -.
DR PDBsum; 3GRT; -.
DR PDBsum; 3SQP; -.
DR PDBsum; 4GR1; -.
DR PDBsum; 4GRT; -.
DR PDBsum; 5GRT; -.
DR ProteinModelPortal; P00390; -.
DR SMR; P00390; 61-522.
DR IntAct; P00390; 4.
DR MINT; MINT-5000460; -.
DR STRING; 9606.ENSP00000221130; -.
DR BindingDB; P00390; -.
DR ChEMBL; CHEMBL2755; -.
DR DrugBank; DB00262; Carmustine.
DR DrugBank; DB00143; Glutathione.
DR DrugBank; DB00157; NADH.
DR PhosphoSite; P00390; -.
DR DMDM; 14916998; -.
DR REPRODUCTION-2DPAGE; IPI00759575; -.
DR PaxDb; P00390; -.
DR PRIDE; P00390; -.
DR Ensembl; ENST00000221130; ENSP00000221130; ENSG00000104687.
DR Ensembl; ENST00000414019; ENSP00000390065; ENSG00000104687.
DR Ensembl; ENST00000537535; ENSP00000438845; ENSG00000104687.
DR Ensembl; ENST00000541648; ENSP00000444559; ENSG00000104687.
DR Ensembl; ENST00000546342; ENSP00000445516; ENSG00000104687.
DR GeneID; 2936; -.
DR KEGG; hsa:2936; -.
DR UCSC; uc003xih.2; human.
DR CTD; 2936; -.
DR GeneCards; GC08M030535; -.
DR HGNC; HGNC:4623; GSR.
DR HPA; CAB008632; -.
DR HPA; HPA001538; -.
DR MIM; 138300; gene+phenotype.
DR neXtProt; NX_P00390; -.
DR Orphanet; 90030; Hemolytic anemia due to glutathione reductase deficiency.
DR PharmGKB; PA29014; -.
DR eggNOG; COG1249; -.
DR HOGENOM; HOG000276712; -.
DR HOVERGEN; HBG004959; -.
DR InParanoid; P00390; -.
DR KO; K00383; -.
DR OMA; HRQPCKM; -.
DR OrthoDB; EOG7HHWS0; -.
DR PhylomeDB; P00390; -.
DR BioCyc; MetaCyc:HS02602-MONOMER; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P00390; -.
DR EvolutionaryTrace; P00390; -.
DR GeneWiki; Glutathione_reductase; -.
DR GenomeRNAi; 2936; -.
DR NextBio; 11635; -.
DR PRO; PR:P00390; -.
DR ArrayExpress; P00390; -.
DR Bgee; P00390; -.
DR CleanEx; HS_GSR; -.
DR Genevestigator; P00390; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005739; C:mitochondrion; IEA:UniProtKB-SubCell.
DR GO; GO:0009055; F:electron carrier activity; TAS:UniProtKB.
DR GO; GO:0050660; F:flavin adenine dinucleotide binding; IEA:InterPro.
DR GO; GO:0004362; F:glutathione-disulfide reductase activity; TAS:Reactome.
DR GO; GO:0050661; F:NADP binding; IEA:InterPro.
DR GO; GO:0045454; P:cell redox homeostasis; IEA:InterPro.
DR GO; GO:0006749; P:glutathione metabolic process; IEA:InterPro.
DR GO; GO:0015949; P:nucleobase-containing small molecule interconversion; TAS:Reactome.
DR Gene3D; 3.30.390.30; -; 1.
DR InterPro; IPR016156; FAD/NAD-linked_Rdtase_dimer.
DR InterPro; IPR013027; FAD_pyr_nucl-diS_OxRdtase.
DR InterPro; IPR006322; Glutathione_Rdtase_euk/bac.
DR InterPro; IPR004099; Pyr_nucl-diS_OxRdtase_dimer.
DR InterPro; IPR023753; Pyr_nucl-diS_OxRdtase_FAD/NAD.
DR InterPro; IPR012999; Pyr_OxRdtase_I_AS.
DR InterPro; IPR001327; Pyr_OxRdtase_NAD-bd_dom.
DR Pfam; PF00070; Pyr_redox; 1.
DR Pfam; PF07992; Pyr_redox_2; 1.
DR Pfam; PF02852; Pyr_redox_dim; 1.
DR PRINTS; PR00368; FADPNR.
DR SUPFAM; SSF55424; SSF55424; 1.
DR TIGRFAMs; TIGR01421; gluta_reduc_1; 1.
DR PROSITE; PS00076; PYRIDINE_REDOX_1; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative initiation;
KW Alternative splicing; Complete proteome; Cytoplasm;
KW Direct protein sequencing; Disulfide bond; FAD; Flavoprotein;
KW Mitochondrion; NADP; Oxidoreductase; Polymorphism;
KW Redox-active center; Reference proteome; Transit peptide.
FT TRANSIT 1 43 Mitochondrion (Potential).
FT CHAIN 44 522 Glutathione reductase, mitochondrial.
FT /FTId=PRO_0000030276.
FT NP_BIND 94 102 FAD.
FT ACT_SITE 511 511 Proton acceptor.
FT MOD_RES 97 97 N6-acetyllysine (By similarity).
FT DISULFID 102 107 Redox-active.
FT DISULFID 134 134 Interchain.
FT VAR_SEQ 1 43 Missing (in isoform Cytoplasmic).
FT /FTId=VSP_018972.
FT VAR_SEQ 266 294 Missing (in isoform 2 and isoform 4).
FT /FTId=VSP_042908.
FT VAR_SEQ 295 347 Missing (in isoform 3 and isoform 4).
FT /FTId=VSP_042909.
FT VARIANT 153 153 R -> C (in dbSNP:rs8190955).
FT /FTId=VAR_019079.
FT VARIANT 232 232 G -> R (in dbSNP:rs8190976).
FT /FTId=VAR_051775.
FT VARIANT 232 232 G -> S (in dbSNP:rs8190976).
FT /FTId=VAR_019080.
FT VARIANT 261 261 I -> V (in dbSNP:rs8190997).
FT /FTId=VAR_019081.
FT VARIANT 297 297 E -> D (in dbSNP:rs8191004).
FT /FTId=VAR_019082.
FT VARIANT 314 314 P -> H (in dbSNP:rs2020916).
FT /FTId=VAR_014554.
FT STRAND 62 64
FT STRAND 66 70
FT HELIX 74 85
FT STRAND 90 96
FT HELIX 100 105
FT HELIX 107 123
FT TURN 124 130
FT HELIX 140 164
FT STRAND 168 172
FT STRAND 174 176
FT STRAND 183 186
FT STRAND 189 192
FT STRAND 196 198
FT STRAND 202 204
FT TURN 209 211
FT HELIX 215 217
FT HELIX 221 224
FT STRAND 232 237
FT HELIX 241 252
FT STRAND 256 260
FT STRAND 262 266
FT HELIX 272 284
FT STRAND 288 290
FT STRAND 293 300
FT STRAND 302 311
FT STRAND 319 331
FT STRAND 335 338
FT TURN 340 343
FT HELIX 344 347
FT STRAND 370 372
FT HELIX 374 377
FT HELIX 383 398
FT STRAND 413 415
FT STRAND 417 419
FT STRAND 421 425
FT HELIX 428 435
FT HELIX 437 439
FT STRAND 440 447
FT HELIX 450 454
FT STRAND 461 468
FT TURN 469 472
FT STRAND 473 481
FT HELIX 484 496
FT HELIX 501 505
FT STRAND 511 514
FT HELIX 515 519
SQ SEQUENCE 522 AA; 56257 MW; DD8E2BA9D6E3757B CRC64;
MALLPRALSA GAGPSWRRAA RAFRGFLLLL PEPAALTRAL SRAMACRQEP QPQGPPPAAG
AVASYDYLVI GGGSGGLASA RRAAELGARA AVVESHKLGG TCVNVGCVPK KVMWNTAVHS
EFMHDHADYG FPSCEGKFNW RVIKEKRDAY VSRLNAIYQN NLTKSHIEII RGHAAFTSDP
KPTIEVSGKK YTAPHILIAT GGMPSTPHES QIPGASLGIT SDGFFQLEEL PGRSVIVGAG
YIAVEMAGIL SALGSKTSLM IRHDKVLRSF DSMISTNCTE ELENAGVEVL KFSQVKEVKK
TLSGLEVSMV TAVPGRLPVM TMIPDVDCLL WAIGRVPNTK DLSLNKLGIQ TDDKGHIIVD
EFQNTNVKGI YAVGDVCGKA LLTPVAIAAG RKLAHRLFEY KEDSKLDYNN IPTVVFSHPP
IGTVGLTEDE AIHKYGIENV KTYSTSFTPM YHAVTKRKTK CVMKMVCANK EEKVVGIHMQ
GLGCDEMLQG FAVAVKMGAT KADFDNTVAI HPTSSEELVT LR
//
MIM
138300
*RECORD*
*FIELD* NO
138300
*FIELD* TI
+138300 GLUTATHIONE REDUCTASE; GSR
GLUTATHIONE REDUCTASE, HEMOLYTIC ANEMIA DUE TO DEFICIENCY OF, IN RED
read moreCELLS, INCLUDED
*FIELD* TX
Long (1967) found in a black American a variant red cell GSR (EC
1.6.4.2) characterized by greater electrophoretic mobility and enzyme
activity per unit of hemoglobin than the normal. Inheritance was
autosomal codominant. Three homozygotes were identified. The relation to
gout, suggested by Long (1967), is problematical. Long (1972) observed 2
variant forms of red cell GSR which appear to bind far more avidly than
the common form of the enzyme. In cases of mosaic trisomy for chromosome
8, de la Chapelle et al. (1976) found elevated glutathione reductase
activity, with other enzymes normal. George and Francke (1976) assigned
the gene to the region 8p21-p23 by the gene dosage method. In an infant
with terminal deletion of the short arm of chromosome 8, de la Chapelle
et al. (1976) found low GSR activity. They concluded that the GSR locus
is in the region 8pter-p21. Sinet et al. (1977) narrowed the assignment
to 8p21. The GSR locus has also been assigned by somatic cell
hybridization; it is one of the enzyme-markers for each chromosome
(table 1 in Shows and Sakaguchi, 1980), useful for synteny mapping.
Lohr and Waller (1962) observed a 'new' form of enzyme-deficiency
hemolytic anemia in which glutathione reductase was deficient and
glutathione (GSH) was low as a consequence. (This condition is
apparently distinct from that described by Oort et al. (1961) in which
GSH was also low, but glucose-6-phosphate dehydrogenase and glutathione
reductase were normal.) Lohr (1963) observed 10 homozygotes and 5
heterozygotes in a family distribution consistent with autosomal
recessive inheritance. Blume et al. (1968) studied a kindred with many
persons who were demonstrably heterozygous by chemical test. Hampel et
al. (1969) found a markedly increased frequency of chromosomal
aberrations in a patient with pancytopenia and absent GSR-II band in the
electropherogram. The mother was hematologically normal but had absent
GSR-II band and a moderate increase in the frequency of chromosomal
aberrations. Addition of chloramphenicol to the cultures increased the
number of damaged chromosomes in both the mother and the son. Staal et
al. (1969) described a variety of glutathione reductase anemia in which
the variant enzyme had diminished affinity for flavin adenine
dinucleotide (FAD). The patient's anemia was corrected by vitamin B2.
Administration of flavin compounds to normal individuals or addition to
hemolysates of most normal persons causes an increase in activity of GSR
(Beutler, 1969). In a patient with systemic lupus erythematosus,
Fajnholc et al. (1971) found red cell GSR deficiency which was
correctable in vivo with riboflavin and in vitro with FAD. The same
deficiency was found in the mother and some of her relatives (who were
asymptomatic) but not in the father and his relatives. Enzyme kinetics
were normal. These workers concluded that the defect was not in the
apoenzyme. Loos et al. (1976) found virtually complete absence of GSR
activity in the erythrocytes of 3 children of a consanguineous marriage
and intermediate levels in the parents. Activity was not restored by FAD
in vitro or riboflavin in vivo. Clinically the deficiency was manifested
by favism in 1 child and by cataracts in 2. Reduced GSR was found in
leukocytes, as well as evidence of impaired bactericidal capacity, but
there was no history of repeated infections. Furthermore, Roos et al.
(1979) found that chemotaxis, phagocytosis of opsonized S. aureus, and
degranulation proceeded normally. Intracellular killing appeared normal
at low ratios of bacteria to phagocytes, but higher ratios resulted in
defective bacterial killing. GSR deficiency is a frequent occurrence in
northern Thailand. Flatz (1971) found a high frequency of GSR deficiency
in northern Thailand but concluded that it was probably secondary to
dietary riboflavin deficiency because activity of the enzyme was raised
markedly in most deficient persons by administration of riboflavin.
Studies of the families of 6 persons with poor response to riboflavin
gave no evidence supporting 'simple dominant inheritance,' and the
proband with low GSR values had no hematologic evidence of a hemolytic
tendency. Nevin et al. (1990) found increased GSR activity in a child
with an inverted tandem duplication of 8p23.1-p12.
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
ANIMAL MODEL
Using a combination of behavioral analysis of 6 inbred mouse strains
with quantitative gene expression profiling of several brain regions,
Hovatta et al. (2005) identified 17 genes with expression patterns that
correlated with anxiety-like behavioral phenotypes. To determine if 2 of
the genes, glyoxalase-1 (138750) and glutathione reductase-1, have a
causal role in the genesis of anxiety, Hovatta et al. (2005) performed
genetic manipulation using lentivirus-mediated gene transfer. Local
overexpression of these genes in the mouse brain resulted in increased
anxiety-like behavior, while local inhibition of glyoxalase-1 expression
by RNA interference decreased the anxiety-like behavior. Hovatta et al.
(2005) concluded that both of these genes are involved in oxidative
stress metabolism, linking this pathway with anxiety-related behavior.
*FIELD* SA
Carson et al. (1961); de la Chapelle et al. (1976); Flatz (1971);
Gutensohn et al. (1978); Jensen et al. (1984); Jensen et al. (1982);
Kurz and Hohenwallner (1970); Lohr and Waller (1963); Magenis et al.
(1978); Nichols and Ruddle (1975)
*FIELD* RF
1. Beutler, E.: Effect of flavin compounds on glutathione reductase
activity: in vivo and in vitro studies. J. Clin. Invest. 48: 1957-1966,
1969.
2. Blume, K. G.; Gottwik, M.; Lohr, G. W.; Rudiger, H. W.: Familienuntersuchungen
zum Glutathionreduktasemangel menschlicher Erythrocyten. Humangenetik 6:
163-170, 1968.
3. Carson, P. E.; Brewer, G. J.; Ickes, C.: Decreased glutathione
reductase with susceptibility to hemolysis. (Abstract) J. Lab. Clin.
Med. 58: 804 only, 1961.
4. de la Chapelle, A.; Icen, A.; Aula, P.; Leisti, J.; Turleau, C.;
de Grouchy, J.: Mapping of the gene for glutathione reductase on
chromosome 8. Ann. Genet. 19: 253-256, 1976.
5. de la Chapelle, A.; Vuopio, P.; Icen, A.: Trisomy 8 in the bone
marrow associated with high red cell glutathione reductase activity. Blood 47:
815-826, 1976.
6. Fajnholc, N. E.; Kaminsky, E.; Machtey, I.; De Vries, A.: Hereditary
erythrocyte glutathione reductase deficiency. Rev. Europ. Clin. Biol. 16:
987-991, 1971.
7. Flatz, G.: Population study of erythrocyte glutathione reductase
activity. I. Stimulation of the enzyme by flavin adenine dinucleotide
and by riboflavin supplementation. Humangenetik 11: 269-277, 1971.
8. Flatz, G.: Population study of erythrocyte glutathione reductase
activity. II. Hematological data of subjects with low enzyme activity
and stimulation characteristics in their families. Humangenetik 11:
278-285, 1971.
9. George, D. L.; Francke, U.: Gene dose effect: regional mapping
of human glutathione reductase on chromosome 8. Cytogenet. Cell Genet. 17:
282-286, 1976.
10. Gutensohn, W.; Rodewald, A.; Haas, B.; Schulz, P.; Cleve, H.:
Refined mapping of the gene for glutathione reductase on human chromosome
8. Hum. Genet. 43: 221-224, 1978.
11. Hampel, K. E.; Lohr, G. W.; Blume, K. G.; Rudiger, H. W.: Spontane
und chloramphenicolinduzierte Chromosomenmutationen und biochemische
Befunde bei zwei Faellen mit Glutathionreduktasemangel (NAD(P)H: glutathione
oxidoreductase, E.C. 1.6.4.2). Humangenetik 7: 305-313, 1969.
12. Hovatta, I.; Tennant, R. S.; Helton, R.; Marr, R. A.; Singer,
O.; Redwine, J. M.; Ellison, J. A.; Schadt, E. E.; Verma, I. M.; Lockhart,
D. J.; Barlow, C.: Glyoxalase 1 and glutathione reductase 1 regulate
anxiety in mice. Nature 438: 662-666, 2005.
13. Jensen, P. K. A.; Junien, C.; de la Chapelle, A.: Gene for glutathione
reductase localized to subband 8p21.1. (Abstract) Cytogenet. Cell
Genet. 37: 497 only, 1984.
14. Jensen, P. K. A.; Junien, C.; Despoisse, S.; Bernsen, A.; Thelle,
T.; Friedrich, U.; de la Chapelle, A.: Inverted tandem duplication
of the short arm of chromosome 8: a non-random de novo structural
aberration in man. Localization of the gene for glutathione reductase
in subband 8p21.1. Ann. Genet. 25: 207-211, 1982.
15. Kurz, R.; Hohenwallner, W.: Familiaerer Glutathionreduktasemangel
und Stoerung der Glutathionsynthese im Erythrozyten. Helv. Paediat.
Acta 25: 542-552, 1970.
16. Lohr, G. W.: Personal Communication. Marburg, Germany 1963.
17. Lohr, G. W.; Waller, H. D.: Eine neue enzymopenische haemolytische
Anaemie mit Glutathionreduktase-Mangel. Med. Klin. 57: 1521-1525,
1962.
18. Lohr, G. W.; Waller, H. D.: Zur Biochemie einiger angeborener
haemolytischer Anaemien. Folia Haemat. 8: 377-397, 1963.
19. Long, W. K.: Personal Communication. Austin, Texas 1972.
20. Long, W. K.: Glutathione reductase in red blood cells: variant
associated with gout. Science 155: 712-713, 1967.
21. Loos, J. A.; Roos, D.; Weening, R. S.; Hauwerzijl, J.: Familial
deficiency of glutathione reductase in human blood cells. Blood 48:
53-62, 1976.
22. Magenis, R. E.; Reiss, J.; Bigley, R.; Champerlin, J.; Lovrien,
E.: Exclusion of glutathione reductase from 8pter-8p22 and localization
to 8p21. Cytogenet. Cell Genet. 22: 446-448, 1978.
23. Nevin, N. C.; Morrison, P. J.; Jones, J.; Reid, M. M.: Inverted
tandem duplication of 8p12-p23.1 in a child with increased activity
of glutathione reductase. J. Med. Genet. 27: 135-136, 1990.
24. Nichols, E. A.; Ruddle, F. H.: Polymorphism and linkage of glutathione
reductase in Mus musculus. Biochem. Genet. 13: 323-330, 1975.
25. Oort, M.; Loos, J. A.; Prins, H. K.: Hereditary absence of reduced
glutathione in the erythrocytes--a new clinical and biochemical entity. Vox
Sang. 6: 370-373, 1961.
26. Roos, D.; Weening, R. S.; Voetman, A. A.; van Schaik, M. L. J.;
Bot, A. A. M.; Meerhof, L. J.; Loos, J. A.: Protection of phagocytic
leukocytes by endogenous glutathione: studies in a family with glutathione
reductase deficiency. Blood 53: 851-866, 1979.
27. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
28. Shows, T. B.; Sakaguchi, A. Y.: Gene transfer and gene mapping
in mammalian cells in culture. In Vitro 16: 55-76, 1980.
29. Sinet, P. M.; Bresson, J. L.; Couturier, J.; Prieur, M.; Rethore,
M.-O.; Taillemite, J. L.; Toudec, D.; Jerome, H.; Lejeune, J.: Localisation
probable du gene de la glutathion reductase (EC 1.6.4.2.) sur la bande
8p21. Ann. Genet. 20: 13-17, 1977.
30. Staal, G. E. J.; Helleman, P. W.; De Wael, J.; Veeger, C.: Purification
and properties of an abnormal glutathione reductase from human erythrocytes. Biochim.
Biophys. Acta 185: 63-69, 1969.
*FIELD* CS
Heme:
Hemolytic anemia
Lab:
Glutathione reductase deficiency
Inheritance:
Autosomal recessive
*FIELD* CN
Ada Hamosh - updated: 1/30/2006
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 02/01/2006
terry: 1/30/2006
terry: 5/17/2005
mgross: 3/17/2004
joanna: 8/12/1997
mimadm: 9/24/1994
terry: 5/10/1994
pfoster: 2/18/1994
carol: 7/12/1993
supermim: 3/16/1992
carol: 2/26/1991
*RECORD*
*FIELD* NO
138300
*FIELD* TI
+138300 GLUTATHIONE REDUCTASE; GSR
GLUTATHIONE REDUCTASE, HEMOLYTIC ANEMIA DUE TO DEFICIENCY OF, IN RED
read moreCELLS, INCLUDED
*FIELD* TX
Long (1967) found in a black American a variant red cell GSR (EC
1.6.4.2) characterized by greater electrophoretic mobility and enzyme
activity per unit of hemoglobin than the normal. Inheritance was
autosomal codominant. Three homozygotes were identified. The relation to
gout, suggested by Long (1967), is problematical. Long (1972) observed 2
variant forms of red cell GSR which appear to bind far more avidly than
the common form of the enzyme. In cases of mosaic trisomy for chromosome
8, de la Chapelle et al. (1976) found elevated glutathione reductase
activity, with other enzymes normal. George and Francke (1976) assigned
the gene to the region 8p21-p23 by the gene dosage method. In an infant
with terminal deletion of the short arm of chromosome 8, de la Chapelle
et al. (1976) found low GSR activity. They concluded that the GSR locus
is in the region 8pter-p21. Sinet et al. (1977) narrowed the assignment
to 8p21. The GSR locus has also been assigned by somatic cell
hybridization; it is one of the enzyme-markers for each chromosome
(table 1 in Shows and Sakaguchi, 1980), useful for synteny mapping.
Lohr and Waller (1962) observed a 'new' form of enzyme-deficiency
hemolytic anemia in which glutathione reductase was deficient and
glutathione (GSH) was low as a consequence. (This condition is
apparently distinct from that described by Oort et al. (1961) in which
GSH was also low, but glucose-6-phosphate dehydrogenase and glutathione
reductase were normal.) Lohr (1963) observed 10 homozygotes and 5
heterozygotes in a family distribution consistent with autosomal
recessive inheritance. Blume et al. (1968) studied a kindred with many
persons who were demonstrably heterozygous by chemical test. Hampel et
al. (1969) found a markedly increased frequency of chromosomal
aberrations in a patient with pancytopenia and absent GSR-II band in the
electropherogram. The mother was hematologically normal but had absent
GSR-II band and a moderate increase in the frequency of chromosomal
aberrations. Addition of chloramphenicol to the cultures increased the
number of damaged chromosomes in both the mother and the son. Staal et
al. (1969) described a variety of glutathione reductase anemia in which
the variant enzyme had diminished affinity for flavin adenine
dinucleotide (FAD). The patient's anemia was corrected by vitamin B2.
Administration of flavin compounds to normal individuals or addition to
hemolysates of most normal persons causes an increase in activity of GSR
(Beutler, 1969). In a patient with systemic lupus erythematosus,
Fajnholc et al. (1971) found red cell GSR deficiency which was
correctable in vivo with riboflavin and in vitro with FAD. The same
deficiency was found in the mother and some of her relatives (who were
asymptomatic) but not in the father and his relatives. Enzyme kinetics
were normal. These workers concluded that the defect was not in the
apoenzyme. Loos et al. (1976) found virtually complete absence of GSR
activity in the erythrocytes of 3 children of a consanguineous marriage
and intermediate levels in the parents. Activity was not restored by FAD
in vitro or riboflavin in vivo. Clinically the deficiency was manifested
by favism in 1 child and by cataracts in 2. Reduced GSR was found in
leukocytes, as well as evidence of impaired bactericidal capacity, but
there was no history of repeated infections. Furthermore, Roos et al.
(1979) found that chemotaxis, phagocytosis of opsonized S. aureus, and
degranulation proceeded normally. Intracellular killing appeared normal
at low ratios of bacteria to phagocytes, but higher ratios resulted in
defective bacterial killing. GSR deficiency is a frequent occurrence in
northern Thailand. Flatz (1971) found a high frequency of GSR deficiency
in northern Thailand but concluded that it was probably secondary to
dietary riboflavin deficiency because activity of the enzyme was raised
markedly in most deficient persons by administration of riboflavin.
Studies of the families of 6 persons with poor response to riboflavin
gave no evidence supporting 'simple dominant inheritance,' and the
proband with low GSR values had no hematologic evidence of a hemolytic
tendency. Nevin et al. (1990) found increased GSR activity in a child
with an inverted tandem duplication of 8p23.1-p12.
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
ANIMAL MODEL
Using a combination of behavioral analysis of 6 inbred mouse strains
with quantitative gene expression profiling of several brain regions,
Hovatta et al. (2005) identified 17 genes with expression patterns that
correlated with anxiety-like behavioral phenotypes. To determine if 2 of
the genes, glyoxalase-1 (138750) and glutathione reductase-1, have a
causal role in the genesis of anxiety, Hovatta et al. (2005) performed
genetic manipulation using lentivirus-mediated gene transfer. Local
overexpression of these genes in the mouse brain resulted in increased
anxiety-like behavior, while local inhibition of glyoxalase-1 expression
by RNA interference decreased the anxiety-like behavior. Hovatta et al.
(2005) concluded that both of these genes are involved in oxidative
stress metabolism, linking this pathway with anxiety-related behavior.
*FIELD* SA
Carson et al. (1961); de la Chapelle et al. (1976); Flatz (1971);
Gutensohn et al. (1978); Jensen et al. (1984); Jensen et al. (1982);
Kurz and Hohenwallner (1970); Lohr and Waller (1963); Magenis et al.
(1978); Nichols and Ruddle (1975)
*FIELD* RF
1. Beutler, E.: Effect of flavin compounds on glutathione reductase
activity: in vivo and in vitro studies. J. Clin. Invest. 48: 1957-1966,
1969.
2. Blume, K. G.; Gottwik, M.; Lohr, G. W.; Rudiger, H. W.: Familienuntersuchungen
zum Glutathionreduktasemangel menschlicher Erythrocyten. Humangenetik 6:
163-170, 1968.
3. Carson, P. E.; Brewer, G. J.; Ickes, C.: Decreased glutathione
reductase with susceptibility to hemolysis. (Abstract) J. Lab. Clin.
Med. 58: 804 only, 1961.
4. de la Chapelle, A.; Icen, A.; Aula, P.; Leisti, J.; Turleau, C.;
de Grouchy, J.: Mapping of the gene for glutathione reductase on
chromosome 8. Ann. Genet. 19: 253-256, 1976.
5. de la Chapelle, A.; Vuopio, P.; Icen, A.: Trisomy 8 in the bone
marrow associated with high red cell glutathione reductase activity. Blood 47:
815-826, 1976.
6. Fajnholc, N. E.; Kaminsky, E.; Machtey, I.; De Vries, A.: Hereditary
erythrocyte glutathione reductase deficiency. Rev. Europ. Clin. Biol. 16:
987-991, 1971.
7. Flatz, G.: Population study of erythrocyte glutathione reductase
activity. I. Stimulation of the enzyme by flavin adenine dinucleotide
and by riboflavin supplementation. Humangenetik 11: 269-277, 1971.
8. Flatz, G.: Population study of erythrocyte glutathione reductase
activity. II. Hematological data of subjects with low enzyme activity
and stimulation characteristics in their families. Humangenetik 11:
278-285, 1971.
9. George, D. L.; Francke, U.: Gene dose effect: regional mapping
of human glutathione reductase on chromosome 8. Cytogenet. Cell Genet. 17:
282-286, 1976.
10. Gutensohn, W.; Rodewald, A.; Haas, B.; Schulz, P.; Cleve, H.:
Refined mapping of the gene for glutathione reductase on human chromosome
8. Hum. Genet. 43: 221-224, 1978.
11. Hampel, K. E.; Lohr, G. W.; Blume, K. G.; Rudiger, H. W.: Spontane
und chloramphenicolinduzierte Chromosomenmutationen und biochemische
Befunde bei zwei Faellen mit Glutathionreduktasemangel (NAD(P)H: glutathione
oxidoreductase, E.C. 1.6.4.2). Humangenetik 7: 305-313, 1969.
12. Hovatta, I.; Tennant, R. S.; Helton, R.; Marr, R. A.; Singer,
O.; Redwine, J. M.; Ellison, J. A.; Schadt, E. E.; Verma, I. M.; Lockhart,
D. J.; Barlow, C.: Glyoxalase 1 and glutathione reductase 1 regulate
anxiety in mice. Nature 438: 662-666, 2005.
13. Jensen, P. K. A.; Junien, C.; de la Chapelle, A.: Gene for glutathione
reductase localized to subband 8p21.1. (Abstract) Cytogenet. Cell
Genet. 37: 497 only, 1984.
14. Jensen, P. K. A.; Junien, C.; Despoisse, S.; Bernsen, A.; Thelle,
T.; Friedrich, U.; de la Chapelle, A.: Inverted tandem duplication
of the short arm of chromosome 8: a non-random de novo structural
aberration in man. Localization of the gene for glutathione reductase
in subband 8p21.1. Ann. Genet. 25: 207-211, 1982.
15. Kurz, R.; Hohenwallner, W.: Familiaerer Glutathionreduktasemangel
und Stoerung der Glutathionsynthese im Erythrozyten. Helv. Paediat.
Acta 25: 542-552, 1970.
16. Lohr, G. W.: Personal Communication. Marburg, Germany 1963.
17. Lohr, G. W.; Waller, H. D.: Eine neue enzymopenische haemolytische
Anaemie mit Glutathionreduktase-Mangel. Med. Klin. 57: 1521-1525,
1962.
18. Lohr, G. W.; Waller, H. D.: Zur Biochemie einiger angeborener
haemolytischer Anaemien. Folia Haemat. 8: 377-397, 1963.
19. Long, W. K.: Personal Communication. Austin, Texas 1972.
20. Long, W. K.: Glutathione reductase in red blood cells: variant
associated with gout. Science 155: 712-713, 1967.
21. Loos, J. A.; Roos, D.; Weening, R. S.; Hauwerzijl, J.: Familial
deficiency of glutathione reductase in human blood cells. Blood 48:
53-62, 1976.
22. Magenis, R. E.; Reiss, J.; Bigley, R.; Champerlin, J.; Lovrien,
E.: Exclusion of glutathione reductase from 8pter-8p22 and localization
to 8p21. Cytogenet. Cell Genet. 22: 446-448, 1978.
23. Nevin, N. C.; Morrison, P. J.; Jones, J.; Reid, M. M.: Inverted
tandem duplication of 8p12-p23.1 in a child with increased activity
of glutathione reductase. J. Med. Genet. 27: 135-136, 1990.
24. Nichols, E. A.; Ruddle, F. H.: Polymorphism and linkage of glutathione
reductase in Mus musculus. Biochem. Genet. 13: 323-330, 1975.
25. Oort, M.; Loos, J. A.; Prins, H. K.: Hereditary absence of reduced
glutathione in the erythrocytes--a new clinical and biochemical entity. Vox
Sang. 6: 370-373, 1961.
26. Roos, D.; Weening, R. S.; Voetman, A. A.; van Schaik, M. L. J.;
Bot, A. A. M.; Meerhof, L. J.; Loos, J. A.: Protection of phagocytic
leukocytes by endogenous glutathione: studies in a family with glutathione
reductase deficiency. Blood 53: 851-866, 1979.
27. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
28. Shows, T. B.; Sakaguchi, A. Y.: Gene transfer and gene mapping
in mammalian cells in culture. In Vitro 16: 55-76, 1980.
29. Sinet, P. M.; Bresson, J. L.; Couturier, J.; Prieur, M.; Rethore,
M.-O.; Taillemite, J. L.; Toudec, D.; Jerome, H.; Lejeune, J.: Localisation
probable du gene de la glutathion reductase (EC 1.6.4.2.) sur la bande
8p21. Ann. Genet. 20: 13-17, 1977.
30. Staal, G. E. J.; Helleman, P. W.; De Wael, J.; Veeger, C.: Purification
and properties of an abnormal glutathione reductase from human erythrocytes. Biochim.
Biophys. Acta 185: 63-69, 1969.
*FIELD* CS
Heme:
Hemolytic anemia
Lab:
Glutathione reductase deficiency
Inheritance:
Autosomal recessive
*FIELD* CN
Ada Hamosh - updated: 1/30/2006
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 02/01/2006
terry: 1/30/2006
terry: 5/17/2005
mgross: 3/17/2004
joanna: 8/12/1997
mimadm: 9/24/1994
terry: 5/10/1994
pfoster: 2/18/1994
carol: 7/12/1993
supermim: 3/16/1992
carol: 2/26/1991