Full text data of EIF5
EIF5
[Confidence: low (only semi-automatic identification from reviews)]
Eukaryotic translation initiation factor 5; eIF-5
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Eukaryotic translation initiation factor 5; eIF-5
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P55010
ID IF5_HUMAN Reviewed; 431 AA.
AC P55010; Q53XB3; Q9H5N2; Q9UG48;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 10-JAN-2003, sequence version 2.
DT 22-JAN-2014, entry version 135.
DE RecName: Full=Eukaryotic translation initiation factor 5;
DE Short=eIF-5;
GN Name=EIF5;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=8663286; DOI=10.1074/jbc.271.28.16934;
RA Si K., Das K., Maitra U.;
RT "Characterization of multiple mRNAs that encode mammalian translation
RT initiation factor 5 (eIF-5).";
RL J. Biol. Chem. 271:16934-16938(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RX PubMed=11230166; DOI=10.1101/gr.GR1547R;
RA Wiemann S., Weil B., Wellenreuther R., Gassenhuber J., Glassl S.,
RA Ansorge W., Boecher M., Bloecker H., Bauersachs S., Blum H.,
RA Lauber J., Duesterhoeft A., Beyer A., Koehrer K., Strack N.,
RA Mewes H.-W., Ottenwaelder B., Obermaier B., Tampe J., Heubner D.,
RA Wambutt R., Korn B., Klein M., Poustka A.;
RT "Towards a catalog of human genes and proteins: sequencing and
RT analysis of 500 novel complete protein coding human cDNAs.";
RL Genome Res. 11:422-435(2001).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Testis;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
RA Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
RA Greff Z., Keri G., Stemmann O., Mann M.;
RT "Kinase-selective enrichment enables quantitative phosphoproteomics of
RT the kinome across the cell cycle.";
RL Mol. Cell 31:438-448(2008).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-10; SER-229; SER-389;
RP SER-390 AND SER-419, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [10]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-389 AND SER-390, AND
RP MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-10; SER-389; SER-390 AND
RP SER-419, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-389 AND SER-390, AND
RP MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [14]
RP STRUCTURE BY NMR OF 1-150.
RG RIKEN structural genomics initiative (RSGI);
RT "Solution structure of the EIF-5_EIF-2B domain from human eukaryotic
RT translation initiation factor 5.";
RL Submitted (JAN-2008) to the PDB data bank.
RN [15]
RP VARIANT [LARGE SCALE ANALYSIS] MET-418.
RX PubMed=16959974; DOI=10.1126/science.1133427;
RA Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D.,
RA Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S.,
RA Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J.,
RA Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C.,
RA Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N.,
RA Vogelstein B., Kinzler K.W., Velculescu V.E.;
RT "The consensus coding sequences of human breast and colorectal
RT cancers.";
RL Science 314:268-274(2006).
CC -!- FUNCTION: Catalyzes the hydrolysis of GTP bound to the 40S
CC ribosomal initiation complex (40S.mRNA.Met-tRNA[F].eIF-2.GTP) with
CC the subsequent joining of a 60S ribosomal subunit resulting in the
CC release of eIF-2 and the guanine nucleotide. The subsequent
CC joining of a 60S ribosomal subunit results in the formation of a
CC functional 80S initiation complex (80S.mRNA.Met-tRNA[F]).
CC -!- SIMILARITY: Belongs to the eIF-2-beta/eIF-5 family.
CC -!- SIMILARITY: Contains 1 W2 domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U49436; AAC50572.1; -; mRNA.
DR EMBL; AL080102; CAB45711.1; -; mRNA.
DR EMBL; AK026933; BAB15593.1; -; mRNA.
DR EMBL; BX537367; CAD97610.1; -; mRNA.
DR EMBL; CH471061; EAW81809.1; -; Genomic_DNA.
DR EMBL; BC007728; AAH07728.1; -; mRNA.
DR EMBL; BC032866; AAH32866.1; -; mRNA.
DR PIR; T12450; T12450.
DR RefSeq; NP_001960.2; NM_001969.4.
DR RefSeq; NP_892116.2; NM_183004.4.
DR RefSeq; XP_005267452.1; XM_005267395.1.
DR UniGene; Hs.433702; -.
DR UniGene; Hs.741278; -.
DR PDB; 2E9H; NMR; -; A=1-150.
DR PDB; 2G2K; NMR; -; A=2-170.
DR PDB; 2IU1; X-ray; 1.80 A; A=232-431.
DR PDBsum; 2E9H; -.
DR PDBsum; 2G2K; -.
DR PDBsum; 2IU1; -.
DR ProteinModelPortal; P55010; -.
DR SMR; P55010; 3-150, 232-407.
DR IntAct; P55010; 6.
DR MINT; MINT-5004352; -.
DR STRING; 9606.ENSP00000216554; -.
DR PhosphoSite; P55010; -.
DR DMDM; 27735202; -.
DR PaxDb; P55010; -.
DR PeptideAtlas; P55010; -.
DR PRIDE; P55010; -.
DR DNASU; 1983; -.
DR Ensembl; ENST00000216554; ENSP00000216554; ENSG00000100664.
DR Ensembl; ENST00000392715; ENSP00000376477; ENSG00000100664.
DR Ensembl; ENST00000558506; ENSP00000453743; ENSG00000100664.
DR GeneID; 1983; -.
DR KEGG; hsa:1983; -.
DR UCSC; uc001ymq.4; human.
DR CTD; 1983; -.
DR GeneCards; GC14P103800; -.
DR HGNC; HGNC:3299; EIF5.
DR HPA; CAB004226; -.
DR HPA; HPA000867; -.
DR MIM; 601710; gene.
DR neXtProt; NX_P55010; -.
DR PharmGKB; PA27725; -.
DR eggNOG; COG1601; -.
DR HOGENOM; HOG000214327; -.
DR HOVERGEN; HBG006132; -.
DR InParanoid; P55010; -.
DR KO; K03262; -.
DR OMA; KILQLYY; -.
DR OrthoDB; EOG7FV3QF; -.
DR PhylomeDB; P55010; -.
DR Reactome; REACT_17015; Metabolism of proteins.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; eIF5; human.
DR EvolutionaryTrace; P55010; -.
DR GeneWiki; EIF5; -.
DR GenomeRNAi; 1983; -.
DR NextBio; 8031; -.
DR PRO; PR:P55010; -.
DR ArrayExpress; P55010; -.
DR Bgee; P55010; -.
DR CleanEx; HS_EIF5; -.
DR Genevestigator; P55010; -.
DR GO; GO:0005829; C:cytosol; NAS:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
DR GO; GO:0003924; F:GTPase activity; TAS:ProtInc.
DR GO; GO:0003743; F:translation initiation factor activity; NAS:UniProtKB.
DR GO; GO:0006446; P:regulation of translational initiation; TAS:ProtInc.
DR Gene3D; 1.25.40.180; -; 1.
DR Gene3D; 3.30.30.50; -; 1.
DR InterPro; IPR016024; ARM-type_fold.
DR InterPro; IPR016021; MIF4-like_typ_1/2/3.
DR InterPro; IPR002735; Transl_init_fac_IF2/IF5.
DR InterPro; IPR016189; Transl_init_fac_IF2/IF5_N.
DR InterPro; IPR016190; Transl_init_fac_IF2/IF5_Zn-bd.
DR InterPro; IPR003307; W2_domain.
DR Pfam; PF01873; eIF-5_eIF-2B; 1.
DR Pfam; PF02020; W2; 1.
DR SMART; SM00653; eIF2B_5; 1.
DR SMART; SM00515; eIF5C; 1.
DR SUPFAM; SSF100966; SSF100966; 1.
DR SUPFAM; SSF48371; SSF48371; 1.
DR SUPFAM; SSF75689; SSF75689; 1.
DR PROSITE; PS51363; W2; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Complete proteome; GTP-binding; Initiation factor;
KW Nucleotide-binding; Phosphoprotein; Polymorphism;
KW Protein biosynthesis; Reference proteome.
FT CHAIN 1 431 Eukaryotic translation initiation factor
FT 5.
FT /FTId=PRO_0000212516.
FT DOMAIN 233 392 W2.
FT NP_BIND 27 34 GTP (Potential).
FT COMPBIAS 196 202 Asp/Glu-rich (highly acidic).
FT COMPBIAS 384 402 Asp/Glu-rich (highly acidic).
FT COMPBIAS 423 429 Asp-rich (acidic).
FT MOD_RES 10 10 Phosphoserine.
FT MOD_RES 229 229 Phosphoserine.
FT MOD_RES 389 389 Phosphoserine.
FT MOD_RES 390 390 Phosphoserine.
FT MOD_RES 419 419 Phosphoserine.
FT VARIANT 418 418 K -> M (in a breast cancer sample;
FT somatic mutation).
FT /FTId=VAR_036467.
FT CONFLICT 60 60 E -> G (in Ref. 2; CAB45711).
FT CONFLICT 203 203 W -> S (in Ref. 1; AAC50572).
FT CONFLICT 295 295 K -> E (in Ref. 2; CAB45711).
FT CONFLICT 311 311 Q -> K (in Ref. 6; AAH32866).
FT STRAND 2 6
FT STRAND 17 19
FT STRAND 23 25
FT STRAND 27 31
FT STRAND 33 36
FT HELIX 39 45
FT HELIX 51 61
FT STRAND 65 68
FT TURN 69 72
FT STRAND 73 78
FT HELIX 82 95
FT TURN 100 102
FT STRAND 103 105
FT STRAND 108 112
FT TURN 113 116
FT STRAND 117 121
FT STRAND 123 125
FT STRAND 128 130
FT STRAND 133 136
FT HELIX 137 143
FT HELIX 236 252
FT HELIX 256 258
FT HELIX 260 269
FT HELIX 273 275
FT HELIX 276 284
FT HELIX 289 295
FT HELIX 297 304
FT HELIX 308 324
FT HELIX 326 329
FT HELIX 330 332
FT HELIX 333 342
FT HELIX 348 356
FT STRAND 361 363
FT HELIX 365 383
FT HELIX 400 408
SQ SEQUENCE 431 AA; 49223 MW; C6CCC3A255F9B9BC CRC64;
MSVNVNRSVS DQFYRYKMPR LIAKVEGKGN GIKTVIVNMV DVAKALNRPP TYPTKYFGCE
LGAQTQFDVK NDRYIVNGSH EANKLQDMLD GFIKKFVLCP ECENPETDLH VNPKKQTIGN
SCKACGYRGM LDTHHKLCTF ILKNPPENSD SGTGKKEKEK KNRKGKDKEN GSVSSSETPP
PPPPPNEINP PPHTMEEEED DDWGEDTTEE AQRRRMDEIS DHAKVLTLSD DLERTIEERV
NILFDFVKKK KEEGVIDSSD KEIVAEAERL DVKAMGPLVL TEVLFNEKIR EQIKKYRRHF
LRFCHNNKKA QRYLLHGLEC VVAMHQAQLI SKIPHILKEM YDADLLEEEV IISWSEKASK
KYVSKELAKE IRVKAEPFIK WLKEAEEESS GGEEEDEDEN IEVVYSKAAS VPKVETVKSD
NKDDDIDIDA I
//
ID IF5_HUMAN Reviewed; 431 AA.
AC P55010; Q53XB3; Q9H5N2; Q9UG48;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 10-JAN-2003, sequence version 2.
DT 22-JAN-2014, entry version 135.
DE RecName: Full=Eukaryotic translation initiation factor 5;
DE Short=eIF-5;
GN Name=EIF5;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=8663286; DOI=10.1074/jbc.271.28.16934;
RA Si K., Das K., Maitra U.;
RT "Characterization of multiple mRNAs that encode mammalian translation
RT initiation factor 5 (eIF-5).";
RL J. Biol. Chem. 271:16934-16938(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RX PubMed=11230166; DOI=10.1101/gr.GR1547R;
RA Wiemann S., Weil B., Wellenreuther R., Gassenhuber J., Glassl S.,
RA Ansorge W., Boecher M., Bloecker H., Bauersachs S., Blum H.,
RA Lauber J., Duesterhoeft A., Beyer A., Koehrer K., Strack N.,
RA Mewes H.-W., Ottenwaelder B., Obermaier B., Tampe J., Heubner D.,
RA Wambutt R., Korn B., Klein M., Poustka A.;
RT "Towards a catalog of human genes and proteins: sequencing and
RT analysis of 500 novel complete protein coding human cDNAs.";
RL Genome Res. 11:422-435(2001).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Testis;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
RA Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
RA Greff Z., Keri G., Stemmann O., Mann M.;
RT "Kinase-selective enrichment enables quantitative phosphoproteomics of
RT the kinome across the cell cycle.";
RL Mol. Cell 31:438-448(2008).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-10; SER-229; SER-389;
RP SER-390 AND SER-419, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [10]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-389 AND SER-390, AND
RP MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-10; SER-389; SER-390 AND
RP SER-419, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [12]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-389 AND SER-390, AND
RP MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [14]
RP STRUCTURE BY NMR OF 1-150.
RG RIKEN structural genomics initiative (RSGI);
RT "Solution structure of the EIF-5_EIF-2B domain from human eukaryotic
RT translation initiation factor 5.";
RL Submitted (JAN-2008) to the PDB data bank.
RN [15]
RP VARIANT [LARGE SCALE ANALYSIS] MET-418.
RX PubMed=16959974; DOI=10.1126/science.1133427;
RA Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D.,
RA Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S.,
RA Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J.,
RA Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C.,
RA Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N.,
RA Vogelstein B., Kinzler K.W., Velculescu V.E.;
RT "The consensus coding sequences of human breast and colorectal
RT cancers.";
RL Science 314:268-274(2006).
CC -!- FUNCTION: Catalyzes the hydrolysis of GTP bound to the 40S
CC ribosomal initiation complex (40S.mRNA.Met-tRNA[F].eIF-2.GTP) with
CC the subsequent joining of a 60S ribosomal subunit resulting in the
CC release of eIF-2 and the guanine nucleotide. The subsequent
CC joining of a 60S ribosomal subunit results in the formation of a
CC functional 80S initiation complex (80S.mRNA.Met-tRNA[F]).
CC -!- SIMILARITY: Belongs to the eIF-2-beta/eIF-5 family.
CC -!- SIMILARITY: Contains 1 W2 domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U49436; AAC50572.1; -; mRNA.
DR EMBL; AL080102; CAB45711.1; -; mRNA.
DR EMBL; AK026933; BAB15593.1; -; mRNA.
DR EMBL; BX537367; CAD97610.1; -; mRNA.
DR EMBL; CH471061; EAW81809.1; -; Genomic_DNA.
DR EMBL; BC007728; AAH07728.1; -; mRNA.
DR EMBL; BC032866; AAH32866.1; -; mRNA.
DR PIR; T12450; T12450.
DR RefSeq; NP_001960.2; NM_001969.4.
DR RefSeq; NP_892116.2; NM_183004.4.
DR RefSeq; XP_005267452.1; XM_005267395.1.
DR UniGene; Hs.433702; -.
DR UniGene; Hs.741278; -.
DR PDB; 2E9H; NMR; -; A=1-150.
DR PDB; 2G2K; NMR; -; A=2-170.
DR PDB; 2IU1; X-ray; 1.80 A; A=232-431.
DR PDBsum; 2E9H; -.
DR PDBsum; 2G2K; -.
DR PDBsum; 2IU1; -.
DR ProteinModelPortal; P55010; -.
DR SMR; P55010; 3-150, 232-407.
DR IntAct; P55010; 6.
DR MINT; MINT-5004352; -.
DR STRING; 9606.ENSP00000216554; -.
DR PhosphoSite; P55010; -.
DR DMDM; 27735202; -.
DR PaxDb; P55010; -.
DR PeptideAtlas; P55010; -.
DR PRIDE; P55010; -.
DR DNASU; 1983; -.
DR Ensembl; ENST00000216554; ENSP00000216554; ENSG00000100664.
DR Ensembl; ENST00000392715; ENSP00000376477; ENSG00000100664.
DR Ensembl; ENST00000558506; ENSP00000453743; ENSG00000100664.
DR GeneID; 1983; -.
DR KEGG; hsa:1983; -.
DR UCSC; uc001ymq.4; human.
DR CTD; 1983; -.
DR GeneCards; GC14P103800; -.
DR HGNC; HGNC:3299; EIF5.
DR HPA; CAB004226; -.
DR HPA; HPA000867; -.
DR MIM; 601710; gene.
DR neXtProt; NX_P55010; -.
DR PharmGKB; PA27725; -.
DR eggNOG; COG1601; -.
DR HOGENOM; HOG000214327; -.
DR HOVERGEN; HBG006132; -.
DR InParanoid; P55010; -.
DR KO; K03262; -.
DR OMA; KILQLYY; -.
DR OrthoDB; EOG7FV3QF; -.
DR PhylomeDB; P55010; -.
DR Reactome; REACT_17015; Metabolism of proteins.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; eIF5; human.
DR EvolutionaryTrace; P55010; -.
DR GeneWiki; EIF5; -.
DR GenomeRNAi; 1983; -.
DR NextBio; 8031; -.
DR PRO; PR:P55010; -.
DR ArrayExpress; P55010; -.
DR Bgee; P55010; -.
DR CleanEx; HS_EIF5; -.
DR Genevestigator; P55010; -.
DR GO; GO:0005829; C:cytosol; NAS:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IEA:UniProtKB-KW.
DR GO; GO:0003924; F:GTPase activity; TAS:ProtInc.
DR GO; GO:0003743; F:translation initiation factor activity; NAS:UniProtKB.
DR GO; GO:0006446; P:regulation of translational initiation; TAS:ProtInc.
DR Gene3D; 1.25.40.180; -; 1.
DR Gene3D; 3.30.30.50; -; 1.
DR InterPro; IPR016024; ARM-type_fold.
DR InterPro; IPR016021; MIF4-like_typ_1/2/3.
DR InterPro; IPR002735; Transl_init_fac_IF2/IF5.
DR InterPro; IPR016189; Transl_init_fac_IF2/IF5_N.
DR InterPro; IPR016190; Transl_init_fac_IF2/IF5_Zn-bd.
DR InterPro; IPR003307; W2_domain.
DR Pfam; PF01873; eIF-5_eIF-2B; 1.
DR Pfam; PF02020; W2; 1.
DR SMART; SM00653; eIF2B_5; 1.
DR SMART; SM00515; eIF5C; 1.
DR SUPFAM; SSF100966; SSF100966; 1.
DR SUPFAM; SSF48371; SSF48371; 1.
DR SUPFAM; SSF75689; SSF75689; 1.
DR PROSITE; PS51363; W2; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Complete proteome; GTP-binding; Initiation factor;
KW Nucleotide-binding; Phosphoprotein; Polymorphism;
KW Protein biosynthesis; Reference proteome.
FT CHAIN 1 431 Eukaryotic translation initiation factor
FT 5.
FT /FTId=PRO_0000212516.
FT DOMAIN 233 392 W2.
FT NP_BIND 27 34 GTP (Potential).
FT COMPBIAS 196 202 Asp/Glu-rich (highly acidic).
FT COMPBIAS 384 402 Asp/Glu-rich (highly acidic).
FT COMPBIAS 423 429 Asp-rich (acidic).
FT MOD_RES 10 10 Phosphoserine.
FT MOD_RES 229 229 Phosphoserine.
FT MOD_RES 389 389 Phosphoserine.
FT MOD_RES 390 390 Phosphoserine.
FT MOD_RES 419 419 Phosphoserine.
FT VARIANT 418 418 K -> M (in a breast cancer sample;
FT somatic mutation).
FT /FTId=VAR_036467.
FT CONFLICT 60 60 E -> G (in Ref. 2; CAB45711).
FT CONFLICT 203 203 W -> S (in Ref. 1; AAC50572).
FT CONFLICT 295 295 K -> E (in Ref. 2; CAB45711).
FT CONFLICT 311 311 Q -> K (in Ref. 6; AAH32866).
FT STRAND 2 6
FT STRAND 17 19
FT STRAND 23 25
FT STRAND 27 31
FT STRAND 33 36
FT HELIX 39 45
FT HELIX 51 61
FT STRAND 65 68
FT TURN 69 72
FT STRAND 73 78
FT HELIX 82 95
FT TURN 100 102
FT STRAND 103 105
FT STRAND 108 112
FT TURN 113 116
FT STRAND 117 121
FT STRAND 123 125
FT STRAND 128 130
FT STRAND 133 136
FT HELIX 137 143
FT HELIX 236 252
FT HELIX 256 258
FT HELIX 260 269
FT HELIX 273 275
FT HELIX 276 284
FT HELIX 289 295
FT HELIX 297 304
FT HELIX 308 324
FT HELIX 326 329
FT HELIX 330 332
FT HELIX 333 342
FT HELIX 348 356
FT STRAND 361 363
FT HELIX 365 383
FT HELIX 400 408
SQ SEQUENCE 431 AA; 49223 MW; C6CCC3A255F9B9BC CRC64;
MSVNVNRSVS DQFYRYKMPR LIAKVEGKGN GIKTVIVNMV DVAKALNRPP TYPTKYFGCE
LGAQTQFDVK NDRYIVNGSH EANKLQDMLD GFIKKFVLCP ECENPETDLH VNPKKQTIGN
SCKACGYRGM LDTHHKLCTF ILKNPPENSD SGTGKKEKEK KNRKGKDKEN GSVSSSETPP
PPPPPNEINP PPHTMEEEED DDWGEDTTEE AQRRRMDEIS DHAKVLTLSD DLERTIEERV
NILFDFVKKK KEEGVIDSSD KEIVAEAERL DVKAMGPLVL TEVLFNEKIR EQIKKYRRHF
LRFCHNNKKA QRYLLHGLEC VVAMHQAQLI SKIPHILKEM YDADLLEEEV IISWSEKASK
KYVSKELAKE IRVKAEPFIK WLKEAEEESS GGEEEDEDEN IEVVYSKAAS VPKVETVKSD
NKDDDIDIDA I
//
MIM
601710
*RECORD*
*FIELD* NO
601710
*FIELD* TI
*601710 EUKARYOTIC TRANSLATION INITIATION FACTOR 5; EIF5
*FIELD* TX
DESCRIPTION
Eukaryotic translation initiation factor-5 (EIF5) interacts with the 40S
read moreinitiation complex to promote hydrolysis of bound GTP with concomitant
joining of the 60S ribosomal subunit to the 40S initiation complex. The
resulting functional 80S ribosomal initiation complex is then active in
peptidyl transfer and chain elongations (summary by Si et al., 1996).
CLONING
Si et al. (1996) cloned the gene encoding human EIF5. The gene encodes a
predicted 431-amino acid polypeptide that shares significant homology
with the rat sequence. The authors also characterized multiple mRNAs
expressed from the rat EIF5 gene and found that they differ only in the
lengths of their 3-prime untranslated regions. The transcript length
variations are tissue specific and arise from use of alternative
polyadenylation signals.
GENE FUNCTION
Das et al. (2001) characterized recombinant rat Eif5. They identified an
N-terminal GTPase-activating domain in addition to the C-terminal
Eif2-beta (EIF2S2; 603908)-binding region. Mutation analysis revealed 1
critical arginine and 2 critical lysine residues near the N terminus
that were essential for Eif5 function. Das et al. (2001) concluded that
Eif5 functions as a GTPase-activating protein.
EIF5 functions in start site selection as a GTPase accelerating protein
(GAP) for the EIF2-GTP-tRNAi(Met) ternary complex within the
ribosome-bound preinitiation complex (summary by Jennings and Pavitt,
2010). Jennings and Pavitt (2010) defined new regulatory functions of
EIF5 in the recycling of EIF2 from its inactive EIF2-GDP state between
successive rounds of translation initiation. First, the authors showed
that EIF5 stabilizes the binding of GDP to EIF2 and is therefore a
bifunctional protein that acts as a GDP dissociation inhibitor (GDI).
Jennings and Pavitt (2010) found that this activity is independent of
the GAP function and identified conserved residues within EIF5 that are
necessary for this role. In addition, Jennings and Pavitt (2010) showed
that EIF5 is a critical component of the EIF2(alpha-P) regulatory
complex that inhibits the activity of the guanine-nucleotide exchange
factor (GEF) EIF2B (603908). Jennings and Pavitt (2010) concluded that
their findings defined a new step in the translation initiation pathway,
one that is critical for normal translational controls.
MAPPING
Hartz (2010) mapped the EIF5 gene to chromosome 14q32.32 based on an
alignment of the EIF5 sequence (GenBank GENBANK U494936) with the
genomic sequence (GRCh37).
*FIELD* SA
Nomenclature Committee of the International Union of Biochemistry
(NC-IUB) (1989)
*FIELD* RF
1. Das, S.; Ghosh, R.; Maitra, U.: Eukaryotic translation initiation
factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276:
6720-6726, 2001.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 5/5/2010.
3. Jennings, M. D.; Pavitt, G. D.: eIF5 has GDI activity necessary
for translational control by eIF2 phosphorylation. Nature 465: 378-381,
2010. Note: Erratum: Nature 468: 122 only, 2010.
4. Nomenclature Committee of the International Union of Biochemistry
(NC-IUB): Nomenclature of initiation, elongation and termination
factors for translation in Eukaryotes. Recommendations 1988. Europ.
J. Biochem. 186: 1-3, 1989.
5. Si, K.; Das, K.; Maitra, U.: Characterization of multiple mRNAs
that encode mammalian translation initiation factor 5 (eIF-5). J.
Biol. Chem. 271: 16934-16938, 1996.
*FIELD* CN
Ada Hamosh - updated: 6/2/2010
Patricia A. Hartz - updated: 5/28/2010
*FIELD* CD
Mark H. Paalman: 3/19/1997
*FIELD* ED
alopez: 03/08/2012
alopez: 1/5/2011
alopez: 6/7/2010
terry: 6/2/2010
carol: 5/28/2010
terry: 5/28/2010
carol: 5/25/2010
mark: 3/20/1997
terry: 3/20/1997
mark: 3/19/1997
*RECORD*
*FIELD* NO
601710
*FIELD* TI
*601710 EUKARYOTIC TRANSLATION INITIATION FACTOR 5; EIF5
*FIELD* TX
DESCRIPTION
Eukaryotic translation initiation factor-5 (EIF5) interacts with the 40S
read moreinitiation complex to promote hydrolysis of bound GTP with concomitant
joining of the 60S ribosomal subunit to the 40S initiation complex. The
resulting functional 80S ribosomal initiation complex is then active in
peptidyl transfer and chain elongations (summary by Si et al., 1996).
CLONING
Si et al. (1996) cloned the gene encoding human EIF5. The gene encodes a
predicted 431-amino acid polypeptide that shares significant homology
with the rat sequence. The authors also characterized multiple mRNAs
expressed from the rat EIF5 gene and found that they differ only in the
lengths of their 3-prime untranslated regions. The transcript length
variations are tissue specific and arise from use of alternative
polyadenylation signals.
GENE FUNCTION
Das et al. (2001) characterized recombinant rat Eif5. They identified an
N-terminal GTPase-activating domain in addition to the C-terminal
Eif2-beta (EIF2S2; 603908)-binding region. Mutation analysis revealed 1
critical arginine and 2 critical lysine residues near the N terminus
that were essential for Eif5 function. Das et al. (2001) concluded that
Eif5 functions as a GTPase-activating protein.
EIF5 functions in start site selection as a GTPase accelerating protein
(GAP) for the EIF2-GTP-tRNAi(Met) ternary complex within the
ribosome-bound preinitiation complex (summary by Jennings and Pavitt,
2010). Jennings and Pavitt (2010) defined new regulatory functions of
EIF5 in the recycling of EIF2 from its inactive EIF2-GDP state between
successive rounds of translation initiation. First, the authors showed
that EIF5 stabilizes the binding of GDP to EIF2 and is therefore a
bifunctional protein that acts as a GDP dissociation inhibitor (GDI).
Jennings and Pavitt (2010) found that this activity is independent of
the GAP function and identified conserved residues within EIF5 that are
necessary for this role. In addition, Jennings and Pavitt (2010) showed
that EIF5 is a critical component of the EIF2(alpha-P) regulatory
complex that inhibits the activity of the guanine-nucleotide exchange
factor (GEF) EIF2B (603908). Jennings and Pavitt (2010) concluded that
their findings defined a new step in the translation initiation pathway,
one that is critical for normal translational controls.
MAPPING
Hartz (2010) mapped the EIF5 gene to chromosome 14q32.32 based on an
alignment of the EIF5 sequence (GenBank GENBANK U494936) with the
genomic sequence (GRCh37).
*FIELD* SA
Nomenclature Committee of the International Union of Biochemistry
(NC-IUB) (1989)
*FIELD* RF
1. Das, S.; Ghosh, R.; Maitra, U.: Eukaryotic translation initiation
factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276:
6720-6726, 2001.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 5/5/2010.
3. Jennings, M. D.; Pavitt, G. D.: eIF5 has GDI activity necessary
for translational control by eIF2 phosphorylation. Nature 465: 378-381,
2010. Note: Erratum: Nature 468: 122 only, 2010.
4. Nomenclature Committee of the International Union of Biochemistry
(NC-IUB): Nomenclature of initiation, elongation and termination
factors for translation in Eukaryotes. Recommendations 1988. Europ.
J. Biochem. 186: 1-3, 1989.
5. Si, K.; Das, K.; Maitra, U.: Characterization of multiple mRNAs
that encode mammalian translation initiation factor 5 (eIF-5). J.
Biol. Chem. 271: 16934-16938, 1996.
*FIELD* CN
Ada Hamosh - updated: 6/2/2010
Patricia A. Hartz - updated: 5/28/2010
*FIELD* CD
Mark H. Paalman: 3/19/1997
*FIELD* ED
alopez: 03/08/2012
alopez: 1/5/2011
alopez: 6/7/2010
terry: 6/2/2010
carol: 5/28/2010
terry: 5/28/2010
carol: 5/25/2010
mark: 3/20/1997
terry: 3/20/1997
mark: 3/19/1997