Full text data of LGALS3
LGALS3
(MAC2)
[Confidence: high (present in two of the MS resources)]
Galectin-3; Gal-3 (35 kDa lectin; Carbohydrate-binding protein 35; CBP 35; Galactose-specific lectin 3; Galactoside-binding protein; GALBP; IgE-binding protein; L-31; Laminin-binding protein; Lectin L-29; Mac-2 antigen)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Galectin-3; Gal-3 (35 kDa lectin; Carbohydrate-binding protein 35; CBP 35; Galactose-specific lectin 3; Galactoside-binding protein; GALBP; IgE-binding protein; L-31; Laminin-binding protein; Lectin L-29; Mac-2 antigen)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00219220
IPI00219220 LGALS3 protein LGALS3 protein membrane 1 1 4 5 7 1 7 4 22 n/a 1 n/a 1 n/a n/a n/a n/a n/a 2 1 integral membrane protein n/a found at its expected molecular weight found at molecular weight
IPI00219220 LGALS3 protein LGALS3 protein membrane 1 1 4 5 7 1 7 4 22 n/a 1 n/a 1 n/a n/a n/a n/a n/a 2 1 integral membrane protein n/a found at its expected molecular weight found at molecular weight
UniProt
P17931
ID LEG3_HUMAN Reviewed; 250 AA.
AC P17931; B2RC38; Q16005; Q6IBA7; Q96J47;
DT 01-NOV-1990, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-NOV-2008, sequence version 5.
DT 22-JAN-2014, entry version 166.
DE RecName: Full=Galectin-3;
DE Short=Gal-3;
DE AltName: Full=35 kDa lectin;
DE AltName: Full=Carbohydrate-binding protein 35;
DE Short=CBP 35;
DE AltName: Full=Galactose-specific lectin 3;
DE AltName: Full=Galactoside-binding protein;
DE Short=GALBP;
DE AltName: Full=IgE-binding protein;
DE AltName: Full=L-31;
DE AltName: Full=Laminin-binding protein;
DE AltName: Full=Lectin L-29;
DE AltName: Full=Mac-2 antigen;
GN Name=LGALS3; Synonyms=MAC2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANTS HIS-64 AND PRO-98.
RX PubMed=2261464; DOI=10.1021/bi00487a015;
RA Robertson M.W., Albrandt K., Keller D., Liu F.-T.;
RT "Human IgE-binding protein: a soluble lectin exhibiting a highly
RT conserved interspecies sequence and differential recognition of IgE
RT glycoforms.";
RL Biochemistry 29:8093-8100(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANT PRO-98.
RC TISSUE=Carcinoma;
RX PubMed=2402511; DOI=10.1073/pnas.87.18.7324;
RA Cherayil B., Chaitovitz S., Wong C., Pillai S.;
RT "Molecular cloning of a human macrophage lectin specific for
RT galactose.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:7324-7328(1990).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANTS HIS-64 AND PRO-98.
RX PubMed=2022338; DOI=10.1016/0378-1119(91)90139-3;
RA Oda Y., Leffler H., Sakakura Y., Kasai K., Barondes S.H.;
RT "Human breast carcinoma cDNA encoding a galactoside-binding lectin
RT homologous to mouse Mac-2 antigen.";
RL Gene 99:279-283(1991).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2009535;
RA Raz A., Carmi P., Raz T., Hogan V., Mohamed A., Wolman S.R.;
RT "Molecular cloning and chromosomal mapping of a human galactoside-
RT binding protein.";
RL Cancer Res. 51:2173-2178(1991).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA], AND SUBCELLULAR LOCATION.
RX PubMed=7682704; DOI=10.1073/pnas.90.8.3466;
RA Lotz M.M., Andrews C.W. Jr., Korzelius C.A., Lee E.C.,
RA Steele G.D. Jr., Clarke A., Mercurio A.M.;
RT "Decreased expression of Mac-2 (carbohydrate binding protein 35) and
RT loss of its nuclear localization are associated with the neoplastic
RT progression of colon carcinoma.";
RL Proc. Natl. Acad. Sci. U.S.A. 90:3466-3470(1993).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9439577; DOI=10.1006/abbi.1997.0447;
RA Kadrofske M.M., Openo K.P., Wang J.L.;
RT "The human LGALS3 (galectin-3) gene: determination of the gene
RT structure and functional characterization of the promoter.";
RL Arch. Biochem. Biophys. 349:7-20(1998).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Gastric adenocarcinoma;
RA Kato S.;
RT "Human galectin-3 full-length cDNA.";
RL Submitted (AUG-1997) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thalamus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=12508121; DOI=10.1038/nature01348;
RA Heilig R., Eckenberg R., Petit J.-L., Fonknechten N., Da Silva C.,
RA Cattolico L., Levy M., Barbe V., De Berardinis V., Ureta-Vidal A.,
RA Pelletier E., Vico V., Anthouard V., Rowen L., Madan A., Qin S.,
RA Sun H., Du H., Pepin K., Artiguenave F., Robert C., Cruaud C.,
RA Bruels T., Jaillon O., Friedlander L., Samson G., Brottier P.,
RA Cure S., Segurens B., Aniere F., Samain S., Crespeau H., Abbasi N.,
RA Aiach N., Boscus D., Dickhoff R., Dors M., Dubois I., Friedman C.,
RA Gouyvenoux M., James R., Madan A., Mairey-Estrada B., Mangenot S.,
RA Martins N., Menard M., Oztas S., Ratcliffe A., Shaffer T., Trask B.,
RA Vacherie B., Bellemere C., Belser C., Besnard-Gonnet M.,
RA Bartol-Mavel D., Boutard M., Briez-Silla S., Combette S.,
RA Dufosse-Laurent V., Ferron C., Lechaplais C., Louesse C., Muselet D.,
RA Magdelenat G., Pateau E., Petit E., Sirvain-Trukniewicz P., Trybou A.,
RA Vega-Czarny N., Bataille E., Bluet E., Bordelais I., Dubois M.,
RA Dumont C., Guerin T., Haffray S., Hammadi R., Muanga J., Pellouin V.,
RA Robert D., Wunderle E., Gauguet G., Roy A., Sainte-Marthe L.,
RA Verdier J., Verdier-Discala C., Hillier L.W., Fulton L., McPherson J.,
RA Matsuda F., Wilson R., Scarpelli C., Gyapay G., Wincker P., Saurin W.,
RA Quetier F., Waterston R., Hood L., Weissenbach J.;
RT "The DNA sequence and analysis of human chromosome 14.";
RL Nature 421:601-607(2003).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANTS HIS-64 AND
RP PRO-98.
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [13]
RP PHOSPHORYLATION AT SER-6 AND SER-12.
RX PubMed=8253806;
RA Huflejt M.E., Turck C.W., Lindstedt R., Barondes S.H., Leffler H.;
RT "L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6
RT and serine 12 in vivo and by casein kinase I.";
RL J. Biol. Chem. 268:26712-26718(1993).
RN [14]
RP INTERACTION WITH LGALS3BP.
RX PubMed=9501082; DOI=10.1093/emboj/17.6.1606;
RA Sasaki T., Brakebusch C., Engel J., Timpl R.;
RT "Mac-2 binding protein is a cell-adhesive protein of the extracellular
RT matrix which self-assembles into ring-like structures and binds beta1
RT integrins, collagens and fibronectin.";
RL EMBO J. 17:1606-1613(1998).
RN [15]
RP INTERACTION WITH ITGB1; ITGA3 AND CSPG4, SUBCELLULAR LOCATION, AND
RP FUNCTION.
RX PubMed=15181153; DOI=10.1091/mbc.E04-03-0236;
RA Fukushi J., Makagiansar I.T., Stallcup W.B.;
RT "NG2 proteoglycan promotes endothelial cell motility and angiogenesis
RT via engagement of galectin-3 and alpha3beta1 integrin.";
RL Mol. Biol. Cell 15:3580-3590(2004).
RN [16]
RP FUNCTION IN INFLAMMATION.
RX PubMed=19594635; DOI=10.1111/j.1600-065X.2009.00794.x;
RA Henderson N.C., Sethi T.;
RT "The regulation of inflammation by galectin-3.";
RL Immunol. Rev. 230:160-171(2009).
RN [17]
RP TISSUE SPECIFICITY.
RX PubMed=19497882; DOI=10.1073/pnas.0903568106;
RA Than N.G., Romero R., Goodman M., Weckle A., Xing J., Dong Z., Xu Y.,
RA Tarquini F., Szilagyi A., Gal P., Hou Z., Tarca A.L., Kim C.J.,
RA Kim J.S., Haidarian S., Uddin M., Bohn H., Benirschke K.,
RA Santolaya-Forgas J., Grossman L.I., Erez O., Hassan S.S.,
RA Zavodszky P., Papp Z., Wildman D.E.;
RT "A primate subfamily of galectins expressed at the maternal-fetal
RT interface that promote immune cell death.";
RL Proc. Natl. Acad. Sci. U.S.A. 106:9731-9736(2009).
RN [18]
RP SUBCELLULAR LOCATION, AND FUNCTION.
RX PubMed=19616076; DOI=10.1016/j.bbagen.2009.07.005;
RA Haudek K.C., Spronk K.J., Voss P.G., Patterson R.J., Wang J.L.,
RA Arnoys E.J.;
RT "Dynamics of galectin-3 in the nucleus and cytoplasm.";
RL Biochim. Biophys. Acta 1800:181-189(2010).
RN [19]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) OF 114-250.
RX PubMed=9582341; DOI=10.1074/jbc.273.21.13047;
RA Seetharaman J., Kanigsberg A., Slaaby R., Leffler H., Barondes S.H.,
RA Rini J.M.;
RT "X-ray crystal structure of the human galectin-3 carbohydrate
RT recognition domain at 2.1-A resolution.";
RL J. Biol. Chem. 273:13047-13052(1998).
CC -!- FUNCTION: Galactose-specific lectin which binds IgE. May mediate
CC with the alpha-3, beta-1 integrin the stimulation by CSPG4 of
CC endothelial cells migration. Together with DMBT1, required for
CC terminal differentiation of columnar epithelial cells during early
CC embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA
CC splicing factor. Involved in acute inflammatory responses
CC including neutrophil activation and adhesion, chemoattraction of
CC monocytes macrophages, opsonization of apoptotic neutrophils, and
CC activation of mast cells.
CC -!- SUBUNIT: Probably forms homo- or heterodimers. Interacts with
CC DMBT1 (By similarity). Forms a complex with the ITGA3, ITGB1 and
CC CSPG4. Interacts with LGALS3BP, LYPD3, CYHR1 and UACA.
CC -!- INTERACTION:
CC Q29983:MICA; NbExp=2; IntAct=EBI-1170392, EBI-1031130;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Nucleus. Secreted. Note=Secreted
CC by a non-classical secretory pathway and associates with the cell
CC surface.
CC -!- TISSUE SPECIFICITY: A major expression is found in the colonic
CC epithelium. It is also abundant in the activated macrophages.
CC Expressed in fetal membranes.
CC -!- SIMILARITY: Contains 1 galectin domain.
CC -!- WEB RESOURCE: Name=Functional Glycomics Gateway - Glycan Binding;
CC Note=Galectin-3;
CC URL="http://www.functionalglycomics.org/glycomics/GBPServlet?&operationType;=view&cbpId;=cbp_hum_Stlect_00118";
CC -!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
CC and Haematology;
CC URL="http://atlasgeneticsoncology.org/Genes/LGALS3ID44396ch14q22.html";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M57710; AAA35607.1; -; mRNA.
DR EMBL; M35368; AAA88086.1; -; mRNA.
DR EMBL; M36682; AAA36163.1; -; mRNA.
DR EMBL; M64303; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; S59012; AAB26229.1; -; mRNA.
DR EMBL; AF031425; AAB86584.1; -; Genomic_DNA.
DR EMBL; AF031422; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AF031423; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AF031424; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AB006780; BAA22164.1; -; mRNA.
DR EMBL; AK314929; BAG37435.1; -; mRNA.
DR EMBL; CR456897; CAG33178.1; -; mRNA.
DR EMBL; AL139316; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471061; EAW80658.1; -; Genomic_DNA.
DR EMBL; BC001120; AAH01120.1; -; mRNA.
DR EMBL; BC053667; AAH53667.1; -; mRNA.
DR PIR; A35820; A35820.
DR RefSeq; NP_002297.2; NM_002306.3.
DR UniGene; Hs.531081; -.
DR PDB; 1A3K; X-ray; 2.10 A; A=114-250.
DR PDB; 1KJL; X-ray; 1.40 A; A=105-249.
DR PDB; 1KJR; X-ray; 1.55 A; A=105-249.
DR PDB; 2NMN; X-ray; 2.45 A; A=113-249.
DR PDB; 2NMO; X-ray; 1.35 A; A=113-249.
DR PDB; 2NN8; X-ray; 1.35 A; A=113-249.
DR PDB; 2XG3; X-ray; 1.20 A; A=114-250.
DR PDB; 3AYA; X-ray; 2.00 A; A/B=117-250.
DR PDB; 3AYC; X-ray; 1.80 A; A/B=117-250.
DR PDB; 3AYD; X-ray; 1.90 A; A=117-250.
DR PDB; 3AYE; X-ray; 2.00 A; A/B=117-250.
DR PDB; 3T1L; X-ray; 1.60 A; A=108-250.
DR PDB; 3T1M; X-ray; 1.55 A; A=108-250.
DR PDB; 3ZSJ; X-ray; 0.86 A; A=113-250.
DR PDB; 3ZSK; X-ray; 0.90 A; A=114-250.
DR PDB; 3ZSL; X-ray; 1.08 A; A=114-250.
DR PDB; 3ZSM; X-ray; 1.25 A; A=114-250.
DR PDB; 4JC1; X-ray; 1.50 A; A=108-250.
DR PDB; 4JCK; X-ray; 1.15 A; A=108-250.
DR PDBsum; 1A3K; -.
DR PDBsum; 1KJL; -.
DR PDBsum; 1KJR; -.
DR PDBsum; 2NMN; -.
DR PDBsum; 2NMO; -.
DR PDBsum; 2NN8; -.
DR PDBsum; 2XG3; -.
DR PDBsum; 3AYA; -.
DR PDBsum; 3AYC; -.
DR PDBsum; 3AYD; -.
DR PDBsum; 3AYE; -.
DR PDBsum; 3T1L; -.
DR PDBsum; 3T1M; -.
DR PDBsum; 3ZSJ; -.
DR PDBsum; 3ZSK; -.
DR PDBsum; 3ZSL; -.
DR PDBsum; 3ZSM; -.
DR PDBsum; 4JC1; -.
DR PDBsum; 4JCK; -.
DR ProteinModelPortal; P17931; -.
DR SMR; P17931; 113-250.
DR DIP; DIP-45623N; -.
DR IntAct; P17931; 43.
DR STRING; 9606.ENSP00000254301; -.
DR BindingDB; P17931; -.
DR ChEMBL; CHEMBL4531; -.
DR PhosphoSite; P17931; -.
DR DMDM; 215274262; -.
DR DOSAC-COBS-2DPAGE; P17931; -.
DR REPRODUCTION-2DPAGE; IPI00465431; -.
DR UCD-2DPAGE; P17931; -.
DR PaxDb; P17931; -.
DR PRIDE; P17931; -.
DR DNASU; 3958; -.
DR Ensembl; ENST00000254301; ENSP00000254301; ENSG00000131981.
DR GeneID; 3958; -.
DR KEGG; hsa:3958; -.
DR UCSC; uc001xbr.3; human.
DR CTD; 3958; -.
DR GeneCards; GC14P055595; -.
DR HGNC; HGNC:6563; LGALS3.
DR HPA; CAB005191; -.
DR HPA; HPA003162; -.
DR MIM; 153619; gene.
DR neXtProt; NX_P17931; -.
DR PharmGKB; PA30340; -.
DR eggNOG; NOG312075; -.
DR HOVERGEN; HBG006255; -.
DR InParanoid; P17931; -.
DR KO; K06831; -.
DR OMA; QGPPGAY; -.
DR Reactome; REACT_6900; Immune System.
DR EvolutionaryTrace; P17931; -.
DR GeneWiki; LGALS3; -.
DR GenomeRNAi; 3958; -.
DR NextBio; 15531; -.
DR PMAP-CutDB; Q6IBA7; -.
DR PRO; PR:P17931; -.
DR ArrayExpress; P17931; -.
DR Bgee; P17931; -.
DR CleanEx; HS_LGALS3; -.
DR Genevestigator; P17931; -.
DR GO; GO:0005743; C:mitochondrial inner membrane; IDA:UniProtKB.
DR GO; GO:0005634; C:nucleus; IDA:MGI.
DR GO; GO:0005886; C:plasma membrane; TAS:ProtInc.
DR GO; GO:0005578; C:proteinaceous extracellular matrix; IEA:Ensembl.
DR GO; GO:0005681; C:spliceosomal complex; IEA:UniProtKB-KW.
DR GO; GO:0030246; F:carbohydrate binding; TAS:ProtInc.
DR GO; GO:0030154; P:cell differentiation; IEA:UniProtKB-KW.
DR GO; GO:0030198; P:extracellular matrix organization; IEA:Ensembl.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0006397; P:mRNA processing; IEA:UniProtKB-KW.
DR GO; GO:0008380; P:RNA splicing; IEA:UniProtKB-KW.
DR GO; GO:0001501; P:skeletal system development; IEA:Ensembl.
DR Gene3D; 2.60.120.200; -; 1.
DR InterPro; IPR008985; ConA-like_lec_gl_sf.
DR InterPro; IPR013320; ConA-like_subgrp.
DR InterPro; IPR001079; Galectin_CRD.
DR Pfam; PF00337; Gal-bind_lectin; 1.
DR SMART; SM00908; Gal-bind_lectin; 1.
DR SMART; SM00276; GLECT; 1.
DR SUPFAM; SSF49899; SSF49899; 1.
DR PROSITE; PS51304; GALECTIN; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome; Cytoplasm;
KW Differentiation; Disulfide bond; IgE-binding protein; Immunity;
KW Innate immunity; Lectin; mRNA processing; mRNA splicing; Nucleus;
KW Phosphoprotein; Polymorphism; Reference proteome; Repeat; Secreted;
KW Spliceosome.
FT INIT_MET 1 1 Removed (By similarity).
FT CHAIN 2 250 Galectin-3.
FT /FTId=PRO_0000076930.
FT REPEAT 36 44 1.
FT REPEAT 45 53 2.
FT REPEAT 54 62 3.
FT REPEAT 63 69 4; approximate.
FT REPEAT 70 78 5.
FT REPEAT 79 88 6; approximate.
FT REPEAT 89 100 7; approximate.
FT REPEAT 101 109 8; approximate.
FT DOMAIN 118 248 Galectin.
FT REGION 36 109 8 X 9 AA tandem repeats of Y-P-G-X(3)-P-
FT G-A.
FT REGION 181 187 Beta-galactoside binding (By similarity).
FT MOTIF 226 241 Nuclear export signal (By similarity).
FT MOD_RES 2 2 N-acetylalanine (By similarity).
FT MOD_RES 6 6 Phosphoserine.
FT MOD_RES 12 12 Phosphoserine.
FT DISULFID 173 173 Interchain (By similarity).
FT VARIANT 64 64 P -> H (in dbSNP:rs4644).
FT /FTId=VAR_012988.
FT VARIANT 98 98 T -> P (in dbSNP:rs4652).
FT /FTId=VAR_012989.
FT VARIANT 183 183 R -> K (in dbSNP:rs10148371).
FT /FTId=VAR_049768.
FT CONFLICT 33 52 AGGYPGASYPGAYPGQAPPG -> QGLPRGFLSWGLPRAGT
FT PR (in Ref. 2).
FT CONFLICT 88 88 Missing (in Ref. 2).
FT CONFLICT 232 232 S -> R (in Ref. 4; M64303).
FT STRAND 116 121
FT STRAND 130 138
FT STRAND 144 151
FT STRAND 154 165
FT STRAND 168 177
FT STRAND 185 187
FT STRAND 197 204
FT STRAND 206 213
FT STRAND 216 222
FT HELIX 228 230
FT STRAND 233 249
SQ SEQUENCE 250 AA; 26152 MW; C49DDF6D67AE0C88 CRC64;
MADNFSLHDA LSGSGNPNPQ GWPGAWGNQP AGAGGYPGAS YPGAYPGQAP PGAYPGQAPP
GAYPGAPGAY PGAPAPGVYP GPPSGPGAYP SSGQPSATGA YPATGPYGAP AGPLIVPYNL
PLPGGVVPRM LITILGTVKP NANRIALDFQ RGNDVAFHFN PRFNENNRRV IVCNTKLDNN
WGREERQSVF PFESGKPFKI QVLVEPDHFK VAVNDAHLLQ YNHRVKKLNE ISKLGISGDI
DLTSASYTMI
//
ID LEG3_HUMAN Reviewed; 250 AA.
AC P17931; B2RC38; Q16005; Q6IBA7; Q96J47;
DT 01-NOV-1990, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-NOV-2008, sequence version 5.
DT 22-JAN-2014, entry version 166.
DE RecName: Full=Galectin-3;
DE Short=Gal-3;
DE AltName: Full=35 kDa lectin;
DE AltName: Full=Carbohydrate-binding protein 35;
DE Short=CBP 35;
DE AltName: Full=Galactose-specific lectin 3;
DE AltName: Full=Galactoside-binding protein;
DE Short=GALBP;
DE AltName: Full=IgE-binding protein;
DE AltName: Full=L-31;
DE AltName: Full=Laminin-binding protein;
DE AltName: Full=Lectin L-29;
DE AltName: Full=Mac-2 antigen;
GN Name=LGALS3; Synonyms=MAC2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANTS HIS-64 AND PRO-98.
RX PubMed=2261464; DOI=10.1021/bi00487a015;
RA Robertson M.W., Albrandt K., Keller D., Liu F.-T.;
RT "Human IgE-binding protein: a soluble lectin exhibiting a highly
RT conserved interspecies sequence and differential recognition of IgE
RT glycoforms.";
RL Biochemistry 29:8093-8100(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANT PRO-98.
RC TISSUE=Carcinoma;
RX PubMed=2402511; DOI=10.1073/pnas.87.18.7324;
RA Cherayil B., Chaitovitz S., Wong C., Pillai S.;
RT "Molecular cloning of a human macrophage lectin specific for
RT galactose.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:7324-7328(1990).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA], AND VARIANTS HIS-64 AND PRO-98.
RX PubMed=2022338; DOI=10.1016/0378-1119(91)90139-3;
RA Oda Y., Leffler H., Sakakura Y., Kasai K., Barondes S.H.;
RT "Human breast carcinoma cDNA encoding a galactoside-binding lectin
RT homologous to mouse Mac-2 antigen.";
RL Gene 99:279-283(1991).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2009535;
RA Raz A., Carmi P., Raz T., Hogan V., Mohamed A., Wolman S.R.;
RT "Molecular cloning and chromosomal mapping of a human galactoside-
RT binding protein.";
RL Cancer Res. 51:2173-2178(1991).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA], AND SUBCELLULAR LOCATION.
RX PubMed=7682704; DOI=10.1073/pnas.90.8.3466;
RA Lotz M.M., Andrews C.W. Jr., Korzelius C.A., Lee E.C.,
RA Steele G.D. Jr., Clarke A., Mercurio A.M.;
RT "Decreased expression of Mac-2 (carbohydrate binding protein 35) and
RT loss of its nuclear localization are associated with the neoplastic
RT progression of colon carcinoma.";
RL Proc. Natl. Acad. Sci. U.S.A. 90:3466-3470(1993).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9439577; DOI=10.1006/abbi.1997.0447;
RA Kadrofske M.M., Openo K.P., Wang J.L.;
RT "The human LGALS3 (galectin-3) gene: determination of the gene
RT structure and functional characterization of the promoter.";
RL Arch. Biochem. Biophys. 349:7-20(1998).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Gastric adenocarcinoma;
RA Kato S.;
RT "Human galectin-3 full-length cDNA.";
RL Submitted (AUG-1997) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thalamus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=12508121; DOI=10.1038/nature01348;
RA Heilig R., Eckenberg R., Petit J.-L., Fonknechten N., Da Silva C.,
RA Cattolico L., Levy M., Barbe V., De Berardinis V., Ureta-Vidal A.,
RA Pelletier E., Vico V., Anthouard V., Rowen L., Madan A., Qin S.,
RA Sun H., Du H., Pepin K., Artiguenave F., Robert C., Cruaud C.,
RA Bruels T., Jaillon O., Friedlander L., Samson G., Brottier P.,
RA Cure S., Segurens B., Aniere F., Samain S., Crespeau H., Abbasi N.,
RA Aiach N., Boscus D., Dickhoff R., Dors M., Dubois I., Friedman C.,
RA Gouyvenoux M., James R., Madan A., Mairey-Estrada B., Mangenot S.,
RA Martins N., Menard M., Oztas S., Ratcliffe A., Shaffer T., Trask B.,
RA Vacherie B., Bellemere C., Belser C., Besnard-Gonnet M.,
RA Bartol-Mavel D., Boutard M., Briez-Silla S., Combette S.,
RA Dufosse-Laurent V., Ferron C., Lechaplais C., Louesse C., Muselet D.,
RA Magdelenat G., Pateau E., Petit E., Sirvain-Trukniewicz P., Trybou A.,
RA Vega-Czarny N., Bataille E., Bluet E., Bordelais I., Dubois M.,
RA Dumont C., Guerin T., Haffray S., Hammadi R., Muanga J., Pellouin V.,
RA Robert D., Wunderle E., Gauguet G., Roy A., Sainte-Marthe L.,
RA Verdier J., Verdier-Discala C., Hillier L.W., Fulton L., McPherson J.,
RA Matsuda F., Wilson R., Scarpelli C., Gyapay G., Wincker P., Saurin W.,
RA Quetier F., Waterston R., Hood L., Weissenbach J.;
RT "The DNA sequence and analysis of human chromosome 14.";
RL Nature 421:601-607(2003).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANTS HIS-64 AND
RP PRO-98.
RC TISSUE=Skin;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [13]
RP PHOSPHORYLATION AT SER-6 AND SER-12.
RX PubMed=8253806;
RA Huflejt M.E., Turck C.W., Lindstedt R., Barondes S.H., Leffler H.;
RT "L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6
RT and serine 12 in vivo and by casein kinase I.";
RL J. Biol. Chem. 268:26712-26718(1993).
RN [14]
RP INTERACTION WITH LGALS3BP.
RX PubMed=9501082; DOI=10.1093/emboj/17.6.1606;
RA Sasaki T., Brakebusch C., Engel J., Timpl R.;
RT "Mac-2 binding protein is a cell-adhesive protein of the extracellular
RT matrix which self-assembles into ring-like structures and binds beta1
RT integrins, collagens and fibronectin.";
RL EMBO J. 17:1606-1613(1998).
RN [15]
RP INTERACTION WITH ITGB1; ITGA3 AND CSPG4, SUBCELLULAR LOCATION, AND
RP FUNCTION.
RX PubMed=15181153; DOI=10.1091/mbc.E04-03-0236;
RA Fukushi J., Makagiansar I.T., Stallcup W.B.;
RT "NG2 proteoglycan promotes endothelial cell motility and angiogenesis
RT via engagement of galectin-3 and alpha3beta1 integrin.";
RL Mol. Biol. Cell 15:3580-3590(2004).
RN [16]
RP FUNCTION IN INFLAMMATION.
RX PubMed=19594635; DOI=10.1111/j.1600-065X.2009.00794.x;
RA Henderson N.C., Sethi T.;
RT "The regulation of inflammation by galectin-3.";
RL Immunol. Rev. 230:160-171(2009).
RN [17]
RP TISSUE SPECIFICITY.
RX PubMed=19497882; DOI=10.1073/pnas.0903568106;
RA Than N.G., Romero R., Goodman M., Weckle A., Xing J., Dong Z., Xu Y.,
RA Tarquini F., Szilagyi A., Gal P., Hou Z., Tarca A.L., Kim C.J.,
RA Kim J.S., Haidarian S., Uddin M., Bohn H., Benirschke K.,
RA Santolaya-Forgas J., Grossman L.I., Erez O., Hassan S.S.,
RA Zavodszky P., Papp Z., Wildman D.E.;
RT "A primate subfamily of galectins expressed at the maternal-fetal
RT interface that promote immune cell death.";
RL Proc. Natl. Acad. Sci. U.S.A. 106:9731-9736(2009).
RN [18]
RP SUBCELLULAR LOCATION, AND FUNCTION.
RX PubMed=19616076; DOI=10.1016/j.bbagen.2009.07.005;
RA Haudek K.C., Spronk K.J., Voss P.G., Patterson R.J., Wang J.L.,
RA Arnoys E.J.;
RT "Dynamics of galectin-3 in the nucleus and cytoplasm.";
RL Biochim. Biophys. Acta 1800:181-189(2010).
RN [19]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) OF 114-250.
RX PubMed=9582341; DOI=10.1074/jbc.273.21.13047;
RA Seetharaman J., Kanigsberg A., Slaaby R., Leffler H., Barondes S.H.,
RA Rini J.M.;
RT "X-ray crystal structure of the human galectin-3 carbohydrate
RT recognition domain at 2.1-A resolution.";
RL J. Biol. Chem. 273:13047-13052(1998).
CC -!- FUNCTION: Galactose-specific lectin which binds IgE. May mediate
CC with the alpha-3, beta-1 integrin the stimulation by CSPG4 of
CC endothelial cells migration. Together with DMBT1, required for
CC terminal differentiation of columnar epithelial cells during early
CC embryogenesis (By similarity). In the nucleus: acts as a pre-mRNA
CC splicing factor. Involved in acute inflammatory responses
CC including neutrophil activation and adhesion, chemoattraction of
CC monocytes macrophages, opsonization of apoptotic neutrophils, and
CC activation of mast cells.
CC -!- SUBUNIT: Probably forms homo- or heterodimers. Interacts with
CC DMBT1 (By similarity). Forms a complex with the ITGA3, ITGB1 and
CC CSPG4. Interacts with LGALS3BP, LYPD3, CYHR1 and UACA.
CC -!- INTERACTION:
CC Q29983:MICA; NbExp=2; IntAct=EBI-1170392, EBI-1031130;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Nucleus. Secreted. Note=Secreted
CC by a non-classical secretory pathway and associates with the cell
CC surface.
CC -!- TISSUE SPECIFICITY: A major expression is found in the colonic
CC epithelium. It is also abundant in the activated macrophages.
CC Expressed in fetal membranes.
CC -!- SIMILARITY: Contains 1 galectin domain.
CC -!- WEB RESOURCE: Name=Functional Glycomics Gateway - Glycan Binding;
CC Note=Galectin-3;
CC URL="http://www.functionalglycomics.org/glycomics/GBPServlet?&operationType;=view&cbpId;=cbp_hum_Stlect_00118";
CC -!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
CC and Haematology;
CC URL="http://atlasgeneticsoncology.org/Genes/LGALS3ID44396ch14q22.html";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M57710; AAA35607.1; -; mRNA.
DR EMBL; M35368; AAA88086.1; -; mRNA.
DR EMBL; M36682; AAA36163.1; -; mRNA.
DR EMBL; M64303; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; S59012; AAB26229.1; -; mRNA.
DR EMBL; AF031425; AAB86584.1; -; Genomic_DNA.
DR EMBL; AF031422; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AF031423; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AF031424; AAB86584.1; JOINED; Genomic_DNA.
DR EMBL; AB006780; BAA22164.1; -; mRNA.
DR EMBL; AK314929; BAG37435.1; -; mRNA.
DR EMBL; CR456897; CAG33178.1; -; mRNA.
DR EMBL; AL139316; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471061; EAW80658.1; -; Genomic_DNA.
DR EMBL; BC001120; AAH01120.1; -; mRNA.
DR EMBL; BC053667; AAH53667.1; -; mRNA.
DR PIR; A35820; A35820.
DR RefSeq; NP_002297.2; NM_002306.3.
DR UniGene; Hs.531081; -.
DR PDB; 1A3K; X-ray; 2.10 A; A=114-250.
DR PDB; 1KJL; X-ray; 1.40 A; A=105-249.
DR PDB; 1KJR; X-ray; 1.55 A; A=105-249.
DR PDB; 2NMN; X-ray; 2.45 A; A=113-249.
DR PDB; 2NMO; X-ray; 1.35 A; A=113-249.
DR PDB; 2NN8; X-ray; 1.35 A; A=113-249.
DR PDB; 2XG3; X-ray; 1.20 A; A=114-250.
DR PDB; 3AYA; X-ray; 2.00 A; A/B=117-250.
DR PDB; 3AYC; X-ray; 1.80 A; A/B=117-250.
DR PDB; 3AYD; X-ray; 1.90 A; A=117-250.
DR PDB; 3AYE; X-ray; 2.00 A; A/B=117-250.
DR PDB; 3T1L; X-ray; 1.60 A; A=108-250.
DR PDB; 3T1M; X-ray; 1.55 A; A=108-250.
DR PDB; 3ZSJ; X-ray; 0.86 A; A=113-250.
DR PDB; 3ZSK; X-ray; 0.90 A; A=114-250.
DR PDB; 3ZSL; X-ray; 1.08 A; A=114-250.
DR PDB; 3ZSM; X-ray; 1.25 A; A=114-250.
DR PDB; 4JC1; X-ray; 1.50 A; A=108-250.
DR PDB; 4JCK; X-ray; 1.15 A; A=108-250.
DR PDBsum; 1A3K; -.
DR PDBsum; 1KJL; -.
DR PDBsum; 1KJR; -.
DR PDBsum; 2NMN; -.
DR PDBsum; 2NMO; -.
DR PDBsum; 2NN8; -.
DR PDBsum; 2XG3; -.
DR PDBsum; 3AYA; -.
DR PDBsum; 3AYC; -.
DR PDBsum; 3AYD; -.
DR PDBsum; 3AYE; -.
DR PDBsum; 3T1L; -.
DR PDBsum; 3T1M; -.
DR PDBsum; 3ZSJ; -.
DR PDBsum; 3ZSK; -.
DR PDBsum; 3ZSL; -.
DR PDBsum; 3ZSM; -.
DR PDBsum; 4JC1; -.
DR PDBsum; 4JCK; -.
DR ProteinModelPortal; P17931; -.
DR SMR; P17931; 113-250.
DR DIP; DIP-45623N; -.
DR IntAct; P17931; 43.
DR STRING; 9606.ENSP00000254301; -.
DR BindingDB; P17931; -.
DR ChEMBL; CHEMBL4531; -.
DR PhosphoSite; P17931; -.
DR DMDM; 215274262; -.
DR DOSAC-COBS-2DPAGE; P17931; -.
DR REPRODUCTION-2DPAGE; IPI00465431; -.
DR UCD-2DPAGE; P17931; -.
DR PaxDb; P17931; -.
DR PRIDE; P17931; -.
DR DNASU; 3958; -.
DR Ensembl; ENST00000254301; ENSP00000254301; ENSG00000131981.
DR GeneID; 3958; -.
DR KEGG; hsa:3958; -.
DR UCSC; uc001xbr.3; human.
DR CTD; 3958; -.
DR GeneCards; GC14P055595; -.
DR HGNC; HGNC:6563; LGALS3.
DR HPA; CAB005191; -.
DR HPA; HPA003162; -.
DR MIM; 153619; gene.
DR neXtProt; NX_P17931; -.
DR PharmGKB; PA30340; -.
DR eggNOG; NOG312075; -.
DR HOVERGEN; HBG006255; -.
DR InParanoid; P17931; -.
DR KO; K06831; -.
DR OMA; QGPPGAY; -.
DR Reactome; REACT_6900; Immune System.
DR EvolutionaryTrace; P17931; -.
DR GeneWiki; LGALS3; -.
DR GenomeRNAi; 3958; -.
DR NextBio; 15531; -.
DR PMAP-CutDB; Q6IBA7; -.
DR PRO; PR:P17931; -.
DR ArrayExpress; P17931; -.
DR Bgee; P17931; -.
DR CleanEx; HS_LGALS3; -.
DR Genevestigator; P17931; -.
DR GO; GO:0005743; C:mitochondrial inner membrane; IDA:UniProtKB.
DR GO; GO:0005634; C:nucleus; IDA:MGI.
DR GO; GO:0005886; C:plasma membrane; TAS:ProtInc.
DR GO; GO:0005578; C:proteinaceous extracellular matrix; IEA:Ensembl.
DR GO; GO:0005681; C:spliceosomal complex; IEA:UniProtKB-KW.
DR GO; GO:0030246; F:carbohydrate binding; TAS:ProtInc.
DR GO; GO:0030154; P:cell differentiation; IEA:UniProtKB-KW.
DR GO; GO:0030198; P:extracellular matrix organization; IEA:Ensembl.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0006397; P:mRNA processing; IEA:UniProtKB-KW.
DR GO; GO:0008380; P:RNA splicing; IEA:UniProtKB-KW.
DR GO; GO:0001501; P:skeletal system development; IEA:Ensembl.
DR Gene3D; 2.60.120.200; -; 1.
DR InterPro; IPR008985; ConA-like_lec_gl_sf.
DR InterPro; IPR013320; ConA-like_subgrp.
DR InterPro; IPR001079; Galectin_CRD.
DR Pfam; PF00337; Gal-bind_lectin; 1.
DR SMART; SM00908; Gal-bind_lectin; 1.
DR SMART; SM00276; GLECT; 1.
DR SUPFAM; SSF49899; SSF49899; 1.
DR PROSITE; PS51304; GALECTIN; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome; Cytoplasm;
KW Differentiation; Disulfide bond; IgE-binding protein; Immunity;
KW Innate immunity; Lectin; mRNA processing; mRNA splicing; Nucleus;
KW Phosphoprotein; Polymorphism; Reference proteome; Repeat; Secreted;
KW Spliceosome.
FT INIT_MET 1 1 Removed (By similarity).
FT CHAIN 2 250 Galectin-3.
FT /FTId=PRO_0000076930.
FT REPEAT 36 44 1.
FT REPEAT 45 53 2.
FT REPEAT 54 62 3.
FT REPEAT 63 69 4; approximate.
FT REPEAT 70 78 5.
FT REPEAT 79 88 6; approximate.
FT REPEAT 89 100 7; approximate.
FT REPEAT 101 109 8; approximate.
FT DOMAIN 118 248 Galectin.
FT REGION 36 109 8 X 9 AA tandem repeats of Y-P-G-X(3)-P-
FT G-A.
FT REGION 181 187 Beta-galactoside binding (By similarity).
FT MOTIF 226 241 Nuclear export signal (By similarity).
FT MOD_RES 2 2 N-acetylalanine (By similarity).
FT MOD_RES 6 6 Phosphoserine.
FT MOD_RES 12 12 Phosphoserine.
FT DISULFID 173 173 Interchain (By similarity).
FT VARIANT 64 64 P -> H (in dbSNP:rs4644).
FT /FTId=VAR_012988.
FT VARIANT 98 98 T -> P (in dbSNP:rs4652).
FT /FTId=VAR_012989.
FT VARIANT 183 183 R -> K (in dbSNP:rs10148371).
FT /FTId=VAR_049768.
FT CONFLICT 33 52 AGGYPGASYPGAYPGQAPPG -> QGLPRGFLSWGLPRAGT
FT PR (in Ref. 2).
FT CONFLICT 88 88 Missing (in Ref. 2).
FT CONFLICT 232 232 S -> R (in Ref. 4; M64303).
FT STRAND 116 121
FT STRAND 130 138
FT STRAND 144 151
FT STRAND 154 165
FT STRAND 168 177
FT STRAND 185 187
FT STRAND 197 204
FT STRAND 206 213
FT STRAND 216 222
FT HELIX 228 230
FT STRAND 233 249
SQ SEQUENCE 250 AA; 26152 MW; C49DDF6D67AE0C88 CRC64;
MADNFSLHDA LSGSGNPNPQ GWPGAWGNQP AGAGGYPGAS YPGAYPGQAP PGAYPGQAPP
GAYPGAPGAY PGAPAPGVYP GPPSGPGAYP SSGQPSATGA YPATGPYGAP AGPLIVPYNL
PLPGGVVPRM LITILGTVKP NANRIALDFQ RGNDVAFHFN PRFNENNRRV IVCNTKLDNN
WGREERQSVF PFESGKPFKI QVLVEPDHFK VAVNDAHLLQ YNHRVKKLNE ISKLGISGDI
DLTSASYTMI
//
MIM
153619
*RECORD*
*FIELD* NO
153619
*FIELD* TI
*153619 LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 3; LGALS3
;;MACROPHAGE GALACTOSE-SPECIFIC LECTIN; MAC2;;
read moreGALACTOSIDE-BINDING PROTEIN; GALBP;;
GALECTIN 3; GAL3
GALECTIN 3 INTERNAL GENE, INCLUDED; GALIG, INCLUDED
*FIELD* TX
CLONING
The murine Mac2 protein is a galactose- and IgE-binding lectin secreted
by inflammatory macrophages. Cherayil et al. (1990) cloned and
characterized a cDNA representing the human homolog. The amino acid
sequence derived therefrom indicated that the protein is evolutionarily
highly conserved, especially in the C-terminal lectin domain. Human MAC2
synthesized in vitro is recognized by a monoclonal antibody to mouse
Mac2 and behaves like a galactose-specific lectin in its binding to the
desialylated glycoprotein asialofetuin. It also binds to purified
laminin (see 150320), indicating a potential role in macrophage
extracellular matrix interactions. MAC2 is also known as galectin-3
(LGALS3), as mentioned in Madsen et al., (1995).
From a human fibrosarcoma cDNA library, Raz et al. (1991) cloned a
galactoside-binding protein with a molecular weight of 31,000. The
deduced 242-amino acid protein has the characteristics of a
carbohydrate-binding protein. The deduced amino acid sequence contains
95 residues at the N terminus that are homologous to the predicted amino
acid sequence of the second exon of the oncogene LMYC (164850).
Huflejt et al. (1997) found that LGALS3 and LGALS4 (602518) have very
different cellular localizations in human colon adenocarcinoma T84
cells, suggesting that these LGALSs have different targeting mechanisms,
ligands, and functions. In confluent T84 cells, LGALS3 is concentrated
mainly at the apical membrane in large granular inclusions. In
subconfluent T84 cells, it is distributed along most of the cell
periphery and is concentrated in the posterior part of lamellipodia.
By RT-PCR of a human osteosarcoma cell line, Raimond et al. (1995)
identified galectin-3 transcripts initiated from the promoter upstream
of exon 1 and from the internal promoter within intron 2. Using RT-PCR
and EST database analysis, Guittaut et al. (2001) obtained transcripts
originating from the internal promoter in intron 2 of LGALS3 from
several cDNA libraries. They concluded that these transcripts arise from
a gene embedded within LGALS3 that they called 'galectin-3 internal
gene,' or GALIG. The GALIG transcripts contain 2 overlapping ORFs, ORF1
and ORF2, that initiate in exon 3 of LGALS3 and are out-of-frame
relative to the LGALS3 coding sequence. RT-PCR detected variable and
tissue-specific expression of LGALS3 and GALIG transcripts. GALIG
transcripts showed highest expression in peripheral blood leukocytes,
but overall they were much less abundant than LGALS3 transcripts. In
transfected osteosarcoma cells, fluorescence-tagged ORF1 localized to
cytosol and nucleus, and fluorescence-tagged ORF2 localized to
mitochondria.
GENE FUNCTION
Galectin-3 is expressed in various tissues and organs, but is
significantly absent in normal hepatocytes. However, evaluation of
patient liver biopsies for galectin-3 expression revealed that
hepatocellular carcinoma (HCC) frequently expressed significant levels
of this lectin; 76% were immunohistochemically positive. Further
investigations showed that galectin-3 expression in HCC is independent
of whether the patient had prior hepatitis B virus infection (Hsu et
al., 1999). Hsu et al. (1999) suggested that deregulated expression of
galectin-3 can result in tumor transformation and invasiveness, or
confer propensity for tumor cell survival.
Using reporter gene assays, Raimond et al. (1995) showed that p53 (TP53;
191170) downregulated expression of the GALIG promoter when
cotransfected into a human osteosarcoma cell line.
In the thyroid, expression of galectin-3 protein had been described in
differentiated follicular cancer, suggesting that the
immunohistochemical study of galectin-3 may be a potential marker of
malignancy in thyroid neoplasms. Martins et al. (2002) analyzed
galectin-3 protein and mRNA expression in thyroid tissues from 87
patients with histomorphologic diagnosis of multinodular goiter (MNG),
follicular adenoma, follicular carcinoma, papillary carcinoma, and 5
normal tissues. Galectin-3 mRNA expression was detected by RT-PCR. Their
results showed that the majority of carcinomas expressed galectin-3
protein (follicular, 90%; papillary, 100%). However, in contrast to the
previously published data, benign lesions also expressed galectin-3
(adenoma, 45%; MNG, 17%). The authors showed by RT-PCR that thyroid
tissues with diagnosis of adenoma and MNG expressed galectin-3 mRNA.
Although the galectin-3 immunostaining demonstrated a sensitivity of
93.8% in the identification of cancer, the accuracy in the distinction
between benign and malignant tissues was 77.0%. This accuracy was even
lower (68.6%) when galectin-3 expression in follicular adenoma was
compared with follicular carcinoma.
Using micro-Boyden chamber analysis, Sano et al. (2000) determined that
LGALS3 has chemoattractant activity not for eosinophils, like LGALS9
(601879), but for monocytes and mature macrophages. At high
concentrations LGALS3 activity is chemotactic, i.e., cells migrate
towards the attractant, whereas at low concentrations it is
chemokinetic, i.e., it enhances movement of cells in all directions.
Sano et al. (2000) found that the chemoattractant activity is inhibited
by lactose, indicating that the C-terminal lectin domain of LGALS3 is
required. A C-terminal domain fragment was unable to mediate
chemoattraction, suggesting that the N-terminal domain is also necessary
for activity. Both migration and increased intracellular calcium
concentration were pertussis toxin sensitive and therefore probably
mediated by a G protein-coupled receptor. The authors determined that
LGALS3 does not, however, use the chemokine receptors CCR1 (601159),
CCR2 (601267), CCR5 (601373), and CXCR4 (162643).
Yoshimura et al. (2003) found increased expression of the LGALS3 gene in
human nonsmall cell lung cancer, and suggested that it may play a role
in the process of metastasis in this malignancy but not in small cell
lung cancer. They considered that LGALS3 may be a phenotypic marker that
excludes small cell lung cancer and a novel target molecule in therapy
of nonsmall cell lung cancer.
Nikiforova et al. (2003) analyzed a series of 88 conventional follicular
and Hurthle cell thyroid tumors for RAS (HRAS, 190020; NRAS, 164790;
KRAS, 190070) mutations and PAX8 (167415)-PPARG (601487) rearrangements
using molecular methods and for galectin-3 and mesothelioma antibody
HBME-1 expression by immunohistochemistry. Forty-nine percent of
conventional follicular carcinomas had RAS mutations, 36% had PAX8-PPARG
rearrangement, and only 1 (3%) had both. Of follicular adenomas, 48% had
RAS mutations, 4% had PAX8-PPARG rearrangement, and 48% had neither.
Follicular carcinomas with RAS mutations most often displayed an
HBME-1-positive/galectin-3-negative immunophenotype and were either
minimally or overtly invasive. Hurthle cell tumors infrequently had
PAX8-PPARG rearrangement or RAS mutations.
Ohshima et al. (2003) found that galectin-3 mRNA and protein are
expressed throughout synovial tissue in rheumatoid arthritis (RA;
180300) and that both galectin-3 and its binding protein are found at
sites of joint destruction. In addition, levels of galectin-3 in serum
and synovial fluid as well as levels of its binding protein in synovial
fluid were significantly elevated in RA compared to osteoarthritis and
healthy controls (p less than 0.001). Serum galectin-3 levels correlated
significantly with C-reactive protein levels (p less than 0.001), and
levels of its binding protein correlated with levels of cartilage
oligomeric matrix protein in both serum and synovial fluid (p less than
0.001 and 0.005, respectively). In vitro, RA synovial fibroblasts showed
an increased release of galectin-3 into culture medium but decreased
secretion of its binding protein. Ohshima et al. (2003) concluded that
galectin-3 and its binding protein are not only involved in inflammation
but also contribute to the activation of synovial fibroblasts, and thus
represent markers of disease activity in rheumatoid arthritis.
Partridge et al. (2004) reported that expression of Mgat5 (601774)
sensitized mouse cells to multiple cytokines. Gal3 crosslinked
Mgat5-modified N-glycans on epidermal growth factor and transforming
growth factor-beta receptors at the cell surface and delayed their
removal by constitutive endocytosis. Mgat5 expression in mammary
carcinoma was rate limiting for cytokine signaling and consequently for
epithelial-mesenchymal transition, cell motility, and tumor metastasis.
Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis,
and extravasation in vivo. Partridge et al. (2004) concluded that
conditional regulation of N-glycan processing drives synchronous
modification of cytokine receptors, which balances their surface
retention against loss through endocytosis.
Henderson et al. (2006) found that galectin-3 was upregulated in
established human fibrotic liver disease. In experimental hepatic
fibrosis in rats, galectin-3 upregulation was associated with induction
and resolution of fibrosis. Disruption of the galectin-3 gene blocked
myofibroblast activation and procollagen I expression in vitro and in
vivo and attenuated liver fibrosis. Exogenous recombinant galectin-3
reversed this abnormality. Following liver injury and inflammation,
hepatic fibrosis was reduced in galectin-3-null mice compared with
wildtype mice. Tgf-beta (190180) failed to activate galectin-3-null
mouse hepatic stellate cells, indicating that galectin-3 is required for
Tgf-beta-mediated myofibroblast activation and matrix production.
Both MUC1 (158340) and galectin-3 are widely expressed in human
carcinomas. Ramasamy et al. (2007) showed that, following glycosylation
on asn36, the MUC1 C-terminal subunit (MUC1C) induced galectin-3
expression by suppressing expression of miRNA322 (MIRN322; 300682), a
microRNA that destabilizes galectin-3 transcripts. In turn, galectin-3
bound MUC1C at the glycosylated asn36 site and formed a bridge between
MUC1 and epidermal growth factor receptor (EGFR; 131550), integrating
MUC1 with EGF (131530) signaling.
Mazurek et al. (2007) stated that GAL3 may exert anti- or pro- apoptotic
activity depending on the cell type and the nature of the stimulus. They
showed that introduction of phosphorylated GAL3 into a GAL3-null human
breast cancer cell line promoted apoptotic cell death through TRAIL
(TNFSF10; 603598), a member of the tumor necrosis factor family that
transmits death signals through death domain-containing receptors.
Downstream, TRAIL sensitivity depended upon induction of PTEN (601728)
expression, resulting in inactivation of the PI3K (see PIK3CA;
171834)/AKT (AKT1; 164730) survival pathway.
Chen et al. (2009) reported that Cd4 (186940)-positive T cells from mice
lacking Gal3 secreted more Ifng (147570) and Il4 (147780) than wildtype
cells after engagement of the T-cell receptor (TCR). In activated mouse
and human T cells, GAL3 was recruited to the cytoplasmic side of the
immunologic synapse, primarily in the peripheral supramolecular
activation cluster (SMAC). Wildtype mouse T cells formed central SMAC
less effectively and adhered to antigen-presenting cells less firmly
than Gal3 -/- cells, suggesting that GAL3 is involved in stabilizing the
immunologic synapse. Yeast 2-hybrid analysis of a human T-cell cDNA
library, followed by coimmunoprecipitation and immunofluorescence
analyses, identified ALIX (PDCD6IP; 608074) as a GAL3 binding partner
and showed that ALIX translocated to the immunologic synapse in
activated T cells. Chen et al. (2009) concluded that GAL3 is an
inhibitory regulator of T-cell activation and that it functions
intracellularly by promoting TCR downregulation, possibly through
modulation of ALIX function at the immunologic synapse.
GENE STRUCTURE
Guittaut et al. (2001) reported that the LGALS3 gene contains 6 exons.
It has a proximal promoter upstream of exon 1 and a conserved internal
promoter within the 5-prime region of intron 2.
MAPPING
Raz et al. (1991) mapped the gene encoding galactoside-binding protein,
symbolized GALBP by them, to 1p13 by in situ hybridization. Conflicting
mapping results were obtained by Raimond et al. (1997), who mapped the
LGALS3 gene to 14q21-q22 by fluorescence in situ hybridization and
confirmed the location by isotopic hybridization with a tritium-labeled
probe. No secondary peak of hybridization was observed by either method
on the short arm of chromosome 1 where the gene had been tentatively
assigned by Raz et al. (1991). Presumably, the chromosome 14 location is
the true one.
ANIMAL MODEL
Neutrophil extravasation is mediated by ITGB2 (600065) and selectins
(e.g., SELE; 131210). Using an in vivo streptococcal pneumonia mouse
model, Sato et al. (2002) showed by Western blot analysis an
accumulation of galectin-3 in the bronchoalveolar lavage fluid that
correlated with the kinetics of neutrophil emigration to alveoli during
S. pneumoniae, but not E. coli, infection. Immunohistochemical analysis
demonstrated galectin-3 expression on endothelial and epithelial cell
layers and interstitial spaces in lung tissue. Functional analysis
indicated that galectin-3 promoted neutrophil adhesion to endothelial
cells and that this resulted from direct crosslinking of neutrophils and
was dependent on galectin-3 oligomerization. Sato et al. (2002)
suggested that galectin-3 plays a role in ITGB2-independent neutrophil
extravasation during alveolar infection with S. pneumoniae.
Using models of corneal wound healing, Cao et al. (2002) found that
reepithelialization of wounds was significantly slower in Gal3-null mice
compared with wildtype mice, and the difference was not due to a reduced
epithelial cell proliferation rate. Gene expression analysis using cDNA
microarrays revealed that healing corneas of Gal3-null mice had reduced
levels of Gal7 (600615). Exogenous application of Gal7, but not Gal3,
accelerated reepithelialization of wounds in Gal3-null mice. Both Gal3
and Gal7 accelerated corneal wound healing in wildtype mice. Cao et al.
(2002) concluded that both GAL3 and GAL7 play a role in
reepithelialization of corneal wounds.
Sano et al. (2003) demonstrated reduced phagocytosis of IgG-opsonized
erythrocytes and apoptotic thymocytes in Gal3 -/- macrophages compared
to wildtype. Gal3-null mice showed attenuated phagocytic clearance of
apoptotic thymocytes by peritoneal macrophages and reduced IgG-mediated
phagocytosis of erythrocytes by Kupffer cells in a mouse model of
autoimmune hemolytic anemia. Extracellular Gal3 did not contribute to
phagocytosis. Sano et al. (2003) concluded that GAL3 may play an
important role in both innate and adaptive immunity by contributing to
phagocytic clearance of microorganisms and apoptotic cells.
*FIELD* RF
1. Cao, Z.; Said, N.; Amin, S.; Wu, H. K.; Bruce, A.; Garate, M.;
Hsu, D. K.; Kuwabara, I.; Liu, F.-T.; Panjwani, N.: Galectin-3 and
-7, but not galectin-1, play a role in re-epithelialization of wounds. J.
Biol. Chem. 277: 42299-42305, 2002.
2. Chen, H.-Y.; Fermin, A.; Vardhana, S.; Weng, I.-C.; Lo, K. F. R.;
Chang, E.-Y.; Maverakis, E.; Yang, R.-Y.; Hsu, D. K.; Dustin, M. L.;
Liu, F.-T.: Galectin-3 negatively regulates TCR-mediated CD4+ T-cell
activation at the immunological synapse. Proc. Nat. Acad. Sci. 106:
14496-14501, 2009.
3. Cherayil, B. J.; Chaitovitz, S.; Wong, C.; Pillai, S.: Molecular
cloning of a human macrophage lectin specific for galactose. Proc.
Nat. Acad. Sci. 87: 7324-7328, 1990.
4. Guittaut, M.; Charpentier, S.; Normand, T.; Dubois, M.; Raimond,
J.; Legrand, A.: Identification of an internal gene to the human
galectin-3 gene with two different overlapping reading frames that
do not encode galectin-3. J. Biol. Chem. 276: 2652-2657, 2001.
5. Henderson, N. C.; Mackinnon, A. C.; Farnworth, S. L.; Poirier,
F.; Russo, F. P.; Iredale, J. P.; Haslett, C.; Simpson, K. J.; Sethi,
T.: Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc.
Nat. Acad. Sci. 103: 5060-5065, 2006.
6. Hsu, D. K.; Dowling, C. A.; Jeng, K.-C. G.; Chen, J.-T.; Yang,
R.-Y.; Liu, F.-T.: Galectin-3 expression is induced in cirrhotic
liver and hepatocellular carcinoma. Int. J. Cancer 81: 519-526,
1999.
7. Huflejt, M. E.; Jordan, E. T.; Gitt, M. A.; Barondes, S. H.; Leffler,
H.: Strikingly different localization of galectin-3 and galectin-4
in human colon adenocarcinoma T84 cells: galectin-4 is localized at
sites of cell adhesion. J. Biol. Chem. 272: 14294-14303, 1997.
8. Madsen, P.; Rasmussen, H. H.; Flint, T.; Gromov, P.; Kruse, T.
A.; Honore, B.; Vorum, H.; Celis, J. E.: Cloning, expression, and
chromosome mapping of human galectin-7. J. Biol. Chem. 270: 5823-5829,
1995.
9. Martins, L.; Matsuo, S. E.; Ebina, K. N.; Kulcsar, M. A. V.; Friguglietti,
C. U. M.; Kimura, E. T.: Galectin-3 messenger ribonucleic acid and
protein are expressed in benign thyroid tumors. J. Clin. Endocr.
Metab. 87: 4806-4810, 2002.
10. Mazurek, N.; Sun, Y. J.; Liu, K.-F.; Gilcrease, M. Z.; Schober,
W.; Nangia-Makker, P.; Raz, A.; Bresalier, R. S.: Phosphorylated
galectin-3 mediates tumor necrosis factor-related apoptosis-inducing
ligand signaling by regulating phosphatase and tensin homologue deleted
on chromosome 10 in human breast carcinoma cells. J. Biol. Chem. 282:
21337-21348, 2007.
11. Nikiforova, M. N.; Lynch, R. A.; Biddinger, P. W.; Alexander,
E. K.; Dorn, G. W., II; Tallini, G.; Kroll, T. G.; Nikiforov, Y. E.
: RAS point mutations and PAX8-PPAR-gamma rearrangement in thyroid
tumors: evidence for distinct molecular pathways in thyroid follicular
carcinoma. J. Clin. Endocr. Metab. 88: 2318-2326, 2003.
12. Ohshima, S.; Kuchen, S.; Seemayer, C. A.; Kyburz, D.; Hirt, A.;
Klinzing, S.; Michel, B. A.; Gay, R. E.; Liu, F.-T.; Gay, S.; Neidhart,
M.: Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis
Rheum. 48: 2788-2795, 2003.
13. Partridge, E. A.; Le Roy, C.; Di Guglielmo, G. M.; Pawling, J.;
Cheung, P.; Granovsky, M.; Nabi, I. R.; Wrana, J. L.; Dennis, J. W.
: Regulation of cytokine receptors by Golgi N-glycan processing and
endocytosis. Science 306: 120-124, 2004.
14. Raimond, J.; Rouleux, F.; Monsigny, M.; Legrand, A.: The second
intron of the human galectin-3 gene has a strong promoter activity
down-regulated by p53. FEBS Lett. 363: 165-169, 1995.
15. Raimond, J.; Zimonjic, D. B.; Mignon, C.; Mattei, M.-G.; Popescu,
N. C.; Monsigny, M.; Legrand, A.: Mapping of the galectin-3 gene
(LGALS3) to human chromosome 14 at region 14q21-22. Mammalian Genome 8:
706-707, 1997.
16. Ramasamy, S.; Duraisamy, S.; Barbashov, S.; Kawano, T.; Kharbanda,
S.; Kufe, D.: The MUC1 and galectin-3 oncoproteins function in a
microRNA-dependent regulatory loop. Molec. Cell 27: 992-1004, 2007.
17. Raz, A.; Carmi, P.; Raz, T.; Hogan, V.; Mohamed, A.; Wolman, S.
R.: Molecular cloning and chromosomal mapping of a human galactoside-binding
protein. Cancer Res. 51: 2173-2178, 1991.
18. Sano, H.; Hsu, D. K.; Apgar, J. R.; Yu, L.; Sharma, B. B.; Kuwabara,
I.; Izui, S.; Liu, F.-T.: Critical role of galectin-3 in phagocytosis
by macrophages. J. Clin. Invest. 112: 389-397, 2003.
19. Sano, H.; Hsu, D. K.; Yu, L.; Apgar, J. R.; Kuwabara, I.; Yamanaka,
T.; Hirashima, M.; Liu, F.-T.: Human galectin-3 is a novel chemoattractant
for monocytes and macrophages. J. Immun. 165: 2156-2164, 2000.
20. Sato, S.; Ouellet, N.; Pelletier, I.; Simard, M.; Rancourt, A.;
Bergeron, M. G.: Role of galectin-3 as an adhesion molecule for neutrophil
extravasation during streptococcal pneumonia. J. Immun. 168: 1813-1822,
2002.
21. Yoshimura, A.; Gemma, A.; Hosoya, Y.; Komaki, E.; Hosomi, Y.;
Okano, T.; Takenaka, K.; Matuda, K.; Seike, M.; Uematsu, K.; Hibino,
S.; Shibuya, M.; Yamada, T.; Hirohashi, S.; Kudoh, S.: Increased
expression of the LGALS3 (galectin 3) gene in human non-small-cell
lung cancer. Genes Chromosomes Cancer 37: 159-164, 2003.
*FIELD* CN
Paul J. Converse - updated: 10/17/2011
Patricia A. Hartz - updated: 12/26/2007
Patricia A. Hartz - updated: 11/2/2007
Patricia A. Hartz - updated: 10/18/2007
Patricia A. Hartz - updated: 6/2/2006
Marla J. F. O'Neill - updated: 2/21/2005
Ada Hamosh - updated: 2/2/2005
Marla J. F. O'Neill - updated: 9/1/2004
John A. Phillips, III - updated: 9/2/2003
Victor A. McKusick - updated: 8/7/2003
John A. Phillips, III - updated: 4/8/2003
Patricia A. Hartz - updated: 12/17/2002
Paul J. Converse - updated: 3/25/2002
Paul J. Converse - updated: 9/22/2000
Victor A. McKusick - updated: 6/8/1999
Victor A. McKusick - updated: 9/16/1997
*FIELD* CD
Victor A. McKusick: 10/16/1990
*FIELD* ED
mgross: 11/03/2011
terry: 10/17/2011
wwang: 12/26/2007
mgross: 11/7/2007
terry: 11/2/2007
mgross: 10/23/2007
terry: 10/18/2007
mgross: 6/8/2006
terry: 6/2/2006
terry: 3/16/2005
terry: 2/21/2005
carol: 2/18/2005
terry: 2/2/2005
carol: 10/27/2004
carol: 9/2/2004
terry: 9/1/2004
alopez: 9/2/2003
tkritzer: 8/12/2003
terry: 8/7/2003
cwells: 5/1/2003
terry: 4/8/2003
mgross: 1/3/2003
terry: 12/17/2002
mgross: 3/26/2002
terry: 3/25/2002
mgross: 9/22/2000
jlewis: 6/18/1999
jlewis: 6/17/1999
terry: 6/8/1999
dkim: 7/21/1998
dholmes: 4/14/1998
jenny: 9/19/1997
terry: 9/16/1997
mark: 8/19/1997
mark: 5/21/1996
mark: 6/16/1995
supermim: 3/16/1992
carol: 10/16/1990
*RECORD*
*FIELD* NO
153619
*FIELD* TI
*153619 LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 3; LGALS3
;;MACROPHAGE GALACTOSE-SPECIFIC LECTIN; MAC2;;
read moreGALACTOSIDE-BINDING PROTEIN; GALBP;;
GALECTIN 3; GAL3
GALECTIN 3 INTERNAL GENE, INCLUDED; GALIG, INCLUDED
*FIELD* TX
CLONING
The murine Mac2 protein is a galactose- and IgE-binding lectin secreted
by inflammatory macrophages. Cherayil et al. (1990) cloned and
characterized a cDNA representing the human homolog. The amino acid
sequence derived therefrom indicated that the protein is evolutionarily
highly conserved, especially in the C-terminal lectin domain. Human MAC2
synthesized in vitro is recognized by a monoclonal antibody to mouse
Mac2 and behaves like a galactose-specific lectin in its binding to the
desialylated glycoprotein asialofetuin. It also binds to purified
laminin (see 150320), indicating a potential role in macrophage
extracellular matrix interactions. MAC2 is also known as galectin-3
(LGALS3), as mentioned in Madsen et al., (1995).
From a human fibrosarcoma cDNA library, Raz et al. (1991) cloned a
galactoside-binding protein with a molecular weight of 31,000. The
deduced 242-amino acid protein has the characteristics of a
carbohydrate-binding protein. The deduced amino acid sequence contains
95 residues at the N terminus that are homologous to the predicted amino
acid sequence of the second exon of the oncogene LMYC (164850).
Huflejt et al. (1997) found that LGALS3 and LGALS4 (602518) have very
different cellular localizations in human colon adenocarcinoma T84
cells, suggesting that these LGALSs have different targeting mechanisms,
ligands, and functions. In confluent T84 cells, LGALS3 is concentrated
mainly at the apical membrane in large granular inclusions. In
subconfluent T84 cells, it is distributed along most of the cell
periphery and is concentrated in the posterior part of lamellipodia.
By RT-PCR of a human osteosarcoma cell line, Raimond et al. (1995)
identified galectin-3 transcripts initiated from the promoter upstream
of exon 1 and from the internal promoter within intron 2. Using RT-PCR
and EST database analysis, Guittaut et al. (2001) obtained transcripts
originating from the internal promoter in intron 2 of LGALS3 from
several cDNA libraries. They concluded that these transcripts arise from
a gene embedded within LGALS3 that they called 'galectin-3 internal
gene,' or GALIG. The GALIG transcripts contain 2 overlapping ORFs, ORF1
and ORF2, that initiate in exon 3 of LGALS3 and are out-of-frame
relative to the LGALS3 coding sequence. RT-PCR detected variable and
tissue-specific expression of LGALS3 and GALIG transcripts. GALIG
transcripts showed highest expression in peripheral blood leukocytes,
but overall they were much less abundant than LGALS3 transcripts. In
transfected osteosarcoma cells, fluorescence-tagged ORF1 localized to
cytosol and nucleus, and fluorescence-tagged ORF2 localized to
mitochondria.
GENE FUNCTION
Galectin-3 is expressed in various tissues and organs, but is
significantly absent in normal hepatocytes. However, evaluation of
patient liver biopsies for galectin-3 expression revealed that
hepatocellular carcinoma (HCC) frequently expressed significant levels
of this lectin; 76% were immunohistochemically positive. Further
investigations showed that galectin-3 expression in HCC is independent
of whether the patient had prior hepatitis B virus infection (Hsu et
al., 1999). Hsu et al. (1999) suggested that deregulated expression of
galectin-3 can result in tumor transformation and invasiveness, or
confer propensity for tumor cell survival.
Using reporter gene assays, Raimond et al. (1995) showed that p53 (TP53;
191170) downregulated expression of the GALIG promoter when
cotransfected into a human osteosarcoma cell line.
In the thyroid, expression of galectin-3 protein had been described in
differentiated follicular cancer, suggesting that the
immunohistochemical study of galectin-3 may be a potential marker of
malignancy in thyroid neoplasms. Martins et al. (2002) analyzed
galectin-3 protein and mRNA expression in thyroid tissues from 87
patients with histomorphologic diagnosis of multinodular goiter (MNG),
follicular adenoma, follicular carcinoma, papillary carcinoma, and 5
normal tissues. Galectin-3 mRNA expression was detected by RT-PCR. Their
results showed that the majority of carcinomas expressed galectin-3
protein (follicular, 90%; papillary, 100%). However, in contrast to the
previously published data, benign lesions also expressed galectin-3
(adenoma, 45%; MNG, 17%). The authors showed by RT-PCR that thyroid
tissues with diagnosis of adenoma and MNG expressed galectin-3 mRNA.
Although the galectin-3 immunostaining demonstrated a sensitivity of
93.8% in the identification of cancer, the accuracy in the distinction
between benign and malignant tissues was 77.0%. This accuracy was even
lower (68.6%) when galectin-3 expression in follicular adenoma was
compared with follicular carcinoma.
Using micro-Boyden chamber analysis, Sano et al. (2000) determined that
LGALS3 has chemoattractant activity not for eosinophils, like LGALS9
(601879), but for monocytes and mature macrophages. At high
concentrations LGALS3 activity is chemotactic, i.e., cells migrate
towards the attractant, whereas at low concentrations it is
chemokinetic, i.e., it enhances movement of cells in all directions.
Sano et al. (2000) found that the chemoattractant activity is inhibited
by lactose, indicating that the C-terminal lectin domain of LGALS3 is
required. A C-terminal domain fragment was unable to mediate
chemoattraction, suggesting that the N-terminal domain is also necessary
for activity. Both migration and increased intracellular calcium
concentration were pertussis toxin sensitive and therefore probably
mediated by a G protein-coupled receptor. The authors determined that
LGALS3 does not, however, use the chemokine receptors CCR1 (601159),
CCR2 (601267), CCR5 (601373), and CXCR4 (162643).
Yoshimura et al. (2003) found increased expression of the LGALS3 gene in
human nonsmall cell lung cancer, and suggested that it may play a role
in the process of metastasis in this malignancy but not in small cell
lung cancer. They considered that LGALS3 may be a phenotypic marker that
excludes small cell lung cancer and a novel target molecule in therapy
of nonsmall cell lung cancer.
Nikiforova et al. (2003) analyzed a series of 88 conventional follicular
and Hurthle cell thyroid tumors for RAS (HRAS, 190020; NRAS, 164790;
KRAS, 190070) mutations and PAX8 (167415)-PPARG (601487) rearrangements
using molecular methods and for galectin-3 and mesothelioma antibody
HBME-1 expression by immunohistochemistry. Forty-nine percent of
conventional follicular carcinomas had RAS mutations, 36% had PAX8-PPARG
rearrangement, and only 1 (3%) had both. Of follicular adenomas, 48% had
RAS mutations, 4% had PAX8-PPARG rearrangement, and 48% had neither.
Follicular carcinomas with RAS mutations most often displayed an
HBME-1-positive/galectin-3-negative immunophenotype and were either
minimally or overtly invasive. Hurthle cell tumors infrequently had
PAX8-PPARG rearrangement or RAS mutations.
Ohshima et al. (2003) found that galectin-3 mRNA and protein are
expressed throughout synovial tissue in rheumatoid arthritis (RA;
180300) and that both galectin-3 and its binding protein are found at
sites of joint destruction. In addition, levels of galectin-3 in serum
and synovial fluid as well as levels of its binding protein in synovial
fluid were significantly elevated in RA compared to osteoarthritis and
healthy controls (p less than 0.001). Serum galectin-3 levels correlated
significantly with C-reactive protein levels (p less than 0.001), and
levels of its binding protein correlated with levels of cartilage
oligomeric matrix protein in both serum and synovial fluid (p less than
0.001 and 0.005, respectively). In vitro, RA synovial fibroblasts showed
an increased release of galectin-3 into culture medium but decreased
secretion of its binding protein. Ohshima et al. (2003) concluded that
galectin-3 and its binding protein are not only involved in inflammation
but also contribute to the activation of synovial fibroblasts, and thus
represent markers of disease activity in rheumatoid arthritis.
Partridge et al. (2004) reported that expression of Mgat5 (601774)
sensitized mouse cells to multiple cytokines. Gal3 crosslinked
Mgat5-modified N-glycans on epidermal growth factor and transforming
growth factor-beta receptors at the cell surface and delayed their
removal by constitutive endocytosis. Mgat5 expression in mammary
carcinoma was rate limiting for cytokine signaling and consequently for
epithelial-mesenchymal transition, cell motility, and tumor metastasis.
Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis,
and extravasation in vivo. Partridge et al. (2004) concluded that
conditional regulation of N-glycan processing drives synchronous
modification of cytokine receptors, which balances their surface
retention against loss through endocytosis.
Henderson et al. (2006) found that galectin-3 was upregulated in
established human fibrotic liver disease. In experimental hepatic
fibrosis in rats, galectin-3 upregulation was associated with induction
and resolution of fibrosis. Disruption of the galectin-3 gene blocked
myofibroblast activation and procollagen I expression in vitro and in
vivo and attenuated liver fibrosis. Exogenous recombinant galectin-3
reversed this abnormality. Following liver injury and inflammation,
hepatic fibrosis was reduced in galectin-3-null mice compared with
wildtype mice. Tgf-beta (190180) failed to activate galectin-3-null
mouse hepatic stellate cells, indicating that galectin-3 is required for
Tgf-beta-mediated myofibroblast activation and matrix production.
Both MUC1 (158340) and galectin-3 are widely expressed in human
carcinomas. Ramasamy et al. (2007) showed that, following glycosylation
on asn36, the MUC1 C-terminal subunit (MUC1C) induced galectin-3
expression by suppressing expression of miRNA322 (MIRN322; 300682), a
microRNA that destabilizes galectin-3 transcripts. In turn, galectin-3
bound MUC1C at the glycosylated asn36 site and formed a bridge between
MUC1 and epidermal growth factor receptor (EGFR; 131550), integrating
MUC1 with EGF (131530) signaling.
Mazurek et al. (2007) stated that GAL3 may exert anti- or pro- apoptotic
activity depending on the cell type and the nature of the stimulus. They
showed that introduction of phosphorylated GAL3 into a GAL3-null human
breast cancer cell line promoted apoptotic cell death through TRAIL
(TNFSF10; 603598), a member of the tumor necrosis factor family that
transmits death signals through death domain-containing receptors.
Downstream, TRAIL sensitivity depended upon induction of PTEN (601728)
expression, resulting in inactivation of the PI3K (see PIK3CA;
171834)/AKT (AKT1; 164730) survival pathway.
Chen et al. (2009) reported that Cd4 (186940)-positive T cells from mice
lacking Gal3 secreted more Ifng (147570) and Il4 (147780) than wildtype
cells after engagement of the T-cell receptor (TCR). In activated mouse
and human T cells, GAL3 was recruited to the cytoplasmic side of the
immunologic synapse, primarily in the peripheral supramolecular
activation cluster (SMAC). Wildtype mouse T cells formed central SMAC
less effectively and adhered to antigen-presenting cells less firmly
than Gal3 -/- cells, suggesting that GAL3 is involved in stabilizing the
immunologic synapse. Yeast 2-hybrid analysis of a human T-cell cDNA
library, followed by coimmunoprecipitation and immunofluorescence
analyses, identified ALIX (PDCD6IP; 608074) as a GAL3 binding partner
and showed that ALIX translocated to the immunologic synapse in
activated T cells. Chen et al. (2009) concluded that GAL3 is an
inhibitory regulator of T-cell activation and that it functions
intracellularly by promoting TCR downregulation, possibly through
modulation of ALIX function at the immunologic synapse.
GENE STRUCTURE
Guittaut et al. (2001) reported that the LGALS3 gene contains 6 exons.
It has a proximal promoter upstream of exon 1 and a conserved internal
promoter within the 5-prime region of intron 2.
MAPPING
Raz et al. (1991) mapped the gene encoding galactoside-binding protein,
symbolized GALBP by them, to 1p13 by in situ hybridization. Conflicting
mapping results were obtained by Raimond et al. (1997), who mapped the
LGALS3 gene to 14q21-q22 by fluorescence in situ hybridization and
confirmed the location by isotopic hybridization with a tritium-labeled
probe. No secondary peak of hybridization was observed by either method
on the short arm of chromosome 1 where the gene had been tentatively
assigned by Raz et al. (1991). Presumably, the chromosome 14 location is
the true one.
ANIMAL MODEL
Neutrophil extravasation is mediated by ITGB2 (600065) and selectins
(e.g., SELE; 131210). Using an in vivo streptococcal pneumonia mouse
model, Sato et al. (2002) showed by Western blot analysis an
accumulation of galectin-3 in the bronchoalveolar lavage fluid that
correlated with the kinetics of neutrophil emigration to alveoli during
S. pneumoniae, but not E. coli, infection. Immunohistochemical analysis
demonstrated galectin-3 expression on endothelial and epithelial cell
layers and interstitial spaces in lung tissue. Functional analysis
indicated that galectin-3 promoted neutrophil adhesion to endothelial
cells and that this resulted from direct crosslinking of neutrophils and
was dependent on galectin-3 oligomerization. Sato et al. (2002)
suggested that galectin-3 plays a role in ITGB2-independent neutrophil
extravasation during alveolar infection with S. pneumoniae.
Using models of corneal wound healing, Cao et al. (2002) found that
reepithelialization of wounds was significantly slower in Gal3-null mice
compared with wildtype mice, and the difference was not due to a reduced
epithelial cell proliferation rate. Gene expression analysis using cDNA
microarrays revealed that healing corneas of Gal3-null mice had reduced
levels of Gal7 (600615). Exogenous application of Gal7, but not Gal3,
accelerated reepithelialization of wounds in Gal3-null mice. Both Gal3
and Gal7 accelerated corneal wound healing in wildtype mice. Cao et al.
(2002) concluded that both GAL3 and GAL7 play a role in
reepithelialization of corneal wounds.
Sano et al. (2003) demonstrated reduced phagocytosis of IgG-opsonized
erythrocytes and apoptotic thymocytes in Gal3 -/- macrophages compared
to wildtype. Gal3-null mice showed attenuated phagocytic clearance of
apoptotic thymocytes by peritoneal macrophages and reduced IgG-mediated
phagocytosis of erythrocytes by Kupffer cells in a mouse model of
autoimmune hemolytic anemia. Extracellular Gal3 did not contribute to
phagocytosis. Sano et al. (2003) concluded that GAL3 may play an
important role in both innate and adaptive immunity by contributing to
phagocytic clearance of microorganisms and apoptotic cells.
*FIELD* RF
1. Cao, Z.; Said, N.; Amin, S.; Wu, H. K.; Bruce, A.; Garate, M.;
Hsu, D. K.; Kuwabara, I.; Liu, F.-T.; Panjwani, N.: Galectin-3 and
-7, but not galectin-1, play a role in re-epithelialization of wounds. J.
Biol. Chem. 277: 42299-42305, 2002.
2. Chen, H.-Y.; Fermin, A.; Vardhana, S.; Weng, I.-C.; Lo, K. F. R.;
Chang, E.-Y.; Maverakis, E.; Yang, R.-Y.; Hsu, D. K.; Dustin, M. L.;
Liu, F.-T.: Galectin-3 negatively regulates TCR-mediated CD4+ T-cell
activation at the immunological synapse. Proc. Nat. Acad. Sci. 106:
14496-14501, 2009.
3. Cherayil, B. J.; Chaitovitz, S.; Wong, C.; Pillai, S.: Molecular
cloning of a human macrophage lectin specific for galactose. Proc.
Nat. Acad. Sci. 87: 7324-7328, 1990.
4. Guittaut, M.; Charpentier, S.; Normand, T.; Dubois, M.; Raimond,
J.; Legrand, A.: Identification of an internal gene to the human
galectin-3 gene with two different overlapping reading frames that
do not encode galectin-3. J. Biol. Chem. 276: 2652-2657, 2001.
5. Henderson, N. C.; Mackinnon, A. C.; Farnworth, S. L.; Poirier,
F.; Russo, F. P.; Iredale, J. P.; Haslett, C.; Simpson, K. J.; Sethi,
T.: Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc.
Nat. Acad. Sci. 103: 5060-5065, 2006.
6. Hsu, D. K.; Dowling, C. A.; Jeng, K.-C. G.; Chen, J.-T.; Yang,
R.-Y.; Liu, F.-T.: Galectin-3 expression is induced in cirrhotic
liver and hepatocellular carcinoma. Int. J. Cancer 81: 519-526,
1999.
7. Huflejt, M. E.; Jordan, E. T.; Gitt, M. A.; Barondes, S. H.; Leffler,
H.: Strikingly different localization of galectin-3 and galectin-4
in human colon adenocarcinoma T84 cells: galectin-4 is localized at
sites of cell adhesion. J. Biol. Chem. 272: 14294-14303, 1997.
8. Madsen, P.; Rasmussen, H. H.; Flint, T.; Gromov, P.; Kruse, T.
A.; Honore, B.; Vorum, H.; Celis, J. E.: Cloning, expression, and
chromosome mapping of human galectin-7. J. Biol. Chem. 270: 5823-5829,
1995.
9. Martins, L.; Matsuo, S. E.; Ebina, K. N.; Kulcsar, M. A. V.; Friguglietti,
C. U. M.; Kimura, E. T.: Galectin-3 messenger ribonucleic acid and
protein are expressed in benign thyroid tumors. J. Clin. Endocr.
Metab. 87: 4806-4810, 2002.
10. Mazurek, N.; Sun, Y. J.; Liu, K.-F.; Gilcrease, M. Z.; Schober,
W.; Nangia-Makker, P.; Raz, A.; Bresalier, R. S.: Phosphorylated
galectin-3 mediates tumor necrosis factor-related apoptosis-inducing
ligand signaling by regulating phosphatase and tensin homologue deleted
on chromosome 10 in human breast carcinoma cells. J. Biol. Chem. 282:
21337-21348, 2007.
11. Nikiforova, M. N.; Lynch, R. A.; Biddinger, P. W.; Alexander,
E. K.; Dorn, G. W., II; Tallini, G.; Kroll, T. G.; Nikiforov, Y. E.
: RAS point mutations and PAX8-PPAR-gamma rearrangement in thyroid
tumors: evidence for distinct molecular pathways in thyroid follicular
carcinoma. J. Clin. Endocr. Metab. 88: 2318-2326, 2003.
12. Ohshima, S.; Kuchen, S.; Seemayer, C. A.; Kyburz, D.; Hirt, A.;
Klinzing, S.; Michel, B. A.; Gay, R. E.; Liu, F.-T.; Gay, S.; Neidhart,
M.: Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis
Rheum. 48: 2788-2795, 2003.
13. Partridge, E. A.; Le Roy, C.; Di Guglielmo, G. M.; Pawling, J.;
Cheung, P.; Granovsky, M.; Nabi, I. R.; Wrana, J. L.; Dennis, J. W.
: Regulation of cytokine receptors by Golgi N-glycan processing and
endocytosis. Science 306: 120-124, 2004.
14. Raimond, J.; Rouleux, F.; Monsigny, M.; Legrand, A.: The second
intron of the human galectin-3 gene has a strong promoter activity
down-regulated by p53. FEBS Lett. 363: 165-169, 1995.
15. Raimond, J.; Zimonjic, D. B.; Mignon, C.; Mattei, M.-G.; Popescu,
N. C.; Monsigny, M.; Legrand, A.: Mapping of the galectin-3 gene
(LGALS3) to human chromosome 14 at region 14q21-22. Mammalian Genome 8:
706-707, 1997.
16. Ramasamy, S.; Duraisamy, S.; Barbashov, S.; Kawano, T.; Kharbanda,
S.; Kufe, D.: The MUC1 and galectin-3 oncoproteins function in a
microRNA-dependent regulatory loop. Molec. Cell 27: 992-1004, 2007.
17. Raz, A.; Carmi, P.; Raz, T.; Hogan, V.; Mohamed, A.; Wolman, S.
R.: Molecular cloning and chromosomal mapping of a human galactoside-binding
protein. Cancer Res. 51: 2173-2178, 1991.
18. Sano, H.; Hsu, D. K.; Apgar, J. R.; Yu, L.; Sharma, B. B.; Kuwabara,
I.; Izui, S.; Liu, F.-T.: Critical role of galectin-3 in phagocytosis
by macrophages. J. Clin. Invest. 112: 389-397, 2003.
19. Sano, H.; Hsu, D. K.; Yu, L.; Apgar, J. R.; Kuwabara, I.; Yamanaka,
T.; Hirashima, M.; Liu, F.-T.: Human galectin-3 is a novel chemoattractant
for monocytes and macrophages. J. Immun. 165: 2156-2164, 2000.
20. Sato, S.; Ouellet, N.; Pelletier, I.; Simard, M.; Rancourt, A.;
Bergeron, M. G.: Role of galectin-3 as an adhesion molecule for neutrophil
extravasation during streptococcal pneumonia. J. Immun. 168: 1813-1822,
2002.
21. Yoshimura, A.; Gemma, A.; Hosoya, Y.; Komaki, E.; Hosomi, Y.;
Okano, T.; Takenaka, K.; Matuda, K.; Seike, M.; Uematsu, K.; Hibino,
S.; Shibuya, M.; Yamada, T.; Hirohashi, S.; Kudoh, S.: Increased
expression of the LGALS3 (galectin 3) gene in human non-small-cell
lung cancer. Genes Chromosomes Cancer 37: 159-164, 2003.
*FIELD* CN
Paul J. Converse - updated: 10/17/2011
Patricia A. Hartz - updated: 12/26/2007
Patricia A. Hartz - updated: 11/2/2007
Patricia A. Hartz - updated: 10/18/2007
Patricia A. Hartz - updated: 6/2/2006
Marla J. F. O'Neill - updated: 2/21/2005
Ada Hamosh - updated: 2/2/2005
Marla J. F. O'Neill - updated: 9/1/2004
John A. Phillips, III - updated: 9/2/2003
Victor A. McKusick - updated: 8/7/2003
John A. Phillips, III - updated: 4/8/2003
Patricia A. Hartz - updated: 12/17/2002
Paul J. Converse - updated: 3/25/2002
Paul J. Converse - updated: 9/22/2000
Victor A. McKusick - updated: 6/8/1999
Victor A. McKusick - updated: 9/16/1997
*FIELD* CD
Victor A. McKusick: 10/16/1990
*FIELD* ED
mgross: 11/03/2011
terry: 10/17/2011
wwang: 12/26/2007
mgross: 11/7/2007
terry: 11/2/2007
mgross: 10/23/2007
terry: 10/18/2007
mgross: 6/8/2006
terry: 6/2/2006
terry: 3/16/2005
terry: 2/21/2005
carol: 2/18/2005
terry: 2/2/2005
carol: 10/27/2004
carol: 9/2/2004
terry: 9/1/2004
alopez: 9/2/2003
tkritzer: 8/12/2003
terry: 8/7/2003
cwells: 5/1/2003
terry: 4/8/2003
mgross: 1/3/2003
terry: 12/17/2002
mgross: 3/26/2002
terry: 3/25/2002
mgross: 9/22/2000
jlewis: 6/18/1999
jlewis: 6/17/1999
terry: 6/8/1999
dkim: 7/21/1998
dholmes: 4/14/1998
jenny: 9/19/1997
terry: 9/16/1997
mark: 8/19/1997
mark: 5/21/1996
mark: 6/16/1995
supermim: 3/16/1992
carol: 10/16/1990