Full text data of LSM1
LSM1
(CASM)
[Confidence: low (only semi-automatic identification from reviews)]
U6 snRNA-associated Sm-like protein LSm1 (Cancer-associated Sm-like; Small nuclear ribonuclear CaSm)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
U6 snRNA-associated Sm-like protein LSm1 (Cancer-associated Sm-like; Small nuclear ribonuclear CaSm)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
O15116
ID LSM1_HUMAN Reviewed; 133 AA.
AC O15116; B2R5E6;
DT 16-APR-2002, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JAN-1998, sequence version 1.
DT 22-JAN-2014, entry version 110.
DE RecName: Full=U6 snRNA-associated Sm-like protein LSm1;
DE AltName: Full=Cancer-associated Sm-like;
DE AltName: Full=Small nuclear ribonuclear CaSm;
GN Name=LSM1; Synonyms=CASM;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9230209;
RA Schweinfest C.W., Graber M.W., Chapman J.M., Papas T.S., Baron P.L.,
RA Watson D.K.;
RT "CaSm: an Sm-like protein that contributes to the transformed state in
RT cancer cells.";
RL Cancer Res. 57:2961-2965(1997).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Lymph node;
RX PubMed=10369684; DOI=10.1093/emboj/18.12.3451;
RA Salgado-Garrido J., Bragado-Nilsson E., Kandels-Lewis S., Seraphin B.;
RT "Sm and Sm-like proteins assemble in two related complexes of deep
RT evolutionary origin.";
RL EMBO J. 18:3451-3462(1999).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Substantia nigra;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP FUNCTION IN HISTONE MRNA DEGRADATION ACTIVITY, AND INTERACTION WITH
RP SLBP.
RX PubMed=18172165; DOI=10.1101/gad.1622708;
RA Mullen T.E., Marzluff W.F.;
RT "Degradation of histone mRNA requires oligouridylation followed by
RT decapping and simultaneous degradation of the mRNA both 5' to 3' and
RT 3' to 5'.";
RL Genes Dev. 22:50-65(2008).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Plays a role in replication-dependent histone mRNA
CC degradation. Binds specifically to the 3'-terminal U-tract of U6
CC snRNA.
CC -!- SUBUNIT: Interacts with SLBP. Interaction with SLBP occurs when
CC histone mRNA is being rapidly degraded during the S phase. LSm
CC subunits form a heteromer with a doughnut shape.
CC -!- INTERACTION:
CC Q9Y333:LSM2; NbExp=3; IntAct=EBI-347619, EBI-347416;
CC P62310:LSM3; NbExp=3; IntAct=EBI-347619, EBI-348239;
CC -!- SUBCELLULAR LOCATION: Nucleus (Potential).
CC -!- TISSUE SPECIFICITY: Has elevated expression in pancreatic cancer
CC and in several cancer-derived cell lines.
CC -!- SIMILARITY: Belongs to the snRNP Sm proteins family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF000177; AAB62189.1; -; mRNA.
DR EMBL; AJ238094; CAB45865.1; -; mRNA.
DR EMBL; AK312159; BAG35093.1; -; mRNA.
DR EMBL; CH471080; EAW63332.1; -; Genomic_DNA.
DR EMBL; BC001767; AAH01767.1; -; mRNA.
DR RefSeq; NP_055277.1; NM_014462.2.
DR UniGene; Hs.425311; -.
DR ProteinModelPortal; O15116; -.
DR SMR; O15116; 8-77.
DR DIP; DIP-31130N; -.
DR IntAct; O15116; 20.
DR MINT; MINT-1036791; -.
DR STRING; 9606.ENSP00000310596; -.
DR PhosphoSite; O15116; -.
DR PaxDb; O15116; -.
DR PeptideAtlas; O15116; -.
DR PRIDE; O15116; -.
DR DNASU; 27257; -.
DR Ensembl; ENST00000311351; ENSP00000310596; ENSG00000175324.
DR GeneID; 27257; -.
DR KEGG; hsa:27257; -.
DR UCSC; uc003xkw.3; human.
DR CTD; 27257; -.
DR GeneCards; GC08M038020; -.
DR HGNC; HGNC:20472; LSM1.
DR HPA; HPA024601; -.
DR MIM; 607281; gene.
DR neXtProt; NX_O15116; -.
DR PharmGKB; PA134864226; -.
DR eggNOG; NOG236501; -.
DR HOGENOM; HOG000223544; -.
DR HOVERGEN; HBG027238; -.
DR InParanoid; O15116; -.
DR KO; K12620; -.
DR OMA; EVDKKLM; -.
DR OrthoDB; EOG7N8ZXQ; -.
DR PhylomeDB; O15116; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR GeneWiki; LSM1; -.
DR GenomeRNAi; 27257; -.
DR NextBio; 50202; -.
DR PRO; PR:O15116; -.
DR ArrayExpress; O15116; -.
DR Bgee; O15116; -.
DR CleanEx; HS_LSM1; -.
DR Genevestigator; O15116; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; IDA:MGI.
DR GO; GO:0030529; C:ribonucleoprotein complex; IEA:UniProtKB-KW.
DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR GO; GO:0043928; P:exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay; TAS:Reactome.
DR GO; GO:0071044; P:histone mRNA catabolic process; IMP:UniProtKB.
DR GO; GO:0006397; P:mRNA processing; TAS:ProtInc.
DR GO; GO:0000375; P:RNA splicing, via transesterification reactions; TAS:UniProtKB.
DR InterPro; IPR010920; LSM_dom.
DR InterPro; IPR001163; Ribonucl_LSM.
DR InterPro; IPR006649; Ribonucl_LSM_euk/arc.
DR Pfam; PF01423; LSM; 1.
DR SMART; SM00651; Sm; 1.
DR SUPFAM; SSF50182; SSF50182; 1.
PE 1: Evidence at protein level;
KW Complete proteome; mRNA processing; mRNA splicing; Nucleus;
KW Reference proteome; Ribonucleoprotein; RNA-binding.
FT CHAIN 1 133 U6 snRNA-associated Sm-like protein LSm1.
FT /FTId=PRO_0000125554.
SQ SEQUENCE 133 AA; 15179 MW; FF798CDA9447037A CRC64;
MNYMPGTASL IEDIDKKHLV LLRDGRTLIG FLRSIDQFAN LVLHQTVERI HVGKKYGDIP
RGIFVVRGEN VVLLGEIDLE KESDTPLQQV SIEEILEEQR VEQQTKLEAE KLKVQALKDR
GLSIPRADTL DEY
//
ID LSM1_HUMAN Reviewed; 133 AA.
AC O15116; B2R5E6;
DT 16-APR-2002, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JAN-1998, sequence version 1.
DT 22-JAN-2014, entry version 110.
DE RecName: Full=U6 snRNA-associated Sm-like protein LSm1;
DE AltName: Full=Cancer-associated Sm-like;
DE AltName: Full=Small nuclear ribonuclear CaSm;
GN Name=LSM1; Synonyms=CASM;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9230209;
RA Schweinfest C.W., Graber M.W., Chapman J.M., Papas T.S., Baron P.L.,
RA Watson D.K.;
RT "CaSm: an Sm-like protein that contributes to the transformed state in
RT cancer cells.";
RL Cancer Res. 57:2961-2965(1997).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Lymph node;
RX PubMed=10369684; DOI=10.1093/emboj/18.12.3451;
RA Salgado-Garrido J., Bragado-Nilsson E., Kandels-Lewis S., Seraphin B.;
RT "Sm and Sm-like proteins assemble in two related complexes of deep
RT evolutionary origin.";
RL EMBO J. 18:3451-3462(1999).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Substantia nigra;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [6]
RP FUNCTION IN HISTONE MRNA DEGRADATION ACTIVITY, AND INTERACTION WITH
RP SLBP.
RX PubMed=18172165; DOI=10.1101/gad.1622708;
RA Mullen T.E., Marzluff W.F.;
RT "Degradation of histone mRNA requires oligouridylation followed by
RT decapping and simultaneous degradation of the mRNA both 5' to 3' and
RT 3' to 5'.";
RL Genes Dev. 22:50-65(2008).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Plays a role in replication-dependent histone mRNA
CC degradation. Binds specifically to the 3'-terminal U-tract of U6
CC snRNA.
CC -!- SUBUNIT: Interacts with SLBP. Interaction with SLBP occurs when
CC histone mRNA is being rapidly degraded during the S phase. LSm
CC subunits form a heteromer with a doughnut shape.
CC -!- INTERACTION:
CC Q9Y333:LSM2; NbExp=3; IntAct=EBI-347619, EBI-347416;
CC P62310:LSM3; NbExp=3; IntAct=EBI-347619, EBI-348239;
CC -!- SUBCELLULAR LOCATION: Nucleus (Potential).
CC -!- TISSUE SPECIFICITY: Has elevated expression in pancreatic cancer
CC and in several cancer-derived cell lines.
CC -!- SIMILARITY: Belongs to the snRNP Sm proteins family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF000177; AAB62189.1; -; mRNA.
DR EMBL; AJ238094; CAB45865.1; -; mRNA.
DR EMBL; AK312159; BAG35093.1; -; mRNA.
DR EMBL; CH471080; EAW63332.1; -; Genomic_DNA.
DR EMBL; BC001767; AAH01767.1; -; mRNA.
DR RefSeq; NP_055277.1; NM_014462.2.
DR UniGene; Hs.425311; -.
DR ProteinModelPortal; O15116; -.
DR SMR; O15116; 8-77.
DR DIP; DIP-31130N; -.
DR IntAct; O15116; 20.
DR MINT; MINT-1036791; -.
DR STRING; 9606.ENSP00000310596; -.
DR PhosphoSite; O15116; -.
DR PaxDb; O15116; -.
DR PeptideAtlas; O15116; -.
DR PRIDE; O15116; -.
DR DNASU; 27257; -.
DR Ensembl; ENST00000311351; ENSP00000310596; ENSG00000175324.
DR GeneID; 27257; -.
DR KEGG; hsa:27257; -.
DR UCSC; uc003xkw.3; human.
DR CTD; 27257; -.
DR GeneCards; GC08M038020; -.
DR HGNC; HGNC:20472; LSM1.
DR HPA; HPA024601; -.
DR MIM; 607281; gene.
DR neXtProt; NX_O15116; -.
DR PharmGKB; PA134864226; -.
DR eggNOG; NOG236501; -.
DR HOGENOM; HOG000223544; -.
DR HOVERGEN; HBG027238; -.
DR InParanoid; O15116; -.
DR KO; K12620; -.
DR OMA; EVDKKLM; -.
DR OrthoDB; EOG7N8ZXQ; -.
DR PhylomeDB; O15116; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR GeneWiki; LSM1; -.
DR GenomeRNAi; 27257; -.
DR NextBio; 50202; -.
DR PRO; PR:O15116; -.
DR ArrayExpress; O15116; -.
DR Bgee; O15116; -.
DR CleanEx; HS_LSM1; -.
DR Genevestigator; O15116; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; IDA:MGI.
DR GO; GO:0030529; C:ribonucleoprotein complex; IEA:UniProtKB-KW.
DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR GO; GO:0043928; P:exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay; TAS:Reactome.
DR GO; GO:0071044; P:histone mRNA catabolic process; IMP:UniProtKB.
DR GO; GO:0006397; P:mRNA processing; TAS:ProtInc.
DR GO; GO:0000375; P:RNA splicing, via transesterification reactions; TAS:UniProtKB.
DR InterPro; IPR010920; LSM_dom.
DR InterPro; IPR001163; Ribonucl_LSM.
DR InterPro; IPR006649; Ribonucl_LSM_euk/arc.
DR Pfam; PF01423; LSM; 1.
DR SMART; SM00651; Sm; 1.
DR SUPFAM; SSF50182; SSF50182; 1.
PE 1: Evidence at protein level;
KW Complete proteome; mRNA processing; mRNA splicing; Nucleus;
KW Reference proteome; Ribonucleoprotein; RNA-binding.
FT CHAIN 1 133 U6 snRNA-associated Sm-like protein LSm1.
FT /FTId=PRO_0000125554.
SQ SEQUENCE 133 AA; 15179 MW; FF798CDA9447037A CRC64;
MNYMPGTASL IEDIDKKHLV LLRDGRTLIG FLRSIDQFAN LVLHQTVERI HVGKKYGDIP
RGIFVVRGEN VVLLGEIDLE KESDTPLQQV SIEEILEEQR VEQQTKLEAE KLKVQALKDR
GLSIPRADTL DEY
//
MIM
607281
*RECORD*
*FIELD* NO
607281
*FIELD* TI
*607281 LSM1 PROTEIN; LSM1
;;CANCER-ASSOCIATED SM-LIKE PROTEIN; CASM
*FIELD* TX
DESCRIPTION
read more
Sm-like proteins, such as LSM1, were identified in a variety of
organisms based on sequence homology with the Sm protein family (see
SNRPD2; 601061). Sm-like proteins contain the Sm sequence motif, which
consists of 2 regions separated by a linker of variable length that
folds as a loop. Sm-like proteins are thought to form a stable heteromer
present in tri-snRNP particles, which are important for pre-mRNA
splicing (Achsel et al., 1999). LSM1 localizes to cytoplasmic processing
bodies (P bodies) involved in mRNA storage, processing, regulation, and
degradation and is required for P-body formation (Scheller et al.,
2007).
CLONING
LSM1 was first isolated from human pancreatic cancers as an upregulated
gene and termed 'cancer-associated Sm-like protein' (CASM) by
Schweinfest et al. (1997). The deduced LSM1 protein contains 133 amino
acids.
In a search for human Sm-like proteins, Achsel et al. (1999)
fractionated proteins present in purified (U4/U6.U5) tri-snRNPs and
isolated 7 Sm-like proteins, which they named LSm2-LSm8. Using partial
peptide sequence for database searches, they identified and sequenced
EST clones. Using additional sequence obtained by PCR amplification of a
HeLa cDNA library, they assembled full-length cDNA sequences for
LSM2-LSM8.
Salgado-Garrido et al. (1999) searched database sequence for Sm proteins
and identified 16 potential Sm-related genes in yeast as well as some
Sm-related genes in human and archaebacteria. Using a multiple sequence
alignment of Sm domains, they built a phylogenetic tree of yeast, human,
and archaeal Sm and Sm-like proteins.
Using Northern blot analysis, Scheller et al. (2007) detected variable
expression of a 0.95-kb LSM1 transcript in all human tissues examined.
In HeLa cells, LSM1 colocalized with PATL1 (614660), DCP1 (see 607010),
and RCK (DDX6; 600326) in cytoplasmic P bodies.
GENE FUNCTION
Using electron-microscopy, Achsel et al. (1999) observed that purified
LSm proteins form a heteromer that is stable even in the absence of RNA
and exhibits a doughnut-shaped structure similar to the Sm core RNP
structure. They demonstrated that the purified LSm heteromer binds
specifically to the U6 snRNA at its 3-prime-terminal U-tract. They also
showed that the LSm proteins facilitate the formation of U4/U6 RNA
duplexes in vitro and concluded that the LSm proteins may play a role in
U4/U6 snRNP formation.
Using immunoprecipitation experiments, Salgado-Garrido et al. (1999)
concluded that there is a complex of 7 Sm-like proteins bound to RNA in
yeast. Lsm2-Lsm8 coprecipitate the U4, U5 and U6 snRNAs and directly
associate with the U6 snRNA present in the free U6 snRNP. Additionally,
the yeast Lsm2-Lsm7 proteins were found to be associated with the
pre-RNase P RNA but not the mature RNase RNA. Using immunoprecipitation
experiments from human cell extracts, Salgado-Garrido et al. (1999)
showed that the LSM3 and LSM4 proteins are specifically associated with
snRNP complexes containing the U6 snRNA. Salgado-Garrido et al. (1999)
concluded that Sm and Sm-like proteins assemble in at least 2
functionally conserved complexes of deep evolutionary origin.
By disrupting the Sm and Sm-like genes in yeast, Salgado-Garrido et al.
(1999) concluded that disruption of genes encoding Sm-like proteins
directly associated with the U6 snRNA (Lsm2-8) generated variable
phenotypes. Lsm2, Lsm3, Lsm4, and Lsm8 are essential for vegetative
growth. Lsm5, Lsm6, and Lsm7 are not essential for growth; however,
their disruptions lead to slow growth especially at elevated
temperature. The levels of the U6 snRNA were strongly reduced in the
strains harboring the Lsm5, Lsm6, and Lsm7 disruptions. Lsm1 and Lsm9
are dispensable for vegetative growth, but Lsm1 is required for optimal
vegetative growth at 30 degrees and is temperature sensitive.
Ingelfinger et al. (2002) determined that human LSM1 to LSM7, but not
LSM8, were expressed in HeLa cells within cytoplasmic foci. The foci
also contained a decapping enzyme (DCP1/2) and the exonuclease XRN1
(607994). Coexpression of wildtype and mutant LSM proteins, as well as
fluorescence resonance energy transfer, indicated that the LSM proteins
form a complex similar to one found in yeast. Ingelfinger et al. (2002)
concluded that the foci contain a partially or fully assembled machinery
for the degradation of mRNA.
Using cDNA-representational difference analysis, Takahashi et al. (2002)
searched for genes differentially expressed in advanced prostate cancers
and thereby isolated the LSM1 gene as 1 that is downregulated. They
transfected an LSM1 expression vector into PC3 cells, which normally
feature downregulated LSM1. In the transfectants, no differences in
morphology or cell proliferation were evident in comparison with parent
PC3 or PC3/mock-transfectants. In contrast, significant suppression of
invasive potential or metastatic ability of LSM1 transfectants was
observed in the Matrigel chemoinvasion assay and in nude mice,
respectively. In studies of human prostate cancers, Takahashi et al.
(2002) found that almost all informative prostatectomized cases without
neoadjuvant therapy showed allelic retention in the LSM1 region, whereas
refractory cancers frequently showed allelic loss in this region. No
critical gene mutations were found in the open reading frame of LSM1 in
prostate cancers, including localized and refractory cancers. These
results suggested that LSM1 is deeply involved in prostate cancer
progression through its downregulation, independent of any gene
mutation.
By array CGH, Yang et al. (2006) analyzed the copy number and expression
level of genes in the 8p12-p11 amplicon in 22 human breast cancer
(114480) specimens and 7 breast cancer cell lines. Of the 21 potential
genes identified, PCR analysis and functional analysis indicated that 3
genes, LSM1, BAG4 (603884), and C8ORF4 (607702), are breast cancer
oncogenes that can work in combination to influence a transformed
phenotype in human mammary epithelial cells.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the LSM1
gene to chromosome 8 (TMAP stSG26021). Most of the genes encoding the
Lsm proteins map to different chromosomes.
*FIELD* RF
1. Achsel, T.; Brahms, H.; Kastner, B.; Bachi, A.; Wilm, M.; Luhrmann,
R.: A doughnut-shaped heteromer of human Sm-like proteins binds to
the 3-prime end of U6 snRNA, thereby facilitating U4/U6 duplex formation
in vitro. EMBO J. 18: 5789-5802, 1999.
2. Ingelfinger, D.; Arndt-Jovin, D. J.; Luhrmann, R.; Achsel, T.:
The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes
Dcp1/2 and Xrn1 in distinct cytoplasmic foci. RNA 8: 1489-1501,
2002.
3. Salgado-Garrido, J.; Bragado-Nilsson, E.; Kandels-Lewis, S.; Seraphin,
B.: Sm and Sm-like proteins assemble in two related complexes of
deep evolutionary origin. EMBO J. 18: 3451-3462, 1999.
4. Scheller, N.; Resa-Infante, P.; de la Luna, S.; Galao, R. P.; Albrecht,
M.; Kaestner, L.; Lipp, P.; Lengauer, T.; Meyerhans, A.; Diez, J.
: Identification of PatL1, a human homolog to yeast P body component
Pat1. Biochim. Biophys. Acta 1773: 1786-1792, 2007.
5. Schweinfest, C. W.; Graber, M. W.; Chapman, J. M.; Papas, T. S.;
Baron, P. L.; Watson, D. K.: CaSm: an Sm-like protein that contributes
to the transformed state in cancer cells. Cancer Res. 57: 2961-2965,
1997.
6. Takahashi, S.; Suzuki, S.; Inaguma, S.; Cho, Y.-M.; Ikeda, Y.;
Hayashi, N.; Inoue, T.; Sugimura, Y.; Nishiyama, N.; Fujita, T.; Ushijima,
T.; Shirai, T.: Down-regulation of Lsm1 is involved in human prostate
cancer progression. Brit. J. Cancer 86: 940-946, 2002.
7. Yang, Z. Q.; Streicher, K. L.; Ray, M. E.; Abrams, J.; Ethier,
S. P.: Multiple interacting oncogenes on the 8p11-p12 amplicon in
human breast cancer. Cancer Res. 66: 11632-11643, 2006.
*FIELD* CN
Patricia A. Hartz - updated: 5/15/2012
Cassandra L. Kniffin - updated: 5/4/2007
Patricia A. Hartz - updated: 7/29/2003
Victor A. McKusick - updated: 12/3/2002
*FIELD* CD
Dawn Watkins-Chow: 10/9/2002
*FIELD* ED
mgross: 05/23/2012
terry: 5/15/2012
wwang: 5/10/2007
ckniffin: 5/4/2007
alopez: 1/2/2007
mgross: 7/29/2003
carol: 12/6/2002
tkritzer: 12/5/2002
terry: 12/3/2002
carol: 10/9/2002
*RECORD*
*FIELD* NO
607281
*FIELD* TI
*607281 LSM1 PROTEIN; LSM1
;;CANCER-ASSOCIATED SM-LIKE PROTEIN; CASM
*FIELD* TX
DESCRIPTION
read more
Sm-like proteins, such as LSM1, were identified in a variety of
organisms based on sequence homology with the Sm protein family (see
SNRPD2; 601061). Sm-like proteins contain the Sm sequence motif, which
consists of 2 regions separated by a linker of variable length that
folds as a loop. Sm-like proteins are thought to form a stable heteromer
present in tri-snRNP particles, which are important for pre-mRNA
splicing (Achsel et al., 1999). LSM1 localizes to cytoplasmic processing
bodies (P bodies) involved in mRNA storage, processing, regulation, and
degradation and is required for P-body formation (Scheller et al.,
2007).
CLONING
LSM1 was first isolated from human pancreatic cancers as an upregulated
gene and termed 'cancer-associated Sm-like protein' (CASM) by
Schweinfest et al. (1997). The deduced LSM1 protein contains 133 amino
acids.
In a search for human Sm-like proteins, Achsel et al. (1999)
fractionated proteins present in purified (U4/U6.U5) tri-snRNPs and
isolated 7 Sm-like proteins, which they named LSm2-LSm8. Using partial
peptide sequence for database searches, they identified and sequenced
EST clones. Using additional sequence obtained by PCR amplification of a
HeLa cDNA library, they assembled full-length cDNA sequences for
LSM2-LSM8.
Salgado-Garrido et al. (1999) searched database sequence for Sm proteins
and identified 16 potential Sm-related genes in yeast as well as some
Sm-related genes in human and archaebacteria. Using a multiple sequence
alignment of Sm domains, they built a phylogenetic tree of yeast, human,
and archaeal Sm and Sm-like proteins.
Using Northern blot analysis, Scheller et al. (2007) detected variable
expression of a 0.95-kb LSM1 transcript in all human tissues examined.
In HeLa cells, LSM1 colocalized with PATL1 (614660), DCP1 (see 607010),
and RCK (DDX6; 600326) in cytoplasmic P bodies.
GENE FUNCTION
Using electron-microscopy, Achsel et al. (1999) observed that purified
LSm proteins form a heteromer that is stable even in the absence of RNA
and exhibits a doughnut-shaped structure similar to the Sm core RNP
structure. They demonstrated that the purified LSm heteromer binds
specifically to the U6 snRNA at its 3-prime-terminal U-tract. They also
showed that the LSm proteins facilitate the formation of U4/U6 RNA
duplexes in vitro and concluded that the LSm proteins may play a role in
U4/U6 snRNP formation.
Using immunoprecipitation experiments, Salgado-Garrido et al. (1999)
concluded that there is a complex of 7 Sm-like proteins bound to RNA in
yeast. Lsm2-Lsm8 coprecipitate the U4, U5 and U6 snRNAs and directly
associate with the U6 snRNA present in the free U6 snRNP. Additionally,
the yeast Lsm2-Lsm7 proteins were found to be associated with the
pre-RNase P RNA but not the mature RNase RNA. Using immunoprecipitation
experiments from human cell extracts, Salgado-Garrido et al. (1999)
showed that the LSM3 and LSM4 proteins are specifically associated with
snRNP complexes containing the U6 snRNA. Salgado-Garrido et al. (1999)
concluded that Sm and Sm-like proteins assemble in at least 2
functionally conserved complexes of deep evolutionary origin.
By disrupting the Sm and Sm-like genes in yeast, Salgado-Garrido et al.
(1999) concluded that disruption of genes encoding Sm-like proteins
directly associated with the U6 snRNA (Lsm2-8) generated variable
phenotypes. Lsm2, Lsm3, Lsm4, and Lsm8 are essential for vegetative
growth. Lsm5, Lsm6, and Lsm7 are not essential for growth; however,
their disruptions lead to slow growth especially at elevated
temperature. The levels of the U6 snRNA were strongly reduced in the
strains harboring the Lsm5, Lsm6, and Lsm7 disruptions. Lsm1 and Lsm9
are dispensable for vegetative growth, but Lsm1 is required for optimal
vegetative growth at 30 degrees and is temperature sensitive.
Ingelfinger et al. (2002) determined that human LSM1 to LSM7, but not
LSM8, were expressed in HeLa cells within cytoplasmic foci. The foci
also contained a decapping enzyme (DCP1/2) and the exonuclease XRN1
(607994). Coexpression of wildtype and mutant LSM proteins, as well as
fluorescence resonance energy transfer, indicated that the LSM proteins
form a complex similar to one found in yeast. Ingelfinger et al. (2002)
concluded that the foci contain a partially or fully assembled machinery
for the degradation of mRNA.
Using cDNA-representational difference analysis, Takahashi et al. (2002)
searched for genes differentially expressed in advanced prostate cancers
and thereby isolated the LSM1 gene as 1 that is downregulated. They
transfected an LSM1 expression vector into PC3 cells, which normally
feature downregulated LSM1. In the transfectants, no differences in
morphology or cell proliferation were evident in comparison with parent
PC3 or PC3/mock-transfectants. In contrast, significant suppression of
invasive potential or metastatic ability of LSM1 transfectants was
observed in the Matrigel chemoinvasion assay and in nude mice,
respectively. In studies of human prostate cancers, Takahashi et al.
(2002) found that almost all informative prostatectomized cases without
neoadjuvant therapy showed allelic retention in the LSM1 region, whereas
refractory cancers frequently showed allelic loss in this region. No
critical gene mutations were found in the open reading frame of LSM1 in
prostate cancers, including localized and refractory cancers. These
results suggested that LSM1 is deeply involved in prostate cancer
progression through its downregulation, independent of any gene
mutation.
By array CGH, Yang et al. (2006) analyzed the copy number and expression
level of genes in the 8p12-p11 amplicon in 22 human breast cancer
(114480) specimens and 7 breast cancer cell lines. Of the 21 potential
genes identified, PCR analysis and functional analysis indicated that 3
genes, LSM1, BAG4 (603884), and C8ORF4 (607702), are breast cancer
oncogenes that can work in combination to influence a transformed
phenotype in human mammary epithelial cells.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the LSM1
gene to chromosome 8 (TMAP stSG26021). Most of the genes encoding the
Lsm proteins map to different chromosomes.
*FIELD* RF
1. Achsel, T.; Brahms, H.; Kastner, B.; Bachi, A.; Wilm, M.; Luhrmann,
R.: A doughnut-shaped heteromer of human Sm-like proteins binds to
the 3-prime end of U6 snRNA, thereby facilitating U4/U6 duplex formation
in vitro. EMBO J. 18: 5789-5802, 1999.
2. Ingelfinger, D.; Arndt-Jovin, D. J.; Luhrmann, R.; Achsel, T.:
The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes
Dcp1/2 and Xrn1 in distinct cytoplasmic foci. RNA 8: 1489-1501,
2002.
3. Salgado-Garrido, J.; Bragado-Nilsson, E.; Kandels-Lewis, S.; Seraphin,
B.: Sm and Sm-like proteins assemble in two related complexes of
deep evolutionary origin. EMBO J. 18: 3451-3462, 1999.
4. Scheller, N.; Resa-Infante, P.; de la Luna, S.; Galao, R. P.; Albrecht,
M.; Kaestner, L.; Lipp, P.; Lengauer, T.; Meyerhans, A.; Diez, J.
: Identification of PatL1, a human homolog to yeast P body component
Pat1. Biochim. Biophys. Acta 1773: 1786-1792, 2007.
5. Schweinfest, C. W.; Graber, M. W.; Chapman, J. M.; Papas, T. S.;
Baron, P. L.; Watson, D. K.: CaSm: an Sm-like protein that contributes
to the transformed state in cancer cells. Cancer Res. 57: 2961-2965,
1997.
6. Takahashi, S.; Suzuki, S.; Inaguma, S.; Cho, Y.-M.; Ikeda, Y.;
Hayashi, N.; Inoue, T.; Sugimura, Y.; Nishiyama, N.; Fujita, T.; Ushijima,
T.; Shirai, T.: Down-regulation of Lsm1 is involved in human prostate
cancer progression. Brit. J. Cancer 86: 940-946, 2002.
7. Yang, Z. Q.; Streicher, K. L.; Ray, M. E.; Abrams, J.; Ethier,
S. P.: Multiple interacting oncogenes on the 8p11-p12 amplicon in
human breast cancer. Cancer Res. 66: 11632-11643, 2006.
*FIELD* CN
Patricia A. Hartz - updated: 5/15/2012
Cassandra L. Kniffin - updated: 5/4/2007
Patricia A. Hartz - updated: 7/29/2003
Victor A. McKusick - updated: 12/3/2002
*FIELD* CD
Dawn Watkins-Chow: 10/9/2002
*FIELD* ED
mgross: 05/23/2012
terry: 5/15/2012
wwang: 5/10/2007
ckniffin: 5/4/2007
alopez: 1/2/2007
mgross: 7/29/2003
carol: 12/6/2002
tkritzer: 12/5/2002
terry: 12/3/2002
carol: 10/9/2002