Full text data of LSM7
LSM7
[Confidence: low (only semi-automatic identification from reviews)]
U6 snRNA-associated Sm-like protein LSm7
Note: presumably soluble (membrane word is not in UniProt keywords or features)
U6 snRNA-associated Sm-like protein LSm7
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
Q9UK45
ID LSM7_HUMAN Reviewed; 103 AA.
AC Q9UK45;
DT 01-DEC-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-MAY-2000, sequence version 1.
DT 22-JAN-2014, entry version 113.
DE RecName: Full=U6 snRNA-associated Sm-like protein LSm7;
GN Name=LSM7;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=10523320; DOI=10.1093/emboj/18.20.5789;
RA Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Luehrmann R.;
RT "A doughnut-shaped heteromer of human Sm-like proteins binds to the
RT 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in
RT vitro.";
RL EMBO J. 18:5789-5802(1999).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15057824; DOI=10.1038/nature02399;
RA Grimwood J., Gordon L.A., Olsen A.S., Terry A., Schmutz J.,
RA Lamerdin J.E., Hellsten U., Goodstein D., Couronne O., Tran-Gyamfi M.,
RA Aerts A., Altherr M., Ashworth L., Bajorek E., Black S., Branscomb E.,
RA Caenepeel S., Carrano A.V., Caoile C., Chan Y.M., Christensen M.,
RA Cleland C.A., Copeland A., Dalin E., Dehal P., Denys M., Detter J.C.,
RA Escobar J., Flowers D., Fotopulos D., Garcia C., Georgescu A.M.,
RA Glavina T., Gomez M., Gonzales E., Groza M., Hammon N., Hawkins T.,
RA Haydu L., Ho I., Huang W., Israni S., Jett J., Kadner K., Kimball H.,
RA Kobayashi A., Larionov V., Leem S.-H., Lopez F., Lou Y., Lowry S.,
RA Malfatti S., Martinez D., McCready P.M., Medina C., Morgan J.,
RA Nelson K., Nolan M., Ovcharenko I., Pitluck S., Pollard M.,
RA Popkie A.P., Predki P., Quan G., Ramirez L., Rash S., Retterer J.,
RA Rodriguez A., Rogers S., Salamov A., Salazar A., She X., Smith D.,
RA Slezak T., Solovyev V., Thayer N., Tice H., Tsai M., Ustaszewska A.,
RA Vo N., Wagner M., Wheeler J., Wu K., Xie G., Yang J., Dubchak I.,
RA Furey T.S., DeJong P., Dickson M., Gordon D., Eichler E.E.,
RA Pennacchio L.A., Richardson P., Stubbs L., Rokhsar D.S., Myers R.M.,
RA Rubin E.M., Lucas S.M.;
RT "The DNA sequence and biology of human chromosome 19.";
RL Nature 428:529-535(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=B-cell;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP INTERACTION WITH TACC1.
RX PubMed=12165861; DOI=10.1038/sj.onc.1205658;
RA Conte N., Charafe-Jauffret E., Delaval B., Adelaide J., Ginestier C.,
RA Geneix J., Isnardon D., Jacquemier J., Birnbaum D.;
RT "Carcinogenesis and translational controls: TACC1 is down-regulated in
RT human cancers and associates with mRNA regulators.";
RL Oncogene 21:5619-5630(2002).
RN [5]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [6]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, MASS SPECTROMETRY, AND
RP CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
CC -!- FUNCTION: Binds specifically to the 3'-terminal U-tract of U6
CC snRNA and is probably a component of the spliceosome.
CC -!- SUBUNIT: LSm subunits form a heteromer with a doughnut shape. Also
CC interacts with TACC1.
CC -!- INTERACTION:
CC Q9Y333:LSM2; NbExp=5; IntAct=EBI-348372, EBI-347416;
CC P62310:LSM3; NbExp=4; IntAct=EBI-348372, EBI-348239;
CC Q9Y4Z0:LSM4; NbExp=6; IntAct=EBI-348372, EBI-372521;
CC Q9Y4Y9:LSM5; NbExp=5; IntAct=EBI-348372, EBI-373007;
CC P62312:LSM6; NbExp=4; IntAct=EBI-348372, EBI-373310;
CC P62318:SNRPD3; NbExp=3; IntAct=EBI-348372, EBI-372789;
CC O75410-1:TACC1; NbExp=4; IntAct=EBI-348372, EBI-624252;
CC O75410-6:TACC1; NbExp=2; IntAct=EBI-348372, EBI-624278;
CC -!- SUBCELLULAR LOCATION: Nucleus (Potential).
CC -!- SIMILARITY: Belongs to the snRNP Sm proteins family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF182293; AAD56231.1; -; mRNA.
DR EMBL; AC005258; AAG45442.1; -; Genomic_DNA.
DR EMBL; BC018621; AAH18621.1; -; mRNA.
DR RefSeq; NP_057283.1; NM_016199.2.
DR UniGene; Hs.512610; -.
DR ProteinModelPortal; Q9UK45; -.
DR SMR; Q9UK45; 11-89.
DR DIP; DIP-31129N; -.
DR IntAct; Q9UK45; 21.
DR MINT; MINT-1036641; -.
DR STRING; 9606.ENSP00000252622; -.
DR PhosphoSite; Q9UK45; -.
DR DMDM; 10720075; -.
DR PaxDb; Q9UK45; -.
DR PRIDE; Q9UK45; -.
DR DNASU; 51690; -.
DR Ensembl; ENST00000252622; ENSP00000252622; ENSG00000130332.
DR GeneID; 51690; -.
DR KEGG; hsa:51690; -.
DR UCSC; uc002lvp.4; human.
DR CTD; 51690; -.
DR GeneCards; GC19M002321; -.
DR HGNC; HGNC:20470; LSM7.
DR HPA; HPA041850; -.
DR MIM; 607287; gene.
DR neXtProt; NX_Q9UK45; -.
DR PharmGKB; PA134888612; -.
DR eggNOG; NOG276686; -.
DR HOGENOM; HOG000223548; -.
DR HOVERGEN; HBG000513; -.
DR KO; K12626; -.
DR OMA; VLDNTVE; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR GeneWiki; LSM7; -.
DR GenomeRNAi; 51690; -.
DR NextBio; 55694; -.
DR PRO; PR:Q9UK45; -.
DR ArrayExpress; Q9UK45; -.
DR Bgee; Q9UK45; -.
DR CleanEx; HS_LSM7; -.
DR Genevestigator; Q9UK45; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; NAS:UniProtKB.
DR GO; GO:0005681; C:spliceosomal complex; IEA:UniProtKB-KW.
DR GO; GO:0017070; F:U6 snRNA binding; NAS:UniProtKB.
DR GO; GO:0043928; P:exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay; TAS:Reactome.
DR GO; GO:0000398; P:mRNA splicing, via spliceosome; NAS:UniProtKB.
DR InterPro; IPR010920; LSM_dom.
DR InterPro; IPR001163; Ribonucl_LSM.
DR InterPro; IPR006649; Ribonucl_LSM_euk/arc.
DR InterPro; IPR017132; U6_snRNA_Lsm7.
DR Pfam; PF01423; LSM; 1.
DR PIRSF; PIRSF037188; U6_snRNA_Lsm7; 1.
DR SMART; SM00651; Sm; 1.
DR SUPFAM; SSF50182; SSF50182; 1.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; Direct protein sequencing;
KW mRNA processing; mRNA splicing; Nucleus; Reference proteome;
KW Ribonucleoprotein; RNA-binding; Spliceosome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 103 U6 snRNA-associated Sm-like protein LSm7.
FT /FTId=PRO_0000125579.
FT MOD_RES 2 2 N-acetylalanine.
SQ SEQUENCE 103 AA; 11602 MW; 7429DC0FB365C9C8 CRC64;
MADKEKKKKE SILDLSKYID KTIRVKFQGG REASGILKGF DPLLNLVLDG TIEYMRDPDD
QYKLTEDTRQ LGLVVCRGTS VVLICPQDGM EAIPNPFIQQ QDA
//
ID LSM7_HUMAN Reviewed; 103 AA.
AC Q9UK45;
DT 01-DEC-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-MAY-2000, sequence version 1.
DT 22-JAN-2014, entry version 113.
DE RecName: Full=U6 snRNA-associated Sm-like protein LSm7;
GN Name=LSM7;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=10523320; DOI=10.1093/emboj/18.20.5789;
RA Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Luehrmann R.;
RT "A doughnut-shaped heteromer of human Sm-like proteins binds to the
RT 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in
RT vitro.";
RL EMBO J. 18:5789-5802(1999).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15057824; DOI=10.1038/nature02399;
RA Grimwood J., Gordon L.A., Olsen A.S., Terry A., Schmutz J.,
RA Lamerdin J.E., Hellsten U., Goodstein D., Couronne O., Tran-Gyamfi M.,
RA Aerts A., Altherr M., Ashworth L., Bajorek E., Black S., Branscomb E.,
RA Caenepeel S., Carrano A.V., Caoile C., Chan Y.M., Christensen M.,
RA Cleland C.A., Copeland A., Dalin E., Dehal P., Denys M., Detter J.C.,
RA Escobar J., Flowers D., Fotopulos D., Garcia C., Georgescu A.M.,
RA Glavina T., Gomez M., Gonzales E., Groza M., Hammon N., Hawkins T.,
RA Haydu L., Ho I., Huang W., Israni S., Jett J., Kadner K., Kimball H.,
RA Kobayashi A., Larionov V., Leem S.-H., Lopez F., Lou Y., Lowry S.,
RA Malfatti S., Martinez D., McCready P.M., Medina C., Morgan J.,
RA Nelson K., Nolan M., Ovcharenko I., Pitluck S., Pollard M.,
RA Popkie A.P., Predki P., Quan G., Ramirez L., Rash S., Retterer J.,
RA Rodriguez A., Rogers S., Salamov A., Salazar A., She X., Smith D.,
RA Slezak T., Solovyev V., Thayer N., Tice H., Tsai M., Ustaszewska A.,
RA Vo N., Wagner M., Wheeler J., Wu K., Xie G., Yang J., Dubchak I.,
RA Furey T.S., DeJong P., Dickson M., Gordon D., Eichler E.E.,
RA Pennacchio L.A., Richardson P., Stubbs L., Rokhsar D.S., Myers R.M.,
RA Rubin E.M., Lucas S.M.;
RT "The DNA sequence and biology of human chromosome 19.";
RL Nature 428:529-535(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=B-cell;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP INTERACTION WITH TACC1.
RX PubMed=12165861; DOI=10.1038/sj.onc.1205658;
RA Conte N., Charafe-Jauffret E., Delaval B., Adelaide J., Ginestier C.,
RA Geneix J., Isnardon D., Jacquemier J., Birnbaum D.;
RT "Carcinogenesis and translational controls: TACC1 is down-regulated in
RT human cancers and associates with mRNA regulators.";
RL Oncogene 21:5619-5630(2002).
RN [5]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [6]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, MASS SPECTROMETRY, AND
RP CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
CC -!- FUNCTION: Binds specifically to the 3'-terminal U-tract of U6
CC snRNA and is probably a component of the spliceosome.
CC -!- SUBUNIT: LSm subunits form a heteromer with a doughnut shape. Also
CC interacts with TACC1.
CC -!- INTERACTION:
CC Q9Y333:LSM2; NbExp=5; IntAct=EBI-348372, EBI-347416;
CC P62310:LSM3; NbExp=4; IntAct=EBI-348372, EBI-348239;
CC Q9Y4Z0:LSM4; NbExp=6; IntAct=EBI-348372, EBI-372521;
CC Q9Y4Y9:LSM5; NbExp=5; IntAct=EBI-348372, EBI-373007;
CC P62312:LSM6; NbExp=4; IntAct=EBI-348372, EBI-373310;
CC P62318:SNRPD3; NbExp=3; IntAct=EBI-348372, EBI-372789;
CC O75410-1:TACC1; NbExp=4; IntAct=EBI-348372, EBI-624252;
CC O75410-6:TACC1; NbExp=2; IntAct=EBI-348372, EBI-624278;
CC -!- SUBCELLULAR LOCATION: Nucleus (Potential).
CC -!- SIMILARITY: Belongs to the snRNP Sm proteins family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF182293; AAD56231.1; -; mRNA.
DR EMBL; AC005258; AAG45442.1; -; Genomic_DNA.
DR EMBL; BC018621; AAH18621.1; -; mRNA.
DR RefSeq; NP_057283.1; NM_016199.2.
DR UniGene; Hs.512610; -.
DR ProteinModelPortal; Q9UK45; -.
DR SMR; Q9UK45; 11-89.
DR DIP; DIP-31129N; -.
DR IntAct; Q9UK45; 21.
DR MINT; MINT-1036641; -.
DR STRING; 9606.ENSP00000252622; -.
DR PhosphoSite; Q9UK45; -.
DR DMDM; 10720075; -.
DR PaxDb; Q9UK45; -.
DR PRIDE; Q9UK45; -.
DR DNASU; 51690; -.
DR Ensembl; ENST00000252622; ENSP00000252622; ENSG00000130332.
DR GeneID; 51690; -.
DR KEGG; hsa:51690; -.
DR UCSC; uc002lvp.4; human.
DR CTD; 51690; -.
DR GeneCards; GC19M002321; -.
DR HGNC; HGNC:20470; LSM7.
DR HPA; HPA041850; -.
DR MIM; 607287; gene.
DR neXtProt; NX_Q9UK45; -.
DR PharmGKB; PA134888612; -.
DR eggNOG; NOG276686; -.
DR HOGENOM; HOG000223548; -.
DR HOVERGEN; HBG000513; -.
DR KO; K12626; -.
DR OMA; VLDNTVE; -.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR GeneWiki; LSM7; -.
DR GenomeRNAi; 51690; -.
DR NextBio; 55694; -.
DR PRO; PR:Q9UK45; -.
DR ArrayExpress; Q9UK45; -.
DR Bgee; Q9UK45; -.
DR CleanEx; HS_LSM7; -.
DR Genevestigator; Q9UK45; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005634; C:nucleus; NAS:UniProtKB.
DR GO; GO:0005681; C:spliceosomal complex; IEA:UniProtKB-KW.
DR GO; GO:0017070; F:U6 snRNA binding; NAS:UniProtKB.
DR GO; GO:0043928; P:exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay; TAS:Reactome.
DR GO; GO:0000398; P:mRNA splicing, via spliceosome; NAS:UniProtKB.
DR InterPro; IPR010920; LSM_dom.
DR InterPro; IPR001163; Ribonucl_LSM.
DR InterPro; IPR006649; Ribonucl_LSM_euk/arc.
DR InterPro; IPR017132; U6_snRNA_Lsm7.
DR Pfam; PF01423; LSM; 1.
DR PIRSF; PIRSF037188; U6_snRNA_Lsm7; 1.
DR SMART; SM00651; Sm; 1.
DR SUPFAM; SSF50182; SSF50182; 1.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; Direct protein sequencing;
KW mRNA processing; mRNA splicing; Nucleus; Reference proteome;
KW Ribonucleoprotein; RNA-binding; Spliceosome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 103 U6 snRNA-associated Sm-like protein LSm7.
FT /FTId=PRO_0000125579.
FT MOD_RES 2 2 N-acetylalanine.
SQ SEQUENCE 103 AA; 11602 MW; 7429DC0FB365C9C8 CRC64;
MADKEKKKKE SILDLSKYID KTIRVKFQGG REASGILKGF DPLLNLVLDG TIEYMRDPDD
QYKLTEDTRQ LGLVVCRGTS VVLICPQDGM EAIPNPFIQQ QDA
//
MIM
607287
*RECORD*
*FIELD* NO
607287
*FIELD* TI
*607287 LSM7 PROTEIN; LSM7
*FIELD* TX
DESCRIPTION
Sm-like proteins were identified in a variety of organisms based on
read moresequence homology with the Sm protein family (see SNRPD2; 601061).
Sm-like proteins contain the Sm sequence motif, which consists of 2
regions separated by a linker of variable length that folds as a loop.
The Sm-like proteins are thought to form a stable heteromer present in
tri-snRNP particles, which are important for pre-mRNA splicing.
CLONING
In a search for human Sm-like proteins, Achsel et al. (1999)
fractionated proteins present in purified (U4/U6.U5) tri-snRNPs and
isolated 7 Sm-like proteins, which they named LSm2-LSm8. Using partial
peptide sequence for database searches, they identified and sequenced
EST clones. Using additional sequence obtained by PCR amplification of a
HeLa cDNA library, they assembled full-length cDNA sequences for
LSM2-LSM8.
Salgado-Garrido et al. (1999) searched database sequence for Sm proteins
and identified 16 potential Sm-related genes in yeast as well as some
Sm-related genes in human and archaebacteria. Using a multiple sequence
alignment of Sm domains, they built a phylogenetic tree of yeast, human,
and archaeal Sm and Sm-like proteins.
GENE FUNCTION
Using electron-microscopy, Achsel et al. (1999) observed that purified
LSm proteins form a heteromer that is stable even in the absence of RNA
and exhibits a doughnut-shaped structure similar to the Sm core RNP
structure. They demonstrated that the purified LSm heteromer binds
specifically to the U6 snRNA at its 3-prime-terminal U-tract. They also
showed that the LSm proteins facilitate the formation of U4/U6 RNA
duplexes in vitro and concluded that the LSm proteins may play a role in
U4/U6 snRNP formation.
Using immunoprecipitation experiments, Salgado-Garrido et al. (1999)
concluded that there is a complex of 7 Sm-like proteins bound to RNA in
yeast. Lsm2-Lsm8 coprecipitate the U4, U5 and U6 snRNAs and directly
associate with the U6 snRNA present in the free U6 snRNP. Additionally,
the yeast Lsm2-Lsm7 proteins were found to be associated with the
pre-RNase P RNA but not the mature RNase RNA. Using immunoprecipitation
experiments from human cell extracts, Salgado-Garrido et al. (1999)
showed that the LSM3 and LSM4 proteins are specifically associated with
snRNP complexes containing the U6 snRNA. Salgado-Garrido et al. (1999)
concluded that Sm and Sm-like proteins assemble in at least 2
functionally conserved complexes of deep evolutionary origin.
By disrupting the Sm and Sm-like genes in yeast, Salgado-Garrido et al.
(1999) concluded that disruption of genes encoding Sm-like proteins
directly associated with the U6 snRNA (Lsm2-8) generated variable
phenotypes. Lsm2, Lsm3, Lsm4, and Lsm8 are essential for vegetative
growth. Lsm5, Lsm6, and Lsm7 are not essential for growth; however,
their disruptions lead to slow growth especially at elevated
temperature. The levels of the U6 snRNA were strongly reduced in the
strains harboring the Lsm5, Lsm6, and Lsm7 disruptions. Lsm1 and Lsm9
are dispensable for vegetative growth, but Lsm1 is required for optimal
vegetative growth at 30 degrees and is temperature sensitive.
Ingelfinger et al. (2002) determined that human LSM1 to LSM7, but not
LSM8, were expressed in HeLa cells within cytoplasmic foci. The foci
also contained a decapping enzyme (DCP1/2) and the exonuclease XRN1
(607994). Coexpression of wildtype and mutant LSM proteins, as well as
fluorescence resonance energy transfer, indicated that the LSM proteins
form a complex similar to one found in yeast. Ingelfinger et al. (2002)
concluded that the foci contain a partially or fully assembled machinery
for the degradation of mRNA.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the LSM7
gene to chromosome 19 (TMAP stSG29317).
*FIELD* RF
1. Achsel, T.; Brahms, H.; Kastner, B.; Bachi, A.; Wilm, M.; Luhrmann,
R.: A doughnut-shaped heteromer of human Sm-like proteins binds to
the 3-prime end of U6 snRNA, thereby facilitating U4/U6 duplex formation
in vitro. EMBO J. 18: 5789-5802, 1999.
2. Ingelfinger, D.; Arndt-Jovin, D. J.; Luhrmann, R.; Achsel, T.:
The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes
Dcp1/2 and Xrn1 in distinct cytoplasmic foci. RNA 8: 1489-1501,
2002.
3. Salgado-Garrido, J.; Bragado-Nilsson, E.; Kandels-Lewis, S.; Seraphin,
B.: Sm and Sm-like proteins assemble in two related complexes of
deep evolutionary origin. EMBO J. 18: 3451-3462, 1999.
*FIELD* CN
Patricia A. Hartz - updated: 7/29/2003
*FIELD* CD
Dawn Watkins-Chow: 10/9/2002
*FIELD* ED
alopez: 03/08/2005
mgross: 7/29/2003
carol: 10/15/2002
*RECORD*
*FIELD* NO
607287
*FIELD* TI
*607287 LSM7 PROTEIN; LSM7
*FIELD* TX
DESCRIPTION
Sm-like proteins were identified in a variety of organisms based on
read moresequence homology with the Sm protein family (see SNRPD2; 601061).
Sm-like proteins contain the Sm sequence motif, which consists of 2
regions separated by a linker of variable length that folds as a loop.
The Sm-like proteins are thought to form a stable heteromer present in
tri-snRNP particles, which are important for pre-mRNA splicing.
CLONING
In a search for human Sm-like proteins, Achsel et al. (1999)
fractionated proteins present in purified (U4/U6.U5) tri-snRNPs and
isolated 7 Sm-like proteins, which they named LSm2-LSm8. Using partial
peptide sequence for database searches, they identified and sequenced
EST clones. Using additional sequence obtained by PCR amplification of a
HeLa cDNA library, they assembled full-length cDNA sequences for
LSM2-LSM8.
Salgado-Garrido et al. (1999) searched database sequence for Sm proteins
and identified 16 potential Sm-related genes in yeast as well as some
Sm-related genes in human and archaebacteria. Using a multiple sequence
alignment of Sm domains, they built a phylogenetic tree of yeast, human,
and archaeal Sm and Sm-like proteins.
GENE FUNCTION
Using electron-microscopy, Achsel et al. (1999) observed that purified
LSm proteins form a heteromer that is stable even in the absence of RNA
and exhibits a doughnut-shaped structure similar to the Sm core RNP
structure. They demonstrated that the purified LSm heteromer binds
specifically to the U6 snRNA at its 3-prime-terminal U-tract. They also
showed that the LSm proteins facilitate the formation of U4/U6 RNA
duplexes in vitro and concluded that the LSm proteins may play a role in
U4/U6 snRNP formation.
Using immunoprecipitation experiments, Salgado-Garrido et al. (1999)
concluded that there is a complex of 7 Sm-like proteins bound to RNA in
yeast. Lsm2-Lsm8 coprecipitate the U4, U5 and U6 snRNAs and directly
associate with the U6 snRNA present in the free U6 snRNP. Additionally,
the yeast Lsm2-Lsm7 proteins were found to be associated with the
pre-RNase P RNA but not the mature RNase RNA. Using immunoprecipitation
experiments from human cell extracts, Salgado-Garrido et al. (1999)
showed that the LSM3 and LSM4 proteins are specifically associated with
snRNP complexes containing the U6 snRNA. Salgado-Garrido et al. (1999)
concluded that Sm and Sm-like proteins assemble in at least 2
functionally conserved complexes of deep evolutionary origin.
By disrupting the Sm and Sm-like genes in yeast, Salgado-Garrido et al.
(1999) concluded that disruption of genes encoding Sm-like proteins
directly associated with the U6 snRNA (Lsm2-8) generated variable
phenotypes. Lsm2, Lsm3, Lsm4, and Lsm8 are essential for vegetative
growth. Lsm5, Lsm6, and Lsm7 are not essential for growth; however,
their disruptions lead to slow growth especially at elevated
temperature. The levels of the U6 snRNA were strongly reduced in the
strains harboring the Lsm5, Lsm6, and Lsm7 disruptions. Lsm1 and Lsm9
are dispensable for vegetative growth, but Lsm1 is required for optimal
vegetative growth at 30 degrees and is temperature sensitive.
Ingelfinger et al. (2002) determined that human LSM1 to LSM7, but not
LSM8, were expressed in HeLa cells within cytoplasmic foci. The foci
also contained a decapping enzyme (DCP1/2) and the exonuclease XRN1
(607994). Coexpression of wildtype and mutant LSM proteins, as well as
fluorescence resonance energy transfer, indicated that the LSM proteins
form a complex similar to one found in yeast. Ingelfinger et al. (2002)
concluded that the foci contain a partially or fully assembled machinery
for the degradation of mRNA.
MAPPING
The International Radiation Hybrid Mapping Consortium mapped the LSM7
gene to chromosome 19 (TMAP stSG29317).
*FIELD* RF
1. Achsel, T.; Brahms, H.; Kastner, B.; Bachi, A.; Wilm, M.; Luhrmann,
R.: A doughnut-shaped heteromer of human Sm-like proteins binds to
the 3-prime end of U6 snRNA, thereby facilitating U4/U6 duplex formation
in vitro. EMBO J. 18: 5789-5802, 1999.
2. Ingelfinger, D.; Arndt-Jovin, D. J.; Luhrmann, R.; Achsel, T.:
The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes
Dcp1/2 and Xrn1 in distinct cytoplasmic foci. RNA 8: 1489-1501,
2002.
3. Salgado-Garrido, J.; Bragado-Nilsson, E.; Kandels-Lewis, S.; Seraphin,
B.: Sm and Sm-like proteins assemble in two related complexes of
deep evolutionary origin. EMBO J. 18: 3451-3462, 1999.
*FIELD* CN
Patricia A. Hartz - updated: 7/29/2003
*FIELD* CD
Dawn Watkins-Chow: 10/9/2002
*FIELD* ED
alopez: 03/08/2005
mgross: 7/29/2003
carol: 10/15/2002