Full text data of MAGOH
MAGOH
(MAGOHA)
[Confidence: low (only semi-automatic identification from reviews)]
Protein mago nashi homolog
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Protein mago nashi homolog
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P61326
ID MGN_HUMAN Reviewed; 146 AA.
AC P61326; B2R5A2; O35169; P50606; Q5SW69;
DT 10-MAY-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 10-MAY-2004, sequence version 1.
DT 22-JAN-2014, entry version 116.
DE RecName: Full=Protein mago nashi homolog;
GN Name=MAGOH; Synonyms=MAGOHA;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9479507; DOI=10.1006/geno.1997.5126;
RA Zhao X.F., Colaizzo-Anas T., Nowak N.J., Shows T.B., Elliott R.W.,
RA Aplan P.D.;
RT "The mammalian homologue of mago nashi encodes a serum-inducible
RT protein.";
RL Genomics 47:319-322(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Umbilical cord blood;
RX PubMed=11042152; DOI=10.1101/gr.140200;
RA Zhang Q.-H., Ye M., Wu X.-Y., Ren S.-X., Zhao M., Zhao C.-J., Fu G.,
RA Shen Y., Fan H.-Y., Lu G., Zhong M., Xu X.-R., Han Z.-G., Zhang J.-W.,
RA Tao J., Huang Q.-H., Zhou J., Hu G.-X., Gu J., Chen S.-J., Chen Z.;
RT "Cloning and functional analysis of cDNAs with open reading frames for
RT 300 previously undefined genes expressed in CD34+ hematopoietic
RT stem/progenitor cells.";
RL Genome Res. 10:1546-1560(2000).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thymus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Ovary;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP INTERACTION WITH RBM8A.
RX PubMed=10662555; DOI=10.1006/geno.1999.6064;
RA Zhao X.F., Nowak N.J., Shows T.B., Aplan P.D.;
RT "MAGOH interacts with a novel RNA-binding protein.";
RL Genomics 63:145-148(2000).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND IDENTIFICATION IN THE
RP SPLICEOSOMAL C COMPLEX.
RX PubMed=11991638; DOI=10.1017/S1355838202021088;
RA Jurica M.S., Licklider L.J., Gygi S.P., Grigorieff N., Moore M.J.;
RT "Purification and characterization of native spliceosomes suitable for
RT three-dimensional structural analysis.";
RL RNA 8:426-439(2002).
RN [9]
RP FUNCTION, AND INTERACTION WITH RBM8A.
RX PubMed=12730685; DOI=10.1038/nsb926;
RA Fribourg S., Gatfield D., Izaurralde E., Conti E.;
RT "A novel mode of RBD-protein recognition in the Y14-Mago complex.";
RL Nat. Struct. Biol. 10:433-439(2003).
RN [10]
RP INTERACTION WITH WIBG.
RX PubMed=14968132; DOI=10.1038/sj.embor.7400091;
RA Bono F., Ebert J., Unterholzner L., Guettler T., Izaurralde E.,
RA Conti E.;
RT "Molecular insights into the interaction of PYM with the Mago-Y14 core
RT of the exon junction complex.";
RL EMBO Rep. 5:304-310(2004).
RN [11]
RP FUNCTION, AND MUTAGENESIS OF 16-LYS-GLU-17; 41-LYS-ASN-42;
RP 66-ASP--GLU-68; 72-GLU-ASP-73; 85-ARG--GLU-87; 130-LYS--PHE-134 AND
RP LEU-136.
RX PubMed=16209946; DOI=10.1016/j.molcel.2005.08.012;
RA Gehring N.H., Kunz J.B., Neu-Yilik G., Breit S., Viegas M.H.,
RA Hentze M.W., Kulozik A.E.;
RT "Exon-junction complex components specify distinct routes of nonsense-
RT mediated mRNA decay with differential cofactor requirements.";
RL Mol. Cell 20:65-75(2005).
RN [12]
RP IDENTIFICATION IN THE CORE EXON JUNCTION COMPLEX.
RX PubMed=16170325; DOI=10.1038/nsmb990;
RA Ballut L., Marchadier B., Baguet A., Tomasetto C., Seraphin B.,
RA Le Hir H.;
RT "The exon junction core complex is locked onto RNA by inhibition of
RT eIF4AIII ATPase activity.";
RL Nat. Struct. Mol. Biol. 12:861-869(2005).
RN [13]
RP IDENTIFICATION IN THE CORE EXON JUNCTION COMPLEX, IDENTIFICATION IN A
RP MRNA SPLICING-DEPENDENT EXON JUNCTION COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=16314458; DOI=10.1261/rna.2155905;
RA Tange T.O., Shibuya T., Jurica M.S., Moore M.J.;
RT "Biochemical analysis of the EJC reveals two new factors and a stable
RT tetrameric protein core.";
RL RNA 11:1869-1883(2005).
RN [14]
RP INTERACTION WITH WIBG.
RX PubMed=18026120; DOI=10.1038/nsmb1321;
RA Diem M.D., Chan C.C., Younis I., Dreyfuss G.;
RT "PYM binds the cytoplasmic exon-junction complex and ribosomes to
RT enhance translation of spliced mRNAs.";
RL Nat. Struct. Mol. Biol. 14:1173-1179(2007).
RN [15]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [16]
RP INTERACTION WITH WIBG, AND MUTAGENESIS OF GLU-68; GLU-72; ASP-73 AND
RP GLU-117.
RX PubMed=19410547; DOI=10.1016/j.cell.2009.02.042;
RA Gehring N.H., Lamprinaki S., Kulozik A.E., Hentze M.W.;
RT "Disassembly of exon junction complexes by PYM.";
RL Cell 137:536-548(2009).
RN [17]
RP SUBCELLULAR LOCATION.
RX PubMed=19324961; DOI=10.1261/rna.1387009;
RA Schmidt U., Im K.-B., Benzing C., Janjetovic S., Rippe K., Lichter P.,
RA Wachsmuth M.;
RT "Assembly and mobility of exon-exon junction complexes in living
RT cells.";
RL RNA 15:862-876(2009).
RN [18]
RP FUNCTION.
RX PubMed=22203037; DOI=10.1128/MCB.06130-11;
RA Michelle L., Cloutier A., Toutant J., Shkreta L., Thibault P.,
RA Durand M., Garneau D., Gendron D., Lapointe E., Couture S., Le Hir H.,
RA Klinck R., Elela S.A., Prinos P., Chabot B.;
RT "Proteins associated with the exon junction complex also control the
RT alternative splicing of apoptotic regulators.";
RL Mol. Cell. Biol. 32:954-967(2012).
RN [19]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) IN COMPLEX WITH RBM8A.
RX PubMed=12781131; DOI=10.1016/S0960-9822(03)00328-2;
RA Lau C.K., Diem M.D., Dreyfuss G., Van Duyne G.D.;
RT "Structure of the Y14-Magoh core of the exon junction complex.";
RL Curr. Biol. 13:933-941(2003).
RN [21]
RP X-RAY CRYSTALLOGRAPHY (2.21 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND AMP-PNP.
RX PubMed=16923391; DOI=10.1016/j.cell.2006.08.006;
RA Bono F., Ebert J., Lorentzen E., Conti E.;
RT "The crystal structure of the exon junction complex reveals how it
RT maintains a stable grip on mRNA.";
RL Cell 126:713-725(2006).
RN [22]
RP X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND ADP-NP.
RX PubMed=16931718; DOI=10.1126/science.1131981;
RA Andersen C.B., Ballut L., Johansen J.S., Chamieh H., Nielsen K.H.,
RA Oliveira C.L., Pedersen J.S., Seraphin B., Le Hir H., Andersen G.R.;
RT "Structure of the exon junction core complex with a trapped DEAD-box
RT ATPase bound to RNA.";
RL Science 313:1968-1972(2006).
RN [23]
RP X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND TRANSITION STATE ANALOG ADP-ALF3.
RX PubMed=19033377; DOI=10.1261/rna.1283109;
RA Nielsen K.H., Chamieh H., Andersen C.B., Fredslund F., Hamborg K.,
RA Le Hir H., Andersen G.R.;
RT "Mechanism of ATP turnover inhibition in the EJC.";
RL RNA 15:67-75(2009).
CC -!- FUNCTION: Core component of the splicing-dependent multiprotein
CC exon junction complex (EJC) deposited at splice junctions on
CC mRNAs. The EJC is a dynamic structure consisting of core proteins
CC and several peripheral nuclear and cytoplasmic associated factors
CC that join the complex only transiently either during EJC assembly
CC or during subsequent mRNA metabolism. The EJC marks the position
CC of the exon-exon junction in the mature mRNA for the gene
CC expression machinery and the core components remain bound to
CC spliced mRNAs throughout all stages of mRNA metabolism thereby
CC influencing downstream processes including nuclear mRNA export,
CC subcellular mRNA localization, translation efficiency and
CC nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer
CC inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-
CC bound EJC core onto spliced mRNA in a stable conformation. The
CC MAGOH-RBM8A heterodimer interacts with the EJC key regulator
CC WIBG/PYM leading to EJC disassembly in the cytoplasm and
CC translation enhancement of EJC-bearing spliced mRNAs by recruiting
CC them to the ribosomal 48S preinitiation complex. Involved in the
CC splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic
CC genes); specifically inhibits formation of proapoptotic isoforms
CC such as Bcl-X(S); the function is different from the established
CC EJC assembly.
CC -!- SUBUNIT: Heterodimer with RBM8A. Part of the mRNA splicing-
CC dependent exon junction complex (EJC) complex; the core complex
CC contains CASC3, EIF4A3, MAGOH and RBM8A. Interacts with WIBG/PYM;
CC the interaction is direct and dissociates the EJC from spliced
CC mRNAs. Identified in the spliceosome C complex.
CC -!- INTERACTION:
CC O15234:CASC3; NbExp=5; IntAct=EBI-299134, EBI-299118;
CC P38919:EIF4A3; NbExp=20; IntAct=EBI-299134, EBI-299104;
CC O94829:IPO13; NbExp=2; IntAct=EBI-299134, EBI-747310;
CC Q9Y5S9:RBM8A; NbExp=22; IntAct=EBI-299134, EBI-447231;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus speckle. Cytoplasm.
CC Note=Detected in granule-like structures in the dendroplasm (By
CC similarity). Travels to the cytoplasm as part of the exon junction
CC complex (EJC) bound to mRNA. Colocalizes with the core EJC,
CC ALYREF/THOC4, NXF1 and UAP56 in the nucleus and nuclear speckles.
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- SIMILARITY: Belongs to the mago nashi family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF035940; AAC39606.1; -; mRNA.
DR EMBL; AF067173; AAD32457.1; -; mRNA.
DR EMBL; AK312113; BAG35049.1; -; mRNA.
DR EMBL; AL606760; CAI18914.1; -; Genomic_DNA.
DR EMBL; CH471059; EAX06748.1; -; Genomic_DNA.
DR EMBL; BC018211; AAH18211.1; -; mRNA.
DR RefSeq; NP_002361.1; NM_002370.3.
DR UniGene; Hs.421576; -.
DR PDB; 1P27; X-ray; 2.00 A; A/C=2-145.
DR PDB; 2HYI; X-ray; 2.30 A; A/G=1-146.
DR PDB; 2J0Q; X-ray; 3.20 A; C/F=1-146.
DR PDB; 2J0S; X-ray; 2.21 A; C=1-146.
DR PDB; 2XB2; X-ray; 3.40 A; C/Y=1-146.
DR PDB; 3EX7; X-ray; 2.30 A; A/E=1-146.
DR PDBsum; 1P27; -.
DR PDBsum; 2HYI; -.
DR PDBsum; 2J0Q; -.
DR PDBsum; 2J0S; -.
DR PDBsum; 2XB2; -.
DR PDBsum; 3EX7; -.
DR ProteinModelPortal; P61326; -.
DR SMR; P61326; 2-145.
DR DIP; DIP-33069N; -.
DR IntAct; P61326; 129.
DR MINT; MINT-1574804; -.
DR STRING; 9606.ENSP00000360525; -.
DR TCDB; 3.A.18.1.1; the nuclear mrna exporter (mrna-e) family.
DR PhosphoSite; P61326; -.
DR DMDM; 47117708; -.
DR PaxDb; P61326; -.
DR PRIDE; P61326; -.
DR DNASU; 4116; -.
DR Ensembl; ENST00000371470; ENSP00000360525; ENSG00000162385.
DR GeneID; 4116; -.
DR KEGG; hsa:4116; -.
DR UCSC; uc001cvf.2; human.
DR CTD; 4116; -.
DR GeneCards; GC01M053692; -.
DR HGNC; HGNC:6815; MAGOH.
DR HPA; CAB015425; -.
DR MIM; 602603; gene.
DR neXtProt; NX_P61326; -.
DR PharmGKB; PA30563; -.
DR eggNOG; NOG255527; -.
DR HOGENOM; HOG000207428; -.
DR HOVERGEN; HBG004353; -.
DR InParanoid; P61326; -.
DR KO; K12877; -.
DR OMA; KEDDTNW; -.
DR OrthoDB; EOG7F24VD; -.
DR PhylomeDB; P61326; -.
DR Reactome; REACT_1675; mRNA Processing.
DR Reactome; REACT_1788; Transcription.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR Reactome; REACT_78; Post-Elongation Processing of the Transcript.
DR ChiTaRS; MAGOH; human.
DR EvolutionaryTrace; P61326; -.
DR GeneWiki; MAGOH; -.
DR GenomeRNAi; 4116; -.
DR NextBio; 16162; -.
DR PRO; PR:P61326; -.
DR ArrayExpress; P61326; -.
DR Bgee; P61326; -.
DR CleanEx; HS_MAGOH; -.
DR Genevestigator; P61326; -.
DR GO; GO:0071013; C:catalytic step 2 spliceosome; IDA:UniProtKB.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0035145; C:exon-exon junction complex; IDA:UniProtKB.
DR GO; GO:0016607; C:nuclear speck; IEA:UniProtKB-SubCell.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR GO; GO:0031124; P:mRNA 3'-end processing; TAS:Reactome.
DR GO; GO:0006406; P:mRNA export from nucleus; TAS:Reactome.
DR GO; GO:0000398; P:mRNA splicing, via spliceosome; IC:UniProtKB.
DR GO; GO:0000184; P:nuclear-transcribed mRNA catabolic process, nonsense-mediated decay; IMP:UniProtKB.
DR GO; GO:0000381; P:regulation of alternative mRNA splicing, via spliceosome; IMP:UniProtKB.
DR GO; GO:0006417; P:regulation of translation; IEA:UniProtKB-KW.
DR GO; GO:0006369; P:termination of RNA polymerase II transcription; TAS:Reactome.
DR Gene3D; 3.30.1560.10; -; 1.
DR InterPro; IPR004023; Mago_nashi.
DR PANTHER; PTHR12638; PTHR12638; 1.
DR Pfam; PF02792; Mago_nashi; 1.
DR SUPFAM; SSF89817; SSF89817; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome; Cytoplasm;
KW mRNA processing; mRNA splicing; mRNA transport;
KW Nonsense-mediated mRNA decay; Nucleus; Reference proteome;
KW RNA-binding; Spliceosome; Translation regulation; Transport.
FT CHAIN 1 146 Protein mago nashi homolog.
FT /FTId=PRO_0000174145.
FT MOD_RES 1 1 N-acetylmethionine.
FT MUTAGEN 16 17 KF->EA: Impaired nonsense-mediated decay
FT activity.
FT MUTAGEN 41 42 KN->DA: Complete loss of nonsense-
FT mediated decay activity.
FT MUTAGEN 66 68 DSE->RSR: Slightly reduced nonsense-
FT mediated decay activity.
FT MUTAGEN 68 68 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-72;
FT K-73 and R-117.
FT MUTAGEN 72 73 ED->RK: Fully active.
FT MUTAGEN 72 72 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT K-73 and R-117.
FT MUTAGEN 73 73 D->K: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT R-72 and R-117.
FT MUTAGEN 85 87 RQE->EQR: Fully active.
FT MUTAGEN 117 117 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT R-72 and K-73.
FT MUTAGEN 130 134 KCLVF->ECLVA: Complete loss of nonsense-
FT mediated decay activity.
FT MUTAGEN 136 136 L->R: Complete loss of nonsense-mediated
FT decay activity.
FT STRAND 5 15
FT STRAND 18 26
FT STRAND 30 38
FT TURN 40 42
FT STRAND 44 52
FT HELIX 54 67
FT HELIX 69 71
FT STRAND 74 77
FT STRAND 85 92
FT STRAND 95 101
FT HELIX 107 110
FT STRAND 113 115
FT HELIX 116 141
SQ SEQUENCE 146 AA; 17164 MW; FFAD0B075E045875 CRC64;
MESDFYLRYY VGHKGKFGHE FLEFEFRPDG KLRYANNSNY KNDVMIRKEA YVHKSVMEEL
KRIIDDSEIT KEDDALWPPP DRVGRQELEI VIGDEHISFT TSKIGSLIDV NQSKDPEGLR
VFYYLVQDLK CLVFSLIGLH FKIKPI
//
ID MGN_HUMAN Reviewed; 146 AA.
AC P61326; B2R5A2; O35169; P50606; Q5SW69;
DT 10-MAY-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 10-MAY-2004, sequence version 1.
DT 22-JAN-2014, entry version 116.
DE RecName: Full=Protein mago nashi homolog;
GN Name=MAGOH; Synonyms=MAGOHA;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9479507; DOI=10.1006/geno.1997.5126;
RA Zhao X.F., Colaizzo-Anas T., Nowak N.J., Shows T.B., Elliott R.W.,
RA Aplan P.D.;
RT "The mammalian homologue of mago nashi encodes a serum-inducible
RT protein.";
RL Genomics 47:319-322(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Umbilical cord blood;
RX PubMed=11042152; DOI=10.1101/gr.140200;
RA Zhang Q.-H., Ye M., Wu X.-Y., Ren S.-X., Zhao M., Zhao C.-J., Fu G.,
RA Shen Y., Fan H.-Y., Lu G., Zhong M., Xu X.-R., Han Z.-G., Zhang J.-W.,
RA Tao J., Huang Q.-H., Zhou J., Hu G.-X., Gu J., Chen S.-J., Chen Z.;
RT "Cloning and functional analysis of cDNAs with open reading frames for
RT 300 previously undefined genes expressed in CD34+ hematopoietic
RT stem/progenitor cells.";
RL Genome Res. 10:1546-1560(2000).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thymus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Ovary;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP INTERACTION WITH RBM8A.
RX PubMed=10662555; DOI=10.1006/geno.1999.6064;
RA Zhao X.F., Nowak N.J., Shows T.B., Aplan P.D.;
RT "MAGOH interacts with a novel RNA-binding protein.";
RL Genomics 63:145-148(2000).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND IDENTIFICATION IN THE
RP SPLICEOSOMAL C COMPLEX.
RX PubMed=11991638; DOI=10.1017/S1355838202021088;
RA Jurica M.S., Licklider L.J., Gygi S.P., Grigorieff N., Moore M.J.;
RT "Purification and characterization of native spliceosomes suitable for
RT three-dimensional structural analysis.";
RL RNA 8:426-439(2002).
RN [9]
RP FUNCTION, AND INTERACTION WITH RBM8A.
RX PubMed=12730685; DOI=10.1038/nsb926;
RA Fribourg S., Gatfield D., Izaurralde E., Conti E.;
RT "A novel mode of RBD-protein recognition in the Y14-Mago complex.";
RL Nat. Struct. Biol. 10:433-439(2003).
RN [10]
RP INTERACTION WITH WIBG.
RX PubMed=14968132; DOI=10.1038/sj.embor.7400091;
RA Bono F., Ebert J., Unterholzner L., Guettler T., Izaurralde E.,
RA Conti E.;
RT "Molecular insights into the interaction of PYM with the Mago-Y14 core
RT of the exon junction complex.";
RL EMBO Rep. 5:304-310(2004).
RN [11]
RP FUNCTION, AND MUTAGENESIS OF 16-LYS-GLU-17; 41-LYS-ASN-42;
RP 66-ASP--GLU-68; 72-GLU-ASP-73; 85-ARG--GLU-87; 130-LYS--PHE-134 AND
RP LEU-136.
RX PubMed=16209946; DOI=10.1016/j.molcel.2005.08.012;
RA Gehring N.H., Kunz J.B., Neu-Yilik G., Breit S., Viegas M.H.,
RA Hentze M.W., Kulozik A.E.;
RT "Exon-junction complex components specify distinct routes of nonsense-
RT mediated mRNA decay with differential cofactor requirements.";
RL Mol. Cell 20:65-75(2005).
RN [12]
RP IDENTIFICATION IN THE CORE EXON JUNCTION COMPLEX.
RX PubMed=16170325; DOI=10.1038/nsmb990;
RA Ballut L., Marchadier B., Baguet A., Tomasetto C., Seraphin B.,
RA Le Hir H.;
RT "The exon junction core complex is locked onto RNA by inhibition of
RT eIF4AIII ATPase activity.";
RL Nat. Struct. Mol. Biol. 12:861-869(2005).
RN [13]
RP IDENTIFICATION IN THE CORE EXON JUNCTION COMPLEX, IDENTIFICATION IN A
RP MRNA SPLICING-DEPENDENT EXON JUNCTION COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=16314458; DOI=10.1261/rna.2155905;
RA Tange T.O., Shibuya T., Jurica M.S., Moore M.J.;
RT "Biochemical analysis of the EJC reveals two new factors and a stable
RT tetrameric protein core.";
RL RNA 11:1869-1883(2005).
RN [14]
RP INTERACTION WITH WIBG.
RX PubMed=18026120; DOI=10.1038/nsmb1321;
RA Diem M.D., Chan C.C., Younis I., Dreyfuss G.;
RT "PYM binds the cytoplasmic exon-junction complex and ribosomes to
RT enhance translation of spliced mRNAs.";
RL Nat. Struct. Mol. Biol. 14:1173-1179(2007).
RN [15]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [16]
RP INTERACTION WITH WIBG, AND MUTAGENESIS OF GLU-68; GLU-72; ASP-73 AND
RP GLU-117.
RX PubMed=19410547; DOI=10.1016/j.cell.2009.02.042;
RA Gehring N.H., Lamprinaki S., Kulozik A.E., Hentze M.W.;
RT "Disassembly of exon junction complexes by PYM.";
RL Cell 137:536-548(2009).
RN [17]
RP SUBCELLULAR LOCATION.
RX PubMed=19324961; DOI=10.1261/rna.1387009;
RA Schmidt U., Im K.-B., Benzing C., Janjetovic S., Rippe K., Lichter P.,
RA Wachsmuth M.;
RT "Assembly and mobility of exon-exon junction complexes in living
RT cells.";
RL RNA 15:862-876(2009).
RN [18]
RP FUNCTION.
RX PubMed=22203037; DOI=10.1128/MCB.06130-11;
RA Michelle L., Cloutier A., Toutant J., Shkreta L., Thibault P.,
RA Durand M., Garneau D., Gendron D., Lapointe E., Couture S., Le Hir H.,
RA Klinck R., Elela S.A., Prinos P., Chabot B.;
RT "Proteins associated with the exon junction complex also control the
RT alternative splicing of apoptotic regulators.";
RL Mol. Cell. Biol. 32:954-967(2012).
RN [19]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) IN COMPLEX WITH RBM8A.
RX PubMed=12781131; DOI=10.1016/S0960-9822(03)00328-2;
RA Lau C.K., Diem M.D., Dreyfuss G., Van Duyne G.D.;
RT "Structure of the Y14-Magoh core of the exon junction complex.";
RL Curr. Biol. 13:933-941(2003).
RN [21]
RP X-RAY CRYSTALLOGRAPHY (2.21 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND AMP-PNP.
RX PubMed=16923391; DOI=10.1016/j.cell.2006.08.006;
RA Bono F., Ebert J., Lorentzen E., Conti E.;
RT "The crystal structure of the exon junction complex reveals how it
RT maintains a stable grip on mRNA.";
RL Cell 126:713-725(2006).
RN [22]
RP X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND ADP-NP.
RX PubMed=16931718; DOI=10.1126/science.1131981;
RA Andersen C.B., Ballut L., Johansen J.S., Chamieh H., Nielsen K.H.,
RA Oliveira C.L., Pedersen J.S., Seraphin B., Le Hir H., Andersen G.R.;
RT "Structure of the exon junction core complex with a trapped DEAD-box
RT ATPase bound to RNA.";
RL Science 313:1968-1972(2006).
RN [23]
RP X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) IN THE EJC COMPLEX WITH CASC3;
RP EIF4A3; RBM8A AND TRANSITION STATE ANALOG ADP-ALF3.
RX PubMed=19033377; DOI=10.1261/rna.1283109;
RA Nielsen K.H., Chamieh H., Andersen C.B., Fredslund F., Hamborg K.,
RA Le Hir H., Andersen G.R.;
RT "Mechanism of ATP turnover inhibition in the EJC.";
RL RNA 15:67-75(2009).
CC -!- FUNCTION: Core component of the splicing-dependent multiprotein
CC exon junction complex (EJC) deposited at splice junctions on
CC mRNAs. The EJC is a dynamic structure consisting of core proteins
CC and several peripheral nuclear and cytoplasmic associated factors
CC that join the complex only transiently either during EJC assembly
CC or during subsequent mRNA metabolism. The EJC marks the position
CC of the exon-exon junction in the mature mRNA for the gene
CC expression machinery and the core components remain bound to
CC spliced mRNAs throughout all stages of mRNA metabolism thereby
CC influencing downstream processes including nuclear mRNA export,
CC subcellular mRNA localization, translation efficiency and
CC nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer
CC inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-
CC bound EJC core onto spliced mRNA in a stable conformation. The
CC MAGOH-RBM8A heterodimer interacts with the EJC key regulator
CC WIBG/PYM leading to EJC disassembly in the cytoplasm and
CC translation enhancement of EJC-bearing spliced mRNAs by recruiting
CC them to the ribosomal 48S preinitiation complex. Involved in the
CC splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic
CC genes); specifically inhibits formation of proapoptotic isoforms
CC such as Bcl-X(S); the function is different from the established
CC EJC assembly.
CC -!- SUBUNIT: Heterodimer with RBM8A. Part of the mRNA splicing-
CC dependent exon junction complex (EJC) complex; the core complex
CC contains CASC3, EIF4A3, MAGOH and RBM8A. Interacts with WIBG/PYM;
CC the interaction is direct and dissociates the EJC from spliced
CC mRNAs. Identified in the spliceosome C complex.
CC -!- INTERACTION:
CC O15234:CASC3; NbExp=5; IntAct=EBI-299134, EBI-299118;
CC P38919:EIF4A3; NbExp=20; IntAct=EBI-299134, EBI-299104;
CC O94829:IPO13; NbExp=2; IntAct=EBI-299134, EBI-747310;
CC Q9Y5S9:RBM8A; NbExp=22; IntAct=EBI-299134, EBI-447231;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus speckle. Cytoplasm.
CC Note=Detected in granule-like structures in the dendroplasm (By
CC similarity). Travels to the cytoplasm as part of the exon junction
CC complex (EJC) bound to mRNA. Colocalizes with the core EJC,
CC ALYREF/THOC4, NXF1 and UAP56 in the nucleus and nuclear speckles.
CC -!- TISSUE SPECIFICITY: Ubiquitous.
CC -!- SIMILARITY: Belongs to the mago nashi family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF035940; AAC39606.1; -; mRNA.
DR EMBL; AF067173; AAD32457.1; -; mRNA.
DR EMBL; AK312113; BAG35049.1; -; mRNA.
DR EMBL; AL606760; CAI18914.1; -; Genomic_DNA.
DR EMBL; CH471059; EAX06748.1; -; Genomic_DNA.
DR EMBL; BC018211; AAH18211.1; -; mRNA.
DR RefSeq; NP_002361.1; NM_002370.3.
DR UniGene; Hs.421576; -.
DR PDB; 1P27; X-ray; 2.00 A; A/C=2-145.
DR PDB; 2HYI; X-ray; 2.30 A; A/G=1-146.
DR PDB; 2J0Q; X-ray; 3.20 A; C/F=1-146.
DR PDB; 2J0S; X-ray; 2.21 A; C=1-146.
DR PDB; 2XB2; X-ray; 3.40 A; C/Y=1-146.
DR PDB; 3EX7; X-ray; 2.30 A; A/E=1-146.
DR PDBsum; 1P27; -.
DR PDBsum; 2HYI; -.
DR PDBsum; 2J0Q; -.
DR PDBsum; 2J0S; -.
DR PDBsum; 2XB2; -.
DR PDBsum; 3EX7; -.
DR ProteinModelPortal; P61326; -.
DR SMR; P61326; 2-145.
DR DIP; DIP-33069N; -.
DR IntAct; P61326; 129.
DR MINT; MINT-1574804; -.
DR STRING; 9606.ENSP00000360525; -.
DR TCDB; 3.A.18.1.1; the nuclear mrna exporter (mrna-e) family.
DR PhosphoSite; P61326; -.
DR DMDM; 47117708; -.
DR PaxDb; P61326; -.
DR PRIDE; P61326; -.
DR DNASU; 4116; -.
DR Ensembl; ENST00000371470; ENSP00000360525; ENSG00000162385.
DR GeneID; 4116; -.
DR KEGG; hsa:4116; -.
DR UCSC; uc001cvf.2; human.
DR CTD; 4116; -.
DR GeneCards; GC01M053692; -.
DR HGNC; HGNC:6815; MAGOH.
DR HPA; CAB015425; -.
DR MIM; 602603; gene.
DR neXtProt; NX_P61326; -.
DR PharmGKB; PA30563; -.
DR eggNOG; NOG255527; -.
DR HOGENOM; HOG000207428; -.
DR HOVERGEN; HBG004353; -.
DR InParanoid; P61326; -.
DR KO; K12877; -.
DR OMA; KEDDTNW; -.
DR OrthoDB; EOG7F24VD; -.
DR PhylomeDB; P61326; -.
DR Reactome; REACT_1675; mRNA Processing.
DR Reactome; REACT_1788; Transcription.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_71; Gene Expression.
DR Reactome; REACT_78; Post-Elongation Processing of the Transcript.
DR ChiTaRS; MAGOH; human.
DR EvolutionaryTrace; P61326; -.
DR GeneWiki; MAGOH; -.
DR GenomeRNAi; 4116; -.
DR NextBio; 16162; -.
DR PRO; PR:P61326; -.
DR ArrayExpress; P61326; -.
DR Bgee; P61326; -.
DR CleanEx; HS_MAGOH; -.
DR Genevestigator; P61326; -.
DR GO; GO:0071013; C:catalytic step 2 spliceosome; IDA:UniProtKB.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0035145; C:exon-exon junction complex; IDA:UniProtKB.
DR GO; GO:0016607; C:nuclear speck; IEA:UniProtKB-SubCell.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW.
DR GO; GO:0031124; P:mRNA 3'-end processing; TAS:Reactome.
DR GO; GO:0006406; P:mRNA export from nucleus; TAS:Reactome.
DR GO; GO:0000398; P:mRNA splicing, via spliceosome; IC:UniProtKB.
DR GO; GO:0000184; P:nuclear-transcribed mRNA catabolic process, nonsense-mediated decay; IMP:UniProtKB.
DR GO; GO:0000381; P:regulation of alternative mRNA splicing, via spliceosome; IMP:UniProtKB.
DR GO; GO:0006417; P:regulation of translation; IEA:UniProtKB-KW.
DR GO; GO:0006369; P:termination of RNA polymerase II transcription; TAS:Reactome.
DR Gene3D; 3.30.1560.10; -; 1.
DR InterPro; IPR004023; Mago_nashi.
DR PANTHER; PTHR12638; PTHR12638; 1.
DR Pfam; PF02792; Mago_nashi; 1.
DR SUPFAM; SSF89817; SSF89817; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome; Cytoplasm;
KW mRNA processing; mRNA splicing; mRNA transport;
KW Nonsense-mediated mRNA decay; Nucleus; Reference proteome;
KW RNA-binding; Spliceosome; Translation regulation; Transport.
FT CHAIN 1 146 Protein mago nashi homolog.
FT /FTId=PRO_0000174145.
FT MOD_RES 1 1 N-acetylmethionine.
FT MUTAGEN 16 17 KF->EA: Impaired nonsense-mediated decay
FT activity.
FT MUTAGEN 41 42 KN->DA: Complete loss of nonsense-
FT mediated decay activity.
FT MUTAGEN 66 68 DSE->RSR: Slightly reduced nonsense-
FT mediated decay activity.
FT MUTAGEN 68 68 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-72;
FT K-73 and R-117.
FT MUTAGEN 72 73 ED->RK: Fully active.
FT MUTAGEN 72 72 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT K-73 and R-117.
FT MUTAGEN 73 73 D->K: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT R-72 and R-117.
FT MUTAGEN 85 87 RQE->EQR: Fully active.
FT MUTAGEN 117 117 E->R: Abolishes interaction with WIBG/PYM
FT leading to increase EJC association with
FT splices mRNAs; when associated with R-68;
FT R-72 and K-73.
FT MUTAGEN 130 134 KCLVF->ECLVA: Complete loss of nonsense-
FT mediated decay activity.
FT MUTAGEN 136 136 L->R: Complete loss of nonsense-mediated
FT decay activity.
FT STRAND 5 15
FT STRAND 18 26
FT STRAND 30 38
FT TURN 40 42
FT STRAND 44 52
FT HELIX 54 67
FT HELIX 69 71
FT STRAND 74 77
FT STRAND 85 92
FT STRAND 95 101
FT HELIX 107 110
FT STRAND 113 115
FT HELIX 116 141
SQ SEQUENCE 146 AA; 17164 MW; FFAD0B075E045875 CRC64;
MESDFYLRYY VGHKGKFGHE FLEFEFRPDG KLRYANNSNY KNDVMIRKEA YVHKSVMEEL
KRIIDDSEIT KEDDALWPPP DRVGRQELEI VIGDEHISFT TSKIGSLIDV NQSKDPEGLR
VFYYLVQDLK CLVFSLIGLH FKIKPI
//
MIM
602603
*RECORD*
*FIELD* NO
602603
*FIELD* TI
*602603 MAGO NASHI, DROSOPHILA, HOMOLOG OF; MAGOH
*FIELD* TX
CLONING
Drosophila that have mutations in their mago nashi (grandchildless) gene
read morehave a 'grandchildless' phenotype, a result of producing progeny with
defects in germplasm assembly and germline development. Zhao et al.
(1998) cloned a cDNA that appears to encode a human homolog of mago
nashi (MAGOH) from a human fetal brain cDNA library. The predicted
146-amino acid MAGOH protein is 90% identical to Drosophila mago nashi.
Zhao et al. (1998) also identified a cDNA encoding the mouse MAGOH
homolog. The predicted mouse and human MAGOH proteins are 100%
identical. Northern blot analysis revealed that MAGOH is expressed
ubiquitously in adult human tissues. The expression of mouse Magoh in
quiescent fibroblasts was induced by serum stimulation.
MAPPING
Using radiation hybrid panels, Zhao et al. (1998) mapped the human MAGOH
gene to 1p34-p33 and the mouse Magoh gene near position 51 on chromosome
4.
GENE FUNCTION
Palacios et al. (2004) demonstrated that the translation initiation
factor EIF4A3 (608546) interacts with Barentsz (MLN51; 606504) and is a
component of the oskar messenger RNP localization complex. Moreover,
EIF4A3 interacts with Mago-Y14 and thus provides the molecular link
between Barentsz and the heterodimer. The mammalian Mago (also known as
Magoh)-Y14 (605313) heterodimer is a component of the exon junction
complex. The exon junction complex is deposited on spliced mRNAs and
functions in nonsense-mediated mRNA decay (NMD), a surveillance
mechanism that degrades mRNAs with premature translation termination
codons. Palacios et al. (2004) showed that both Barentsz and EIF4A3 are
essential for NMD in human cells. Thus, Palacios et al. (2004) concluded
that they identified EIF4A3 and Barentsz as components of a conserved
protein complex that is essential for mRNA localization in flies and NMD
in mammals.
Oskar mRNA localization at the posterior pole of the Drosophila oocyte
is essential for germline and abdomen formation in the future embryo.
Y14/RBM8 and MAGOH, human homologs of nuclear shuttling proteins
required for oskar mRNA localization, are core components of the
exon-exon junction complex (EJC). The EJC is deposited on mRNAs in a
splicing-dependent manner, 20 to 24 nucleotides upstream of exon-exon
junctions, independent of the RNA sequence. This indicates a possible
role of splicing in oskar mRNA localization, challenging the established
notion that the oskar 3-prime untranslated region is sufficient for this
process. Oskar mRNA localization at the posterior pole of the Drosophila
oocyte is essential for germline and abdomen formation in the future
embryo. Hachet and Ephrussi (2004) demonstrated that splicing at the
first exon-exon junction of oskar RNA is essential for oskar mRNA
localization at the posterior pole. They revisited the issue of
sufficiency of the oskar 3-prime untranslated region for posterior
localization and showed that the localization of unrelated transcripts
bearing the oskar 3-prime untranslated region is mediated by endogenous
mRNA. Hachet and Ephrussi (2004) concluded that their results reveal an
important new function for splicing: regulation of messenger
ribonucleoprotein complex assembly and organization for mRNA cytoplasmic
localization.
*FIELD* RF
1. Hachet, O.; Ephrussi, A.: Splicing of oskar RNA in the nucleus
is coupled to its cytoplasmic localization. Nature 428: 959-963,
2004.
2. Palacios, I. M.; Gatfield, D.; St Johnston, D.; Izaurralde, E.
: An eIF4AIII-containing complex required for mRNA localization and
nonsense-mediated mRNA decay. Nature 427: 753-757, 2004.
3. Zhao, X.-F.; Colaizzo-Anas, T.; Nowak, N. J.; Shows, T. B.; Elliott,
R. W.; Aplan, P. D.: The mammalian homologue of mago nashi encodes
a serum-inducible protein. Genomics 47: 319-322, 1998.
*FIELD* CN
Ada Hamosh - updated: 4/27/2004
Ada Hamosh - updated: 3/22/2004
*FIELD* CD
Rebekah S. Rasooly: 5/6/1998
*FIELD* ED
alopez: 04/27/2004
terry: 4/27/2004
alopez: 3/23/2004
terry: 3/22/2004
psherman: 5/7/1998
psherman: 5/6/1998
*RECORD*
*FIELD* NO
602603
*FIELD* TI
*602603 MAGO NASHI, DROSOPHILA, HOMOLOG OF; MAGOH
*FIELD* TX
CLONING
Drosophila that have mutations in their mago nashi (grandchildless) gene
read morehave a 'grandchildless' phenotype, a result of producing progeny with
defects in germplasm assembly and germline development. Zhao et al.
(1998) cloned a cDNA that appears to encode a human homolog of mago
nashi (MAGOH) from a human fetal brain cDNA library. The predicted
146-amino acid MAGOH protein is 90% identical to Drosophila mago nashi.
Zhao et al. (1998) also identified a cDNA encoding the mouse MAGOH
homolog. The predicted mouse and human MAGOH proteins are 100%
identical. Northern blot analysis revealed that MAGOH is expressed
ubiquitously in adult human tissues. The expression of mouse Magoh in
quiescent fibroblasts was induced by serum stimulation.
MAPPING
Using radiation hybrid panels, Zhao et al. (1998) mapped the human MAGOH
gene to 1p34-p33 and the mouse Magoh gene near position 51 on chromosome
4.
GENE FUNCTION
Palacios et al. (2004) demonstrated that the translation initiation
factor EIF4A3 (608546) interacts with Barentsz (MLN51; 606504) and is a
component of the oskar messenger RNP localization complex. Moreover,
EIF4A3 interacts with Mago-Y14 and thus provides the molecular link
between Barentsz and the heterodimer. The mammalian Mago (also known as
Magoh)-Y14 (605313) heterodimer is a component of the exon junction
complex. The exon junction complex is deposited on spliced mRNAs and
functions in nonsense-mediated mRNA decay (NMD), a surveillance
mechanism that degrades mRNAs with premature translation termination
codons. Palacios et al. (2004) showed that both Barentsz and EIF4A3 are
essential for NMD in human cells. Thus, Palacios et al. (2004) concluded
that they identified EIF4A3 and Barentsz as components of a conserved
protein complex that is essential for mRNA localization in flies and NMD
in mammals.
Oskar mRNA localization at the posterior pole of the Drosophila oocyte
is essential for germline and abdomen formation in the future embryo.
Y14/RBM8 and MAGOH, human homologs of nuclear shuttling proteins
required for oskar mRNA localization, are core components of the
exon-exon junction complex (EJC). The EJC is deposited on mRNAs in a
splicing-dependent manner, 20 to 24 nucleotides upstream of exon-exon
junctions, independent of the RNA sequence. This indicates a possible
role of splicing in oskar mRNA localization, challenging the established
notion that the oskar 3-prime untranslated region is sufficient for this
process. Oskar mRNA localization at the posterior pole of the Drosophila
oocyte is essential for germline and abdomen formation in the future
embryo. Hachet and Ephrussi (2004) demonstrated that splicing at the
first exon-exon junction of oskar RNA is essential for oskar mRNA
localization at the posterior pole. They revisited the issue of
sufficiency of the oskar 3-prime untranslated region for posterior
localization and showed that the localization of unrelated transcripts
bearing the oskar 3-prime untranslated region is mediated by endogenous
mRNA. Hachet and Ephrussi (2004) concluded that their results reveal an
important new function for splicing: regulation of messenger
ribonucleoprotein complex assembly and organization for mRNA cytoplasmic
localization.
*FIELD* RF
1. Hachet, O.; Ephrussi, A.: Splicing of oskar RNA in the nucleus
is coupled to its cytoplasmic localization. Nature 428: 959-963,
2004.
2. Palacios, I. M.; Gatfield, D.; St Johnston, D.; Izaurralde, E.
: An eIF4AIII-containing complex required for mRNA localization and
nonsense-mediated mRNA decay. Nature 427: 753-757, 2004.
3. Zhao, X.-F.; Colaizzo-Anas, T.; Nowak, N. J.; Shows, T. B.; Elliott,
R. W.; Aplan, P. D.: The mammalian homologue of mago nashi encodes
a serum-inducible protein. Genomics 47: 319-322, 1998.
*FIELD* CN
Ada Hamosh - updated: 4/27/2004
Ada Hamosh - updated: 3/22/2004
*FIELD* CD
Rebekah S. Rasooly: 5/6/1998
*FIELD* ED
alopez: 04/27/2004
terry: 4/27/2004
alopez: 3/23/2004
terry: 3/22/2004
psherman: 5/7/1998
psherman: 5/6/1998