Full text data of MOS
MOS
[Confidence: low (only semi-automatic identification from reviews)]
Proto-oncogene serine/threonine-protein kinase mos; 2.7.11.1 (Oocyte maturation factor mos; Proto-oncogene c-Mos)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Proto-oncogene serine/threonine-protein kinase mos; 2.7.11.1 (Oocyte maturation factor mos; Proto-oncogene c-Mos)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P00540
ID MOS_HUMAN Reviewed; 346 AA.
AC P00540; Q3KPG9; Q3KPH0;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 21-JUL-1986, sequence version 1.
DT 22-JAN-2014, entry version 135.
DE RecName: Full=Proto-oncogene serine/threonine-protein kinase mos;
DE EC=2.7.11.1;
DE AltName: Full=Oocyte maturation factor mos;
DE AltName: Full=Proto-oncogene c-Mos;
GN Name=MOS;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC TISSUE=Placenta;
RX PubMed=6287464; DOI=10.1073/pnas.79.13.4078;
RA Watson R., Oskarsson M., Vande Woude G.F.;
RT "Human DNA sequence homologous to the transforming gene (mos) of
RT Moloney murine sarcoma virus.";
RL Proc. Natl. Acad. Sci. U.S.A. 79:4078-4082(1982).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT SER-105.
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [3]
RP VARIANTS [LARGE SCALE ANALYSIS] LEU-96; SER-105; THR-123 AND PRO-300.
RX PubMed=17344846; DOI=10.1038/nature05610;
RA Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C.,
RA Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S.,
RA O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S.,
RA Bhamra G., Buck G., Choudhury B., Clements J., Cole J., Dicks E.,
RA Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J.,
RA Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K.,
RA Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T.,
RA West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P.,
RA Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E.,
RA DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E.,
RA Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T.,
RA Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.;
RT "Patterns of somatic mutation in human cancer genomes.";
RL Nature 446:153-158(2007).
CC -!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein.
CC -!- TISSUE SPECIFICITY: Expressed specifically in testis during
CC spermatogenesis.
CC -!- SIMILARITY: Belongs to the protein kinase superfamily. Ser/Thr
CC protein kinase family.
CC -!- SIMILARITY: Contains 1 protein kinase domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J00119; AAA52029.1; -; Genomic_DNA.
DR EMBL; BC069569; AAH69569.1; -; mRNA.
DR EMBL; BC069590; AAH69590.1; -; mRNA.
DR EMBL; BC106737; AAI06738.1; -; mRNA.
DR EMBL; BC106738; AAI06739.1; -; mRNA.
DR PIR; A00649; TVHUMS.
DR RefSeq; NP_005363.1; NM_005372.1.
DR UniGene; Hs.533432; -.
DR ProteinModelPortal; P00540; -.
DR SMR; P00540; 49-330.
DR IntAct; P00540; 3.
DR MINT; MINT-96687; -.
DR STRING; 9606.ENSP00000310722; -.
DR ChEMBL; CHEMBL1075184; -.
DR PhosphoSite; P00540; -.
DR DMDM; 125497; -.
DR PaxDb; P00540; -.
DR PRIDE; P00540; -.
DR DNASU; 4342; -.
DR Ensembl; ENST00000311923; ENSP00000310722; ENSG00000172680.
DR GeneID; 4342; -.
DR KEGG; hsa:4342; -.
DR UCSC; uc011leb.2; human.
DR CTD; 4342; -.
DR GeneCards; GC08M057025; -.
DR HGNC; HGNC:7199; MOS.
DR HPA; HPA040424; -.
DR MIM; 190060; gene.
DR neXtProt; NX_P00540; -.
DR PharmGKB; PA30907; -.
DR eggNOG; COG0515; -.
DR HOGENOM; HOG000290647; -.
DR HOVERGEN; HBG052499; -.
DR InParanoid; P00540; -.
DR KO; K04367; -.
DR OMA; VDSRPCS; -.
DR OrthoDB; EOG78M02G; -.
DR PhylomeDB; P00540; -.
DR BRENDA; 2.7.10.2; 2681.
DR SignaLink; P00540; -.
DR GeneWiki; MOS_(gene); -.
DR GenomeRNAi; 4342; -.
DR NextBio; 17094; -.
DR PRO; PR:P00540; -.
DR Bgee; P00540; -.
DR CleanEx; HS_MOS; -.
DR Genevestigator; P00540; -.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0004674; F:protein serine/threonine kinase activity; IEA:UniProtKB-KW.
DR GO; GO:0040020; P:regulation of meiosis; IEA:Ensembl.
DR InterPro; IPR011009; Kinase-like_dom.
DR InterPro; IPR000719; Prot_kinase_dom.
DR InterPro; IPR017441; Protein_kinase_ATP_BS.
DR InterPro; IPR008271; Ser/Thr_kinase_AS.
DR Pfam; PF00069; Pkinase; 1.
DR SUPFAM; SSF56112; SSF56112; 1.
DR PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
DR PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
DR PROSITE; PS00108; PROTEIN_KINASE_ST; 1.
PE 2: Evidence at transcript level;
KW ATP-binding; Complete proteome; Kinase; Nucleotide-binding;
KW Polymorphism; Proto-oncogene; Reference proteome;
KW Serine/threonine-protein kinase; Transferase.
FT CHAIN 1 346 Proto-oncogene serine/threonine-protein
FT kinase mos.
FT /FTId=PRO_0000086344.
FT DOMAIN 60 341 Protein kinase.
FT NP_BIND 66 74 ATP (By similarity).
FT ACT_SITE 201 201 Proton acceptor (By similarity).
FT BINDING 87 87 ATP (By similarity).
FT VARIANT 96 96 R -> L (in dbSNP:rs34532635).
FT /FTId=VAR_040813.
FT VARIANT 105 105 A -> S (in dbSNP:rs35392772).
FT /FTId=VAR_040814.
FT VARIANT 123 123 A -> T (in a lung adenocarcinoma sample;
FT somatic mutation).
FT /FTId=VAR_040815.
FT VARIANT 300 300 S -> P (in dbSNP:rs56300224).
FT /FTId=VAR_040816.
SQ SEQUENCE 346 AA; 37820 MW; 68B1AB906ED4B308 CRC64;
MPSPLALRPY LRSEFSPSVD ARPCSSPSEL PAKLLLGATL PRAPRLPRRL AWCSIDWEQV
CLLQRLGAGG FGSVYKATYR GVPVAIKQVN KCTKNRLASR RSFWAELNVA RLRHDNIVRV
VAASTRTPAG SNSLGTIIME FGGNVTLHQV IYGAAGHPEG DAGEPHCRTG GQLSLGKCLK
YSLDVVNGLL FLHSQSIVHL DLKPANILIS EQDVCKISDF GCSEKLEDLL CFQTPSYPLG
GTYTHRAPEL LKGEGVTPKA DIYSFAITLW QMTTKQAPYS GERQHILYAV VAYDLRPSLS
AAVFEDSLPG QRLGDVIQRC WRPSAAQRPS ARLLLVDLTS LKAELG
//
ID MOS_HUMAN Reviewed; 346 AA.
AC P00540; Q3KPG9; Q3KPH0;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 21-JUL-1986, sequence version 1.
DT 22-JAN-2014, entry version 135.
DE RecName: Full=Proto-oncogene serine/threonine-protein kinase mos;
DE EC=2.7.11.1;
DE AltName: Full=Oocyte maturation factor mos;
DE AltName: Full=Proto-oncogene c-Mos;
GN Name=MOS;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC TISSUE=Placenta;
RX PubMed=6287464; DOI=10.1073/pnas.79.13.4078;
RA Watson R., Oskarsson M., Vande Woude G.F.;
RT "Human DNA sequence homologous to the transforming gene (mos) of
RT Moloney murine sarcoma virus.";
RL Proc. Natl. Acad. Sci. U.S.A. 79:4078-4082(1982).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT SER-105.
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [3]
RP VARIANTS [LARGE SCALE ANALYSIS] LEU-96; SER-105; THR-123 AND PRO-300.
RX PubMed=17344846; DOI=10.1038/nature05610;
RA Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C.,
RA Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S.,
RA O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S.,
RA Bhamra G., Buck G., Choudhury B., Clements J., Cole J., Dicks E.,
RA Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J.,
RA Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K.,
RA Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T.,
RA West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P.,
RA Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E.,
RA DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E.,
RA Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T.,
RA Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.;
RT "Patterns of somatic mutation in human cancer genomes.";
RL Nature 446:153-158(2007).
CC -!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein.
CC -!- TISSUE SPECIFICITY: Expressed specifically in testis during
CC spermatogenesis.
CC -!- SIMILARITY: Belongs to the protein kinase superfamily. Ser/Thr
CC protein kinase family.
CC -!- SIMILARITY: Contains 1 protein kinase domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J00119; AAA52029.1; -; Genomic_DNA.
DR EMBL; BC069569; AAH69569.1; -; mRNA.
DR EMBL; BC069590; AAH69590.1; -; mRNA.
DR EMBL; BC106737; AAI06738.1; -; mRNA.
DR EMBL; BC106738; AAI06739.1; -; mRNA.
DR PIR; A00649; TVHUMS.
DR RefSeq; NP_005363.1; NM_005372.1.
DR UniGene; Hs.533432; -.
DR ProteinModelPortal; P00540; -.
DR SMR; P00540; 49-330.
DR IntAct; P00540; 3.
DR MINT; MINT-96687; -.
DR STRING; 9606.ENSP00000310722; -.
DR ChEMBL; CHEMBL1075184; -.
DR PhosphoSite; P00540; -.
DR DMDM; 125497; -.
DR PaxDb; P00540; -.
DR PRIDE; P00540; -.
DR DNASU; 4342; -.
DR Ensembl; ENST00000311923; ENSP00000310722; ENSG00000172680.
DR GeneID; 4342; -.
DR KEGG; hsa:4342; -.
DR UCSC; uc011leb.2; human.
DR CTD; 4342; -.
DR GeneCards; GC08M057025; -.
DR HGNC; HGNC:7199; MOS.
DR HPA; HPA040424; -.
DR MIM; 190060; gene.
DR neXtProt; NX_P00540; -.
DR PharmGKB; PA30907; -.
DR eggNOG; COG0515; -.
DR HOGENOM; HOG000290647; -.
DR HOVERGEN; HBG052499; -.
DR InParanoid; P00540; -.
DR KO; K04367; -.
DR OMA; VDSRPCS; -.
DR OrthoDB; EOG78M02G; -.
DR PhylomeDB; P00540; -.
DR BRENDA; 2.7.10.2; 2681.
DR SignaLink; P00540; -.
DR GeneWiki; MOS_(gene); -.
DR GenomeRNAi; 4342; -.
DR NextBio; 17094; -.
DR PRO; PR:P00540; -.
DR Bgee; P00540; -.
DR CleanEx; HS_MOS; -.
DR Genevestigator; P00540; -.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0004674; F:protein serine/threonine kinase activity; IEA:UniProtKB-KW.
DR GO; GO:0040020; P:regulation of meiosis; IEA:Ensembl.
DR InterPro; IPR011009; Kinase-like_dom.
DR InterPro; IPR000719; Prot_kinase_dom.
DR InterPro; IPR017441; Protein_kinase_ATP_BS.
DR InterPro; IPR008271; Ser/Thr_kinase_AS.
DR Pfam; PF00069; Pkinase; 1.
DR SUPFAM; SSF56112; SSF56112; 1.
DR PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
DR PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
DR PROSITE; PS00108; PROTEIN_KINASE_ST; 1.
PE 2: Evidence at transcript level;
KW ATP-binding; Complete proteome; Kinase; Nucleotide-binding;
KW Polymorphism; Proto-oncogene; Reference proteome;
KW Serine/threonine-protein kinase; Transferase.
FT CHAIN 1 346 Proto-oncogene serine/threonine-protein
FT kinase mos.
FT /FTId=PRO_0000086344.
FT DOMAIN 60 341 Protein kinase.
FT NP_BIND 66 74 ATP (By similarity).
FT ACT_SITE 201 201 Proton acceptor (By similarity).
FT BINDING 87 87 ATP (By similarity).
FT VARIANT 96 96 R -> L (in dbSNP:rs34532635).
FT /FTId=VAR_040813.
FT VARIANT 105 105 A -> S (in dbSNP:rs35392772).
FT /FTId=VAR_040814.
FT VARIANT 123 123 A -> T (in a lung adenocarcinoma sample;
FT somatic mutation).
FT /FTId=VAR_040815.
FT VARIANT 300 300 S -> P (in dbSNP:rs56300224).
FT /FTId=VAR_040816.
SQ SEQUENCE 346 AA; 37820 MW; 68B1AB906ED4B308 CRC64;
MPSPLALRPY LRSEFSPSVD ARPCSSPSEL PAKLLLGATL PRAPRLPRRL AWCSIDWEQV
CLLQRLGAGG FGSVYKATYR GVPVAIKQVN KCTKNRLASR RSFWAELNVA RLRHDNIVRV
VAASTRTPAG SNSLGTIIME FGGNVTLHQV IYGAAGHPEG DAGEPHCRTG GQLSLGKCLK
YSLDVVNGLL FLHSQSIVHL DLKPANILIS EQDVCKISDF GCSEKLEDLL CFQTPSYPLG
GTYTHRAPEL LKGEGVTPKA DIYSFAITLW QMTTKQAPYS GERQHILYAV VAYDLRPSLS
AAVFEDSLPG QRLGDVIQRC WRPSAAQRPS ARLLLVDLTS LKAELG
//
MIM
190060
*RECORD*
*FIELD* NO
190060
*FIELD* TI
*190060 V-MOS MOLONEY MURINE SARCOMA VIRAL ONCOGENE HOMOLOG; MOS
;;MOLONEY MURINE SARCOMA VIRUS; MSV;;
read moreONCOGENE MOS
*FIELD* TX
DESCRIPTION
MOS is a serine/threonine kinase that activates the MAP kinase cascade
through direct phosphorylation of the MAP kinase activator MEK (MAP2K1;
176872) (Prasad et al., 2008).
CLONING
The Moloney murine sarcoma virus (MSV) is a representative of a class of
replication-defective retroviruses that transform fibroblasts in culture
and induce sarcomas in vivo. It arose by recombination between the
Moloney murine leukemia virus and a sequence derived from mouse cells.
The mouse cell-derived segment of MSV, termed v-mos, is required for
induction and maintenance of viral transformation, and the normal mouse
analog of v-mos has been cloned (Prakash et al., 1982).
By screening a placenta DNA library for homologs of mouse Mos, Watson et
al. (1982) cloned human MOS. The deduced 346-amino acid human protein
shares significant homology with the mouse protein, with regions of
lowest homology near the N and C termini and in a central 11-amino acid
stretch.
Using an S1 nuclease assay, Propst and Vande Woude (1985) detected Mos
expression predominantly in mouse testis, ovary, and embryos. Northern
blot analysis revealed a 1.7-kb transcript in testis and a 1.4-kb
transcript in ovary. At least 2 major transcripts of 2.3 and 1.3 kb were
detected in embryo RNA.
Using qualitative and semiquantitative RT-PCR of human and cynomolgus
monkey oocytes, granulosa cells, and ovarian tissue, Heikinheimo et al.
(1995) found that MOS was expressed in an oocyte-specific manner. No MOS
expression was detected in granulosa cells. MOS mRNA was detected in
human pre-embryos, but very little was detected in human embryos beyond
the 6-cell stage, suggesting that the mRNA was of maternal origin and
was degraded.
GENE FUNCTION
Lenormand et al. (1997) stated that overexpression of rat Mos in the
C2C12 mouse myoblast cell line activated muscle differentiation, whereas
inhibition of endogenous Mos via antisense RNA caused reversible
blockage of myogenesis. They found that constitutive Mos expression in
C2C12 myoblasts activated Myod (MYOD1; 159970) expression as well as
myogenesis. Transient transfection assays showed that Mos bound
unphosphorylated Myod and enhanced the ability of Myod to activate
target muscle enhancers. Phosphorylation of recombinant Myod by Mos
inhibited the DNA-binding activity of Myod homodimers and promoted the
formation and DNA-binding activity of Myod-E12 (TCF3; 147141)
heterodimers. Lenormand et al. (1997) concluded that interaction with
and phosphorylation of MYOD by MOS enhances muscle differentiation.
Full-grown Xenopus oocytes arrest at the G2/M border of meiosis I.
Progesterone breaks this arrest, leading to resumption of the meiotic
cell cycles and maturation of the oocyte into a fertilizable egg. In
these oocytes, progesterone interacts with an unidentified
surface-associated receptor, which induces a nontranscriptional
signaling pathway that stimulates the translation of dormant c-mos mRNA.
Translational recruitment of c-mos and several other mRNAs is regulated
by cytoplasmic polyadenylation, a process that requires two 3-prime
untranslated regions, the cytoplasmic polyadenylation element (CPE) and
the polyadenylation hexanucleotide AAUAAA. Mendez et al. (2000)
demonstrated that early site-specific phosphorylation of CPEB (CPEB1;
607342), which was catalyzed by Eg2 (see 603495), was essential for
polyadenylation of c-mos mRNA, subsequent translation of c-mos, and
oocyte maturation.
Prasad et al. (2008) noted that the temporal requirements for MOS
function differ between mammalian oocytes and Xenopus oocytes. MOS is
required for meiotic metaphase II arrest in both mammalian and Xenopus
oocytes; however, Mos is also required earlier during maturation of
Xenopus oocytes, but not mammalian oocytes, to mediate the meiosis I and
meiosis II transition. Prasad et al. (2008) found that, similar to
Xenopus Mos, a CPE in the 3-prime UTR of the human MOS transcript was
bound by CPEB1 and directed maturation-dependent cytoplasmic
polyadenylation in human oocytes. The 3-prime UTR of Xenopus Mos also
contains a polyadenylation response element (PRE) that is bound by
Musashi (see MSI1; 603328) and directs early polyadenylation during
progesterone-stimulated oocyte maturation. Prasad et al. (2008) found
that this PRE was absent in the 3-prime UTRs of rat, mouse, monkey, and
human MOS. They concluded that species-specific differences in 3-prime
UTR regulatory element composition contribute to the differential
temporal activation of MOS mRNA translation during Xenopus and mammalian
oocyte maturation.
MAPPING
Because of the evolutionary conservation of viral oncogenes among
vertebrate species, Prakash et al. (1982) used the cloned mouse Mos
analog to map the human MOS gene to chromosome 8.
By in situ hybridization, Neel et al. (1982) assigned the MOS gene to
chromosome 8q22. They used the method of Kirsch et al. (1982).
Rowley (1973, 1983) located the MOS oncogene at the chromosome 8
breakpoint of the 8;21 translocation associated with acute myeloblastic
leukemia.
Caubet et al. (1985) studied the regional assignment of MOS by in situ
hybridization and by hybridization to flow-sorted chromosomes from a
cell line with a translocation t(6;8)(q27;q21). Both approaches yielded
results indicating 8q11 as the site of MOS, not 8q22 as previously
reported. By in situ hybridization, Testa et al. (1988) likewise
assigned the MOS gene to chromosome 8q11-q12.
By in situ hybridization to metaphase chromosomes and by standard
genetic backcrosses, Propst et al. (1989) demonstrated that Mos maps
near the centromere of mouse chromosome 4. It had previously been
assigned to mouse chromosome 4 by use of panels of mouse/hamster somatic
cell hybrids (Swan et al., 1982). Dandoy et al. (1989) showed by linkage
analysis that the murine Mos gene is located in the region of chromosome
4 compatible with the physical mapping (Threadgill and Womack, 1988) by
in situ hybridization.
CYTOGENETICS
A nonrandom chromosome translocation, t(8;21)(q22;q22), which results in
an 8q- and 21q+ chromosome, is seen almost exclusively in the M2 subtype
of acute myeloblastic leukemia (AML with maturation). Band 21q22 is
critical to the Down syndrome (190685) phenotype, which is associated
with an increased leukemia risk. In studies of a case of AML-M2, Drabkin
et al. (1985) isolated the 21q+ chromosome in a somatic cell hybrid and
showed that the MOS oncogene had not been translocated to chromosome 21.
They also could find no rearrangement in a 12.4-kb region surrounding
the MOS gene.
ANIMAL MODEL
Hashimoto et al. (1994) found that Mos -/- mice appeared normal and grew
at the same rate as wildtype mice. Reproduction was normal in male Mos
-/- mice, but Mos -/- females exhibited very low fertility and developed
ovarian teratomas at a high frequency. In Mos -/- ovaries, many oocytes
were activated and showed nuclear formation and cell division,
indicating that Mos -/- oocytes were activated parthenogenetically
before or just after ovulation. In vitro, most Mos -/- oocytes lost the
capacity for penetration by sperm. Hashimoto et al. (1994) concluded
that, in contrast to the role of Mos in several steps of Xenopus oocyte
maturation, mouse Mos acts almost exclusively in the second meiotic
metaphase arrest and is an essential component of the cytostatic factor.
*FIELD* SA
Diaz et al. (1985)
*FIELD* RF
1. Caubet, J.-F.; Mathieu-Mahul, D.; Bernheim, A.; Larsen, C.-J.;
Berger, R.: Human proto-oncogene c-mos maps to 8q11. EMBO J. 4:
2245-2248, 1985.
2. Dandoy, F.; De Maeyer-Guignard, J.; De Maeyer, E.: Linkage analysis
of the murine mos proto-oncogene on chromosome 4. Genomics 4: 546-551,
1989.
3. Diaz, M. O.; Le Beau, M. M.; Rowley, J. D.; Drabkin, H. A.; Patterson,
D.: The role of the c-mos gene in the 8;21 translocation in human
acute myeloblastic leukemia. Science 229: 767-769, 1985.
4. Drabkin, H. A.; Diaz, M.; Bradley, C. M.; Le Beau, M. M.; Rowley,
J. D.; Patterson, D.: Isolation and analysis of the 21q+ chromosome
in the acute myelogenous leukemia 8;21 translocation: evidence that
c-mos is not translocated. Proc. Nat. Acad. Sci. 82: 464-468, 1985.
5. Hashimoto, N.; Watanabe, N.; Furuta, Y.; Tamemoto, H.; Sagata,
N.; Yokoyama, M.; Okazaki, K.; Nagayoshi, M.; Takeda, N.; Ikawa, Y.;
Aizawa, S.: Parthenogenetic activation of oocytes in c-mos-deficient
mice. Nature 370: 68-71, 1994. Note: Erratum: Nature 370: 391 only,
1994.
6. Heikinheimo, O.; Lanzendorf, S. E.; Baka, S. G.; Gibbons, W. E.
: Cell cycle genes c-mos and cyclin-B1 are expressed in a specific
pattern in human oocytes and preimplantation embryos. Molec. Hum.
Reprod. 10: 699-707, 1995.
7. Kirsch, I. R.; Morton, C.; Nakahara, K.; Leder, P.: Human immunoglobulin
heavy chain genes map to a region of translocations in malignant B
lymphocytes. Science 216: 301-303, 1982.
8. Lenormand, J. L.; Benayoun, B.; Guillier, M.; Vandromme, M.; Leibovitch,
M. P.; Leibovitch, S. A.: Mos activates myogenic differentiation
by promoting heterodimerization of MyoD and E12 proteins. Molec.
Cell. Biol. 17: 584-593, 1997.
9. Mendez, R.; Hake, L. E.; Andresson, T.; Littlepage, L. E.; Ruderman,
J. V.; Richter, J. D.: Phosphorylation of CPE binding factor by Eg2
regulates translation of c-mos mRNA. Nature 404: 302-307, 2000.
10. Neel, B. G.; Jhanwar, S. C.; Chaganti, R. S. K.; Hayward, W. S.
: Two human c-onc genes are located on the long arm of chromosome
8. Proc. Nat. Acad. Sci. 79: 7842-7846, 1982.
11. Prakash, K.; McBride, O. W.; Swan, D. C.; Devare, S. G.; Tronick,
S. R.; Aaronson, S. A.: Molecular cloning and chromosomal mapping
of a human locus related to the transforming gene of Moloney murine
sarcoma virus. Proc. Nat. Acad. Sci. 79: 5210-5214, 1982.
12. Prasad, C. K.; Mahadevan, M.; MacNicol, M. C.; MacNicol, A. M.
: Mos 3-prime UTR regulatory differences underlie species-specific
temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational
recruitment during oocyte maturation. Molec. Reprod. Dev. 75: 1258-1268,
2008.
13. Propst, F.; Vande Woude, G. F.: Expression of c-mos proto-oncogene
transcripts in mouse tissues. Nature 315: 516-518, 1985.
14. Propst, F.; Vande Woude, G. F.; Jenkins, N. A.; Copeland, N. G.;
Lee, B. K.; Hunt, P. A.; Eicher, E. M.: The MOS proto-oncogene maps
near the centromere on mouse chromosome 4. Genomics 5: 118-123,
1989.
15. Rowley, J. D.: Identification of a translocation with quinacrine
fluorescence in a patient with acute leukemia. Ann. Genet. 16: 109-112,
1973.
16. Rowley, J. D.: Human oncogene location and chromosome aberrations. Nature 301:
290-291, 1983.
17. Swan, D.; Oskarsson, M.; Keithley, D.; Ruddle, F. H.; D'Eustachio,
P.; Vande Woude, G. F.: Chromosomal localization of the Moloney sarcoma
virus mouse cellular (c-mos) sequence. J. Virol. 44: 752-754, 1982.
18. Testa, J. R.; Parsa, N. Z.; Le Beau, M. M.; Vande Woude, G. F.
: Localization of the proto-oncogene MOS to 8q11-q12 by in situ chromosomal
hybridization. Genomics 3: 44-47, 1988.
19. Threadgill, D. W.; Womack, J. E.: Regional localization of mouse
Abl and Mos proto-oncogenes by in situ hybridization. Genomics 3:
82-86, 1988.
20. Watson, R.; Oskarsson, M.; Vande Woude, G. F.: Human DNA sequence
homologous to the transforming gene (mos) of Moloney murine sarcoma
virus. Proc. Nat. Acad. Sci. 79: 4078-4082, 1982.
*FIELD* CN
Patricia A. Hartz - updated: 7/14/2009
Patricia A. Hartz - updated: 6/15/2009
Ada Hamosh - updated: 3/28/2000
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
mgross: 07/14/2009
terry: 7/14/2009
mgross: 7/10/2009
terry: 6/15/2009
carol: 3/28/2000
mimadm: 6/7/1995
carol: 11/22/1993
supermim: 3/16/1992
supermim: 5/1/1990
supermim: 4/18/1990
supermim: 3/20/1990
*RECORD*
*FIELD* NO
190060
*FIELD* TI
*190060 V-MOS MOLONEY MURINE SARCOMA VIRAL ONCOGENE HOMOLOG; MOS
;;MOLONEY MURINE SARCOMA VIRUS; MSV;;
read moreONCOGENE MOS
*FIELD* TX
DESCRIPTION
MOS is a serine/threonine kinase that activates the MAP kinase cascade
through direct phosphorylation of the MAP kinase activator MEK (MAP2K1;
176872) (Prasad et al., 2008).
CLONING
The Moloney murine sarcoma virus (MSV) is a representative of a class of
replication-defective retroviruses that transform fibroblasts in culture
and induce sarcomas in vivo. It arose by recombination between the
Moloney murine leukemia virus and a sequence derived from mouse cells.
The mouse cell-derived segment of MSV, termed v-mos, is required for
induction and maintenance of viral transformation, and the normal mouse
analog of v-mos has been cloned (Prakash et al., 1982).
By screening a placenta DNA library for homologs of mouse Mos, Watson et
al. (1982) cloned human MOS. The deduced 346-amino acid human protein
shares significant homology with the mouse protein, with regions of
lowest homology near the N and C termini and in a central 11-amino acid
stretch.
Using an S1 nuclease assay, Propst and Vande Woude (1985) detected Mos
expression predominantly in mouse testis, ovary, and embryos. Northern
blot analysis revealed a 1.7-kb transcript in testis and a 1.4-kb
transcript in ovary. At least 2 major transcripts of 2.3 and 1.3 kb were
detected in embryo RNA.
Using qualitative and semiquantitative RT-PCR of human and cynomolgus
monkey oocytes, granulosa cells, and ovarian tissue, Heikinheimo et al.
(1995) found that MOS was expressed in an oocyte-specific manner. No MOS
expression was detected in granulosa cells. MOS mRNA was detected in
human pre-embryos, but very little was detected in human embryos beyond
the 6-cell stage, suggesting that the mRNA was of maternal origin and
was degraded.
GENE FUNCTION
Lenormand et al. (1997) stated that overexpression of rat Mos in the
C2C12 mouse myoblast cell line activated muscle differentiation, whereas
inhibition of endogenous Mos via antisense RNA caused reversible
blockage of myogenesis. They found that constitutive Mos expression in
C2C12 myoblasts activated Myod (MYOD1; 159970) expression as well as
myogenesis. Transient transfection assays showed that Mos bound
unphosphorylated Myod and enhanced the ability of Myod to activate
target muscle enhancers. Phosphorylation of recombinant Myod by Mos
inhibited the DNA-binding activity of Myod homodimers and promoted the
formation and DNA-binding activity of Myod-E12 (TCF3; 147141)
heterodimers. Lenormand et al. (1997) concluded that interaction with
and phosphorylation of MYOD by MOS enhances muscle differentiation.
Full-grown Xenopus oocytes arrest at the G2/M border of meiosis I.
Progesterone breaks this arrest, leading to resumption of the meiotic
cell cycles and maturation of the oocyte into a fertilizable egg. In
these oocytes, progesterone interacts with an unidentified
surface-associated receptor, which induces a nontranscriptional
signaling pathway that stimulates the translation of dormant c-mos mRNA.
Translational recruitment of c-mos and several other mRNAs is regulated
by cytoplasmic polyadenylation, a process that requires two 3-prime
untranslated regions, the cytoplasmic polyadenylation element (CPE) and
the polyadenylation hexanucleotide AAUAAA. Mendez et al. (2000)
demonstrated that early site-specific phosphorylation of CPEB (CPEB1;
607342), which was catalyzed by Eg2 (see 603495), was essential for
polyadenylation of c-mos mRNA, subsequent translation of c-mos, and
oocyte maturation.
Prasad et al. (2008) noted that the temporal requirements for MOS
function differ between mammalian oocytes and Xenopus oocytes. MOS is
required for meiotic metaphase II arrest in both mammalian and Xenopus
oocytes; however, Mos is also required earlier during maturation of
Xenopus oocytes, but not mammalian oocytes, to mediate the meiosis I and
meiosis II transition. Prasad et al. (2008) found that, similar to
Xenopus Mos, a CPE in the 3-prime UTR of the human MOS transcript was
bound by CPEB1 and directed maturation-dependent cytoplasmic
polyadenylation in human oocytes. The 3-prime UTR of Xenopus Mos also
contains a polyadenylation response element (PRE) that is bound by
Musashi (see MSI1; 603328) and directs early polyadenylation during
progesterone-stimulated oocyte maturation. Prasad et al. (2008) found
that this PRE was absent in the 3-prime UTRs of rat, mouse, monkey, and
human MOS. They concluded that species-specific differences in 3-prime
UTR regulatory element composition contribute to the differential
temporal activation of MOS mRNA translation during Xenopus and mammalian
oocyte maturation.
MAPPING
Because of the evolutionary conservation of viral oncogenes among
vertebrate species, Prakash et al. (1982) used the cloned mouse Mos
analog to map the human MOS gene to chromosome 8.
By in situ hybridization, Neel et al. (1982) assigned the MOS gene to
chromosome 8q22. They used the method of Kirsch et al. (1982).
Rowley (1973, 1983) located the MOS oncogene at the chromosome 8
breakpoint of the 8;21 translocation associated with acute myeloblastic
leukemia.
Caubet et al. (1985) studied the regional assignment of MOS by in situ
hybridization and by hybridization to flow-sorted chromosomes from a
cell line with a translocation t(6;8)(q27;q21). Both approaches yielded
results indicating 8q11 as the site of MOS, not 8q22 as previously
reported. By in situ hybridization, Testa et al. (1988) likewise
assigned the MOS gene to chromosome 8q11-q12.
By in situ hybridization to metaphase chromosomes and by standard
genetic backcrosses, Propst et al. (1989) demonstrated that Mos maps
near the centromere of mouse chromosome 4. It had previously been
assigned to mouse chromosome 4 by use of panels of mouse/hamster somatic
cell hybrids (Swan et al., 1982). Dandoy et al. (1989) showed by linkage
analysis that the murine Mos gene is located in the region of chromosome
4 compatible with the physical mapping (Threadgill and Womack, 1988) by
in situ hybridization.
CYTOGENETICS
A nonrandom chromosome translocation, t(8;21)(q22;q22), which results in
an 8q- and 21q+ chromosome, is seen almost exclusively in the M2 subtype
of acute myeloblastic leukemia (AML with maturation). Band 21q22 is
critical to the Down syndrome (190685) phenotype, which is associated
with an increased leukemia risk. In studies of a case of AML-M2, Drabkin
et al. (1985) isolated the 21q+ chromosome in a somatic cell hybrid and
showed that the MOS oncogene had not been translocated to chromosome 21.
They also could find no rearrangement in a 12.4-kb region surrounding
the MOS gene.
ANIMAL MODEL
Hashimoto et al. (1994) found that Mos -/- mice appeared normal and grew
at the same rate as wildtype mice. Reproduction was normal in male Mos
-/- mice, but Mos -/- females exhibited very low fertility and developed
ovarian teratomas at a high frequency. In Mos -/- ovaries, many oocytes
were activated and showed nuclear formation and cell division,
indicating that Mos -/- oocytes were activated parthenogenetically
before or just after ovulation. In vitro, most Mos -/- oocytes lost the
capacity for penetration by sperm. Hashimoto et al. (1994) concluded
that, in contrast to the role of Mos in several steps of Xenopus oocyte
maturation, mouse Mos acts almost exclusively in the second meiotic
metaphase arrest and is an essential component of the cytostatic factor.
*FIELD* SA
Diaz et al. (1985)
*FIELD* RF
1. Caubet, J.-F.; Mathieu-Mahul, D.; Bernheim, A.; Larsen, C.-J.;
Berger, R.: Human proto-oncogene c-mos maps to 8q11. EMBO J. 4:
2245-2248, 1985.
2. Dandoy, F.; De Maeyer-Guignard, J.; De Maeyer, E.: Linkage analysis
of the murine mos proto-oncogene on chromosome 4. Genomics 4: 546-551,
1989.
3. Diaz, M. O.; Le Beau, M. M.; Rowley, J. D.; Drabkin, H. A.; Patterson,
D.: The role of the c-mos gene in the 8;21 translocation in human
acute myeloblastic leukemia. Science 229: 767-769, 1985.
4. Drabkin, H. A.; Diaz, M.; Bradley, C. M.; Le Beau, M. M.; Rowley,
J. D.; Patterson, D.: Isolation and analysis of the 21q+ chromosome
in the acute myelogenous leukemia 8;21 translocation: evidence that
c-mos is not translocated. Proc. Nat. Acad. Sci. 82: 464-468, 1985.
5. Hashimoto, N.; Watanabe, N.; Furuta, Y.; Tamemoto, H.; Sagata,
N.; Yokoyama, M.; Okazaki, K.; Nagayoshi, M.; Takeda, N.; Ikawa, Y.;
Aizawa, S.: Parthenogenetic activation of oocytes in c-mos-deficient
mice. Nature 370: 68-71, 1994. Note: Erratum: Nature 370: 391 only,
1994.
6. Heikinheimo, O.; Lanzendorf, S. E.; Baka, S. G.; Gibbons, W. E.
: Cell cycle genes c-mos and cyclin-B1 are expressed in a specific
pattern in human oocytes and preimplantation embryos. Molec. Hum.
Reprod. 10: 699-707, 1995.
7. Kirsch, I. R.; Morton, C.; Nakahara, K.; Leder, P.: Human immunoglobulin
heavy chain genes map to a region of translocations in malignant B
lymphocytes. Science 216: 301-303, 1982.
8. Lenormand, J. L.; Benayoun, B.; Guillier, M.; Vandromme, M.; Leibovitch,
M. P.; Leibovitch, S. A.: Mos activates myogenic differentiation
by promoting heterodimerization of MyoD and E12 proteins. Molec.
Cell. Biol. 17: 584-593, 1997.
9. Mendez, R.; Hake, L. E.; Andresson, T.; Littlepage, L. E.; Ruderman,
J. V.; Richter, J. D.: Phosphorylation of CPE binding factor by Eg2
regulates translation of c-mos mRNA. Nature 404: 302-307, 2000.
10. Neel, B. G.; Jhanwar, S. C.; Chaganti, R. S. K.; Hayward, W. S.
: Two human c-onc genes are located on the long arm of chromosome
8. Proc. Nat. Acad. Sci. 79: 7842-7846, 1982.
11. Prakash, K.; McBride, O. W.; Swan, D. C.; Devare, S. G.; Tronick,
S. R.; Aaronson, S. A.: Molecular cloning and chromosomal mapping
of a human locus related to the transforming gene of Moloney murine
sarcoma virus. Proc. Nat. Acad. Sci. 79: 5210-5214, 1982.
12. Prasad, C. K.; Mahadevan, M.; MacNicol, M. C.; MacNicol, A. M.
: Mos 3-prime UTR regulatory differences underlie species-specific
temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational
recruitment during oocyte maturation. Molec. Reprod. Dev. 75: 1258-1268,
2008.
13. Propst, F.; Vande Woude, G. F.: Expression of c-mos proto-oncogene
transcripts in mouse tissues. Nature 315: 516-518, 1985.
14. Propst, F.; Vande Woude, G. F.; Jenkins, N. A.; Copeland, N. G.;
Lee, B. K.; Hunt, P. A.; Eicher, E. M.: The MOS proto-oncogene maps
near the centromere on mouse chromosome 4. Genomics 5: 118-123,
1989.
15. Rowley, J. D.: Identification of a translocation with quinacrine
fluorescence in a patient with acute leukemia. Ann. Genet. 16: 109-112,
1973.
16. Rowley, J. D.: Human oncogene location and chromosome aberrations. Nature 301:
290-291, 1983.
17. Swan, D.; Oskarsson, M.; Keithley, D.; Ruddle, F. H.; D'Eustachio,
P.; Vande Woude, G. F.: Chromosomal localization of the Moloney sarcoma
virus mouse cellular (c-mos) sequence. J. Virol. 44: 752-754, 1982.
18. Testa, J. R.; Parsa, N. Z.; Le Beau, M. M.; Vande Woude, G. F.
: Localization of the proto-oncogene MOS to 8q11-q12 by in situ chromosomal
hybridization. Genomics 3: 44-47, 1988.
19. Threadgill, D. W.; Womack, J. E.: Regional localization of mouse
Abl and Mos proto-oncogenes by in situ hybridization. Genomics 3:
82-86, 1988.
20. Watson, R.; Oskarsson, M.; Vande Woude, G. F.: Human DNA sequence
homologous to the transforming gene (mos) of Moloney murine sarcoma
virus. Proc. Nat. Acad. Sci. 79: 4078-4082, 1982.
*FIELD* CN
Patricia A. Hartz - updated: 7/14/2009
Patricia A. Hartz - updated: 6/15/2009
Ada Hamosh - updated: 3/28/2000
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
mgross: 07/14/2009
terry: 7/14/2009
mgross: 7/10/2009
terry: 6/15/2009
carol: 3/28/2000
mimadm: 6/7/1995
carol: 11/22/1993
supermim: 3/16/1992
supermim: 5/1/1990
supermim: 4/18/1990
supermim: 3/20/1990