Full text data of PGAM1
PGAM1
(PGAMA)
[Confidence: low (only semi-automatic identification from reviews)]
Phosphoglycerate mutase 1; 3.1.3.13; 5.4.2.11; 5.4.2.4 (BPG-dependent PGAM 1; Phosphoglycerate mutase isozyme B; PGAM-B)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Phosphoglycerate mutase 1; 3.1.3.13; 5.4.2.11; 5.4.2.4 (BPG-dependent PGAM 1; Phosphoglycerate mutase isozyme B; PGAM-B)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P18669
ID PGAM1_HUMAN Reviewed; 254 AA.
AC P18669; Q9BWC0;
DT 01-NOV-1990, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 2.
DT 22-JAN-2014, entry version 167.
DE RecName: Full=Phosphoglycerate mutase 1;
DE EC=3.1.3.13;
DE EC=5.4.2.11;
DE EC=5.4.2.4;
DE AltName: Full=BPG-dependent PGAM 1;
DE AltName: Full=Phosphoglycerate mutase isozyme B;
DE Short=PGAM-B;
GN Name=PGAM1; Synonyms=PGAMA; ORFNames=CDABP0006;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2846553;
RA Sakoda S., Shanske S., Dimauro S., Schon E.A.;
RT "Isolation of a cDNA encoding the B isozyme of human phosphoglycerate
RT mutase (PGAM) and characterization of the PGAM gene family.";
RL J. Biol. Chem. 263:16899-16905(1988).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Leukemia;
RA Zhou J., Yu W., Tang H., Mei G., Tsang Y.T.M., Bouck J., Gibbs R.A.,
RA Margolin J.F.;
RT "Pediatric leukemia cDNA sequencing project.";
RL Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, Liver, Lymph, Skin, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP PROTEIN SEQUENCE OF 2-254, AND CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=2846554;
RA Blouquit Y., Calvin M.C., Rosa R., Prome D., Prome J.-C.,
RA Pratbernou F., Cohen-Solal M., Rosa J.;
RT "Sequence of the human erythrocyte phosphoglycerate mutase by
RT microsequencer and mass spectrometry.";
RL J. Biol. Chem. 263:16906-16910(1988).
RN [5]
RP PROTEIN SEQUENCE OF 11-39; 47-61; 91-100; 118-138; 142-157; 163-176;
RP 181-191 AND 223-240, AND MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [6]
RP PROTEIN SEQUENCE OF 91-100.
RC TISSUE=Mammary carcinoma;
RX PubMed=9150946; DOI=10.1002/elps.1150180342;
RA Rasmussen R.K., Ji H., Eddes J.S., Moritz R.L., Reid G.E.,
RA Simpson R.J., Dorow D.S.;
RT "Two-dimensional electrophoretic analysis of human breast carcinoma
RT proteins: mapping of proteins that bind to the SH3 domain of mixed
RT lineage kinase MLK2.";
RL Electrophoresis 18:588-598(1997).
RN [7]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-31, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [9]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [12]
RP ACETYLATION AT LYS-251; LYS-253 AND LYS-254, AND DEACETYLATION BY
RP SIRT1.
RX PubMed=22157007; DOI=10.1074/jbc.M111.317404;
RA Hallows W.C., Yu W., Denu J.M.;
RT "Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1
RT protein-mediated deacetylation.";
RL J. Biol. Chem. 287:3850-3858(2012).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) IN COMPLEX WITH CITRATE, AND
RP SUBUNIT.
RX PubMed=15883004; DOI=10.1016/j.bbrc.2005.03.243;
RA Wang Y., Wei Z., Liu L., Cheng Z., Lin Y., Ji F., Gong W.;
RT "Crystal structure of human B-type phosphoglycerate mutase bound with
RT citrate.";
RL Biochem. Biophys. Res. Commun. 331:1207-1215(2005).
CC -!- FUNCTION: Interconversion of 3- and 2-phosphoglycerate with 2,3-
CC bisphosphoglycerate as the primer of the reaction. Can also
CC catalyze the reaction of EC 5.4.2.4 (synthase) and EC 3.1.3.13
CC (phosphatase), but with a reduced activity.
CC -!- CATALYTIC ACTIVITY: 2-phospho-D-glycerate = 3-phospho-D-glycerate.
CC -!- CATALYTIC ACTIVITY: 3-phospho-D-glyceroyl phosphate = 2,3-
CC bisphospho-D-glycerate.
CC -!- CATALYTIC ACTIVITY: 2,3-bisphospho-D-glycerate + H(2)O = 3-
CC phospho-D-glycerate + phosphate.
CC -!- SUBUNIT: Homodimer.
CC -!- INTERACTION:
CC P12004:PCNA; NbExp=2; IntAct=EBI-717905, EBI-358311;
CC -!- TISSUE SPECIFICITY: In mammalian tissues there are two types of
CC phosphoglycerate mutase isozymes: type-M in muscles and type-B in
CC other tissues.
CC -!- PTM: Acetylated at Lys-253, Lys-253 and Lys-254 under high glucose
CC condition. Acetylation increases catalytic activity. Under glucose
CC restriction SIRT1 levels dramatically increase and it deacetylates
CC the enzyme.
CC -!- SIMILARITY: Belongs to the phosphoglycerate mutase family. BPG-
CC dependent PGAM subfamily.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J04173; AAA60071.1; -; mRNA.
DR EMBL; AY007118; AAG01990.1; -; mRNA.
DR EMBL; BC010038; AAH10038.1; -; mRNA.
DR EMBL; BC011678; AAH11678.1; -; mRNA.
DR EMBL; BC053356; AAH53356.1; -; mRNA.
DR EMBL; BC066959; AAH66959.1; -; mRNA.
DR EMBL; BC073742; AAH73742.1; -; mRNA.
DR PIR; A31782; PMHUYB.
DR RefSeq; NP_002620.1; NM_002629.2.
DR UniGene; Hs.632918; -.
DR PDB; 1LJD; Model; -; A=1-254.
DR PDB; 1YFK; X-ray; 2.70 A; A/B=1-254.
DR PDB; 1YJX; X-ray; 2.80 A; A/B/C/D/E/F/G/H/I/J/K/L=1-254.
DR PDB; 4GPI; X-ray; 2.08 A; B/C=1-254.
DR PDB; 4GPZ; X-ray; 1.65 A; A/B=1-254.
DR PDBsum; 1LJD; -.
DR PDBsum; 1YFK; -.
DR PDBsum; 1YJX; -.
DR PDBsum; 4GPI; -.
DR PDBsum; 4GPZ; -.
DR ProteinModelPortal; P18669; -.
DR SMR; P18669; 2-243.
DR IntAct; P18669; 12.
DR MINT; MINT-3008987; -.
DR STRING; 9606.ENSP00000359991; -.
DR PhosphoSite; P18669; -.
DR DMDM; 130348; -.
DR DOSAC-COBS-2DPAGE; P18669; -.
DR OGP; P18669; -.
DR SWISS-2DPAGE; P18669; -.
DR UCD-2DPAGE; P18669; -.
DR PaxDb; P18669; -.
DR PRIDE; P18669; -.
DR DNASU; 5223; -.
DR Ensembl; ENST00000334828; ENSP00000359991; ENSG00000171314.
DR GeneID; 5223; -.
DR KEGG; hsa:5223; -.
DR UCSC; uc001knh.3; human.
DR CTD; 5223; -.
DR GeneCards; GC10P099176; -.
DR H-InvDB; HIX0036336; -.
DR H-InvDB; HIX0120028; -.
DR HGNC; HGNC:8888; PGAM1.
DR MIM; 172250; gene.
DR neXtProt; NX_P18669; -.
DR PharmGKB; PA33225; -.
DR eggNOG; COG0588; -.
DR HOGENOM; HOG000221682; -.
DR HOVERGEN; HBG027528; -.
DR InParanoid; P18669; -.
DR KO; K01834; -.
DR OMA; SYYLGDQ; -.
DR OrthoDB; EOG7XM2ZV; -.
DR PhylomeDB; P18669; -.
DR BioCyc; MetaCyc:HS10286-MONOMER; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P18669; -.
DR ChiTaRS; PGAM1; human.
DR EvolutionaryTrace; P18669; -.
DR GenomeRNAi; 5223; -.
DR NextBio; 20192; -.
DR PRO; PR:P18669; -.
DR Bgee; P18669; -.
DR CleanEx; HS_PGAM1; -.
DR Genevestigator; P18669; -.
DR GO; GO:0005829; C:cytosol; IDA:UniProtKB.
DR GO; GO:0004083; F:bisphosphoglycerate 2-phosphatase activity; IEA:UniProtKB-EC.
DR GO; GO:0004082; F:bisphosphoglycerate mutase activity; IEA:UniProtKB-EC.
DR GO; GO:0004619; F:phosphoglycerate mutase activity; IMP:UniProtKB.
DR GO; GO:0006094; P:gluconeogenesis; TAS:Reactome.
DR GO; GO:0006096; P:glycolysis; TAS:Reactome.
DR GO; GO:0006110; P:regulation of glycolysis; IDA:UniProtKB.
DR GO; GO:0043456; P:regulation of pentose-phosphate shunt; IDA:UniProtKB.
DR GO; GO:0045730; P:respiratory burst; IDA:UniProtKB.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR InterPro; IPR013078; His_Pase_superF_clade-1.
DR InterPro; IPR001345; PG/BPGM_mutase_AS.
DR InterPro; IPR005952; Phosphogly_mut1.
DR PANTHER; PTHR11931; PTHR11931; 1.
DR Pfam; PF00300; His_Phos_1; 1.
DR SMART; SM00855; PGAM; 1.
DR TIGRFAMs; TIGR01258; pgm_1; 1.
DR PROSITE; PS00175; PG_MUTASE; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome;
KW Direct protein sequencing; Glycolysis; Hydrolase; Isomerase;
KW Phosphoprotein; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 254 Phosphoglycerate mutase 1.
FT /FTId=PRO_0000179825.
FT COMPBIAS 122 131 Pro-rich.
FT ACT_SITE 11 11 Tele-phosphohistidine intermediate.
FT ACT_SITE 186 186
FT SITE 62 62 Interaction with carboxyl group of
FT phosphoglycerates.
FT MOD_RES 14 14 Phosphoserine.
FT MOD_RES 26 26 Phosphotyrosine (By similarity).
FT MOD_RES 31 31 Phosphoserine.
FT MOD_RES 251 251 N6-acetyllysine.
FT MOD_RES 253 253 N6-acetyllysine.
FT MOD_RES 254 254 N6-acetyllysine.
FT STRAND 4 10
FT TURN 15 20
FT HELIX 32 47
FT STRAND 53 57
FT HELIX 61 73
FT STRAND 81 83
FT HELIX 85 87
FT HELIX 93 95
FT HELIX 100 107
FT HELIX 109 117
FT HELIX 133 137
FT HELIX 140 142
FT TURN 147 149
FT HELIX 156 170
FT HELIX 172 176
FT STRAND 181 185
FT HELIX 187 198
FT HELIX 202 207
FT STRAND 212 214
FT STRAND 216 220
FT STRAND 226 228
FT HELIX 236 242
SQ SEQUENCE 254 AA; 28804 MW; 6DC0852BEBB22409 CRC64;
MAAYKLVLIR HGESAWNLEN RFSGWYDADL SPAGHEEAKR GGQALRDAGY EFDICFTSVQ
KRAIRTLWTV LDAIDQMWLP VVRTWRLNER HYGGLTGLNK AETAAKHGEA QVKIWRRSYD
VPPPPMEPDH PFYSNISKDR RYADLTEDQL PSCESLKDTI ARALPFWNEE IVPQIKEGKR
VLIAAHGNSL RGIVKHLEGL SEEAIMELNL PTGIPIVYEL DKNLKPIKPM QFLGDEETVR
KAMEAVAAQG KAKK
//
ID PGAM1_HUMAN Reviewed; 254 AA.
AC P18669; Q9BWC0;
DT 01-NOV-1990, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 2.
DT 22-JAN-2014, entry version 167.
DE RecName: Full=Phosphoglycerate mutase 1;
DE EC=3.1.3.13;
DE EC=5.4.2.11;
DE EC=5.4.2.4;
DE AltName: Full=BPG-dependent PGAM 1;
DE AltName: Full=Phosphoglycerate mutase isozyme B;
DE Short=PGAM-B;
GN Name=PGAM1; Synonyms=PGAMA; ORFNames=CDABP0006;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2846553;
RA Sakoda S., Shanske S., Dimauro S., Schon E.A.;
RT "Isolation of a cDNA encoding the B isozyme of human phosphoglycerate
RT mutase (PGAM) and characterization of the PGAM gene family.";
RL J. Biol. Chem. 263:16899-16905(1988).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Leukemia;
RA Zhou J., Yu W., Tang H., Mei G., Tsang Y.T.M., Bouck J., Gibbs R.A.,
RA Margolin J.F.;
RT "Pediatric leukemia cDNA sequencing project.";
RL Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, Liver, Lymph, Skin, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP PROTEIN SEQUENCE OF 2-254, AND CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=2846554;
RA Blouquit Y., Calvin M.C., Rosa R., Prome D., Prome J.-C.,
RA Pratbernou F., Cohen-Solal M., Rosa J.;
RT "Sequence of the human erythrocyte phosphoglycerate mutase by
RT microsequencer and mass spectrometry.";
RL J. Biol. Chem. 263:16906-16910(1988).
RN [5]
RP PROTEIN SEQUENCE OF 11-39; 47-61; 91-100; 118-138; 142-157; 163-176;
RP 181-191 AND 223-240, AND MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [6]
RP PROTEIN SEQUENCE OF 91-100.
RC TISSUE=Mammary carcinoma;
RX PubMed=9150946; DOI=10.1002/elps.1150180342;
RA Rasmussen R.K., Ji H., Eddes J.S., Moritz R.L., Reid G.E.,
RA Simpson R.J., Dorow D.S.;
RT "Two-dimensional electrophoretic analysis of human breast carcinoma
RT proteins: mapping of proteins that bind to the SH3 domain of mixed
RT lineage kinase MLK2.";
RL Electrophoresis 18:588-598(1997).
RN [7]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-31, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [9]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-14, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [12]
RP ACETYLATION AT LYS-251; LYS-253 AND LYS-254, AND DEACETYLATION BY
RP SIRT1.
RX PubMed=22157007; DOI=10.1074/jbc.M111.317404;
RA Hallows W.C., Yu W., Denu J.M.;
RT "Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1
RT protein-mediated deacetylation.";
RL J. Biol. Chem. 287:3850-3858(2012).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) IN COMPLEX WITH CITRATE, AND
RP SUBUNIT.
RX PubMed=15883004; DOI=10.1016/j.bbrc.2005.03.243;
RA Wang Y., Wei Z., Liu L., Cheng Z., Lin Y., Ji F., Gong W.;
RT "Crystal structure of human B-type phosphoglycerate mutase bound with
RT citrate.";
RL Biochem. Biophys. Res. Commun. 331:1207-1215(2005).
CC -!- FUNCTION: Interconversion of 3- and 2-phosphoglycerate with 2,3-
CC bisphosphoglycerate as the primer of the reaction. Can also
CC catalyze the reaction of EC 5.4.2.4 (synthase) and EC 3.1.3.13
CC (phosphatase), but with a reduced activity.
CC -!- CATALYTIC ACTIVITY: 2-phospho-D-glycerate = 3-phospho-D-glycerate.
CC -!- CATALYTIC ACTIVITY: 3-phospho-D-glyceroyl phosphate = 2,3-
CC bisphospho-D-glycerate.
CC -!- CATALYTIC ACTIVITY: 2,3-bisphospho-D-glycerate + H(2)O = 3-
CC phospho-D-glycerate + phosphate.
CC -!- SUBUNIT: Homodimer.
CC -!- INTERACTION:
CC P12004:PCNA; NbExp=2; IntAct=EBI-717905, EBI-358311;
CC -!- TISSUE SPECIFICITY: In mammalian tissues there are two types of
CC phosphoglycerate mutase isozymes: type-M in muscles and type-B in
CC other tissues.
CC -!- PTM: Acetylated at Lys-253, Lys-253 and Lys-254 under high glucose
CC condition. Acetylation increases catalytic activity. Under glucose
CC restriction SIRT1 levels dramatically increase and it deacetylates
CC the enzyme.
CC -!- SIMILARITY: Belongs to the phosphoglycerate mutase family. BPG-
CC dependent PGAM subfamily.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J04173; AAA60071.1; -; mRNA.
DR EMBL; AY007118; AAG01990.1; -; mRNA.
DR EMBL; BC010038; AAH10038.1; -; mRNA.
DR EMBL; BC011678; AAH11678.1; -; mRNA.
DR EMBL; BC053356; AAH53356.1; -; mRNA.
DR EMBL; BC066959; AAH66959.1; -; mRNA.
DR EMBL; BC073742; AAH73742.1; -; mRNA.
DR PIR; A31782; PMHUYB.
DR RefSeq; NP_002620.1; NM_002629.2.
DR UniGene; Hs.632918; -.
DR PDB; 1LJD; Model; -; A=1-254.
DR PDB; 1YFK; X-ray; 2.70 A; A/B=1-254.
DR PDB; 1YJX; X-ray; 2.80 A; A/B/C/D/E/F/G/H/I/J/K/L=1-254.
DR PDB; 4GPI; X-ray; 2.08 A; B/C=1-254.
DR PDB; 4GPZ; X-ray; 1.65 A; A/B=1-254.
DR PDBsum; 1LJD; -.
DR PDBsum; 1YFK; -.
DR PDBsum; 1YJX; -.
DR PDBsum; 4GPI; -.
DR PDBsum; 4GPZ; -.
DR ProteinModelPortal; P18669; -.
DR SMR; P18669; 2-243.
DR IntAct; P18669; 12.
DR MINT; MINT-3008987; -.
DR STRING; 9606.ENSP00000359991; -.
DR PhosphoSite; P18669; -.
DR DMDM; 130348; -.
DR DOSAC-COBS-2DPAGE; P18669; -.
DR OGP; P18669; -.
DR SWISS-2DPAGE; P18669; -.
DR UCD-2DPAGE; P18669; -.
DR PaxDb; P18669; -.
DR PRIDE; P18669; -.
DR DNASU; 5223; -.
DR Ensembl; ENST00000334828; ENSP00000359991; ENSG00000171314.
DR GeneID; 5223; -.
DR KEGG; hsa:5223; -.
DR UCSC; uc001knh.3; human.
DR CTD; 5223; -.
DR GeneCards; GC10P099176; -.
DR H-InvDB; HIX0036336; -.
DR H-InvDB; HIX0120028; -.
DR HGNC; HGNC:8888; PGAM1.
DR MIM; 172250; gene.
DR neXtProt; NX_P18669; -.
DR PharmGKB; PA33225; -.
DR eggNOG; COG0588; -.
DR HOGENOM; HOG000221682; -.
DR HOVERGEN; HBG027528; -.
DR InParanoid; P18669; -.
DR KO; K01834; -.
DR OMA; SYYLGDQ; -.
DR OrthoDB; EOG7XM2ZV; -.
DR PhylomeDB; P18669; -.
DR BioCyc; MetaCyc:HS10286-MONOMER; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P18669; -.
DR ChiTaRS; PGAM1; human.
DR EvolutionaryTrace; P18669; -.
DR GenomeRNAi; 5223; -.
DR NextBio; 20192; -.
DR PRO; PR:P18669; -.
DR Bgee; P18669; -.
DR CleanEx; HS_PGAM1; -.
DR Genevestigator; P18669; -.
DR GO; GO:0005829; C:cytosol; IDA:UniProtKB.
DR GO; GO:0004083; F:bisphosphoglycerate 2-phosphatase activity; IEA:UniProtKB-EC.
DR GO; GO:0004082; F:bisphosphoglycerate mutase activity; IEA:UniProtKB-EC.
DR GO; GO:0004619; F:phosphoglycerate mutase activity; IMP:UniProtKB.
DR GO; GO:0006094; P:gluconeogenesis; TAS:Reactome.
DR GO; GO:0006096; P:glycolysis; TAS:Reactome.
DR GO; GO:0006110; P:regulation of glycolysis; IDA:UniProtKB.
DR GO; GO:0043456; P:regulation of pentose-phosphate shunt; IDA:UniProtKB.
DR GO; GO:0045730; P:respiratory burst; IDA:UniProtKB.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR InterPro; IPR013078; His_Pase_superF_clade-1.
DR InterPro; IPR001345; PG/BPGM_mutase_AS.
DR InterPro; IPR005952; Phosphogly_mut1.
DR PANTHER; PTHR11931; PTHR11931; 1.
DR Pfam; PF00300; His_Phos_1; 1.
DR SMART; SM00855; PGAM; 1.
DR TIGRFAMs; TIGR01258; pgm_1; 1.
DR PROSITE; PS00175; PG_MUTASE; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome;
KW Direct protein sequencing; Glycolysis; Hydrolase; Isomerase;
KW Phosphoprotein; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 254 Phosphoglycerate mutase 1.
FT /FTId=PRO_0000179825.
FT COMPBIAS 122 131 Pro-rich.
FT ACT_SITE 11 11 Tele-phosphohistidine intermediate.
FT ACT_SITE 186 186
FT SITE 62 62 Interaction with carboxyl group of
FT phosphoglycerates.
FT MOD_RES 14 14 Phosphoserine.
FT MOD_RES 26 26 Phosphotyrosine (By similarity).
FT MOD_RES 31 31 Phosphoserine.
FT MOD_RES 251 251 N6-acetyllysine.
FT MOD_RES 253 253 N6-acetyllysine.
FT MOD_RES 254 254 N6-acetyllysine.
FT STRAND 4 10
FT TURN 15 20
FT HELIX 32 47
FT STRAND 53 57
FT HELIX 61 73
FT STRAND 81 83
FT HELIX 85 87
FT HELIX 93 95
FT HELIX 100 107
FT HELIX 109 117
FT HELIX 133 137
FT HELIX 140 142
FT TURN 147 149
FT HELIX 156 170
FT HELIX 172 176
FT STRAND 181 185
FT HELIX 187 198
FT HELIX 202 207
FT STRAND 212 214
FT STRAND 216 220
FT STRAND 226 228
FT HELIX 236 242
SQ SEQUENCE 254 AA; 28804 MW; 6DC0852BEBB22409 CRC64;
MAAYKLVLIR HGESAWNLEN RFSGWYDADL SPAGHEEAKR GGQALRDAGY EFDICFTSVQ
KRAIRTLWTV LDAIDQMWLP VVRTWRLNER HYGGLTGLNK AETAAKHGEA QVKIWRRSYD
VPPPPMEPDH PFYSNISKDR RYADLTEDQL PSCESLKDTI ARALPFWNEE IVPQIKEGKR
VLIAAHGNSL RGIVKHLEGL SEEAIMELNL PTGIPIVYEL DKNLKPIKPM QFLGDEETVR
KAMEAVAAQG KAKK
//
MIM
172250
*RECORD*
*FIELD* NO
172250
*FIELD* TI
*172250 PHOSPHOGLYCERATE MUTASE 1; PGAM1
PHOSPHOGLYCERATE MUTASE A; PGAMA;;
PHOSPHOGLYCERATE MUTASE, BRAIN; PGAMB
read more*FIELD* TX
DESCRIPTION
Phosphoglycerate mutase (PGAM; EC 5.4.2.1; formerly EC 2.7.5.3) is
widely distributed in mammalian tissues where it catalyzes the
reversible reaction of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate
(2-PGA) in the glycolytic pathway (summary by Chen et al., 1974).
CLONING
Monophosphoglycerate mutase (PGAM) of human red cells has strikingly
similar physicochemical and catalytic properties to
2,3-diphosphoglycerate mutase (613896) from the same source. However, by
studies of inherited electrophoretic variation, Chen et al. (1977)
showed that they are different.
Sakoda et al. (1988) described the isolation, the complete nucleotide
sequence, and a transcriptional, genomic, and evolutionary analysis of a
full-length cDNA encoding human PGAM. The cDNA encodes a deduced protein
of 254 amino acids, 79% identical to PGAM-M (612931) and containing a
913-nucleotide 3-prime untranslated region as compared to the unusually
short 37-nucleotide 3-prime untranslated region of PGAM-M. Genomic
Southern analysis implied the presence of a large PGAM family in the
human genome. Most of the PGAM-hybridizing sequences in both the human
and mouse genomes seem to be related to the B-isozyme gene; many members
of the PGAM-B gene family in humans are apparently processed
pseudogenes. The evolutionary analysis suggests that the PGAMB gene is
the progenitor of the PGAMM gene.
PGAM is a dimeric enzyme containing, in different tissues, different
proportions of a muscle (MM) isozyme, a brain (BB) isozyme, and a hybrid
form (MB). Electrophoresis of normal adult human muscle PGAM shows
marked predominance of the MM band with only faint BB and MB bands; see
612931. In most other human tissues, including brain, liver,
erythrocytes, and leukocytes, PGAM-BB is the only demonstrable isozyme.
In cardiac muscle extracts, all 3 bands are seen, although PGAM-MM
predominates. DiMauro et al. (1986) stated that PGAM-B is the same as
PGAM-A. This situation is comparable to that of lactate dehydrogenase in
which the subunits are referred to by the designations M and H, based on
predominance in skeletal muscle or heart muscle, respectively, but the
loci are referred to as A and B (see 150000, 150100).
MAPPING
The study of rare genetic variants of PGAM in a family studied by Chen
et al. (1974) failed to exclude X-linkage, but the finding of a
heterozygous male indicated autosomal localization of the gene.
By gene dosage studies, Junien et al. (1982) assigned phosphoglycerate
mutase A (PGAMA) and GOT1 (138180) to chromosome 10 (10q26.1-q25.3). In
view of previous regional localization, the position of both PGAMA and
GOT1 may be 10q25.3 (Gerald and Grzeschik, 1984). The fact that the
PGAMA and GOT1 loci are linked in the mouse (on chromosome 19) supports
the assignment of PGAMA to human chromosome 10.
BIOCHEMICAL FEATURES
The M2 isoform of pyruvate kinase (PKM2; 179050) promotes the metabolism
of glucose by aerobic glycolysis and contributes to anabolic metabolism.
Paradoxically, decreased pyruvate kinase enzyme activity accompanies the
expression of PKM2 in rapidly dividing cancer cells and tissues. Vander
Heiden et al. (2010) demonstrated that phosphoenolpyruvate (PEP), the
substrate for pyruvate kinase in cells, can act as a phosphate donor in
mammalian cells because PEP participates in the phosphorylation of the
glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing
cells. Vander Heiden et al. (2010) used mass spectrometry to show that
the phosphate from PEP is transferred to the catalytic histidine (His11)
on human PGAM1. This reaction occurred at physiologic concentrations of
PEP and produced pyruvate in the absence of PKM2 activity. The presence
of histidine-phosphorylated PGAM2 correlated with the expression of PKM2
in cancer cell lines and tumor tissues. Thus, Vander Heiden et al.
(2010) concluded that decreased pyruvate kinase activity in
PKM2-expressing cells allows PEP-dependent histidine phosphorylation of
PGAM1 and may provide an alternate glycolytic pathway that decouples
adenosine triphosphate production from PEP-mediated phosphotransfer,
allowing for the high rate of glycolysis to support the anabolic
metabolism observed in many proliferating cells.
MOLECULAR GENETICS
Working with starch gel electrophoresis, Chen et al. (1974) described
rare genetic variants of PGAM in red cells. (The same isozymes occur in
white cells, liver, and spleen. A second set of isozymes in muscle,
kidney and thymus suggests the existence of a second PGAM locus.)
ANIMAL MODEL
Trisomy 19 is the only trisomy in mice compatible with survival beyond
birth (Fundele et al., 1981). The PGAM activity in liver and
erythrocytes of these mice is elevated by a factor of 1.4 and 1.8,
respectively, which is compatible with a gene dosage effect. This is
further evidence of the mapping of the mouse locus to chromosome 19.
Charles and Pretsch (1987) demonstrated an ethylnitrosurea-induced
mutation of PGAM which in heterozygous state caused a 300% to 400%
elevation of PGAM activity in the blood compared with wildtype animals;
homozygous mutants were viable. Increased activity was not observed in
liver, lung, kidneys, spleen, heart, and brain of heterozygotes. Pretsch
and Favor (1996) suggested that the elevation of phosphoglycerate mutase
activity in this mutant might represent either a regulatory mutation or
a mutation of the erythrocyte-specific structural gene. By linkage
analyses utilizing this genetic variant, Pretsch and Favor (1996)
demonstrated that the gene (symbolized Pgam1e1 by them) maps to the
middle of chromosome 19.
*FIELD* RF
1. Charles, D. J.; Pretsch, W.: Linear dose-response relationship
of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated
mice. Mutat. Res. 176: 81-91, 1987.
2. Chen, S.-H.; Anderson, J.; Giblett, E. R.; Lewis, M.: Phosphoglyceric
acid mutase: rare genetic variants and tissue distribution. Am. J.
Hum. Genet. 26: 73-77, 1974.
3. Chen, S.-H.; Anderson, J. E.; Giblett, E. R.: Human red cell 2,3-diphosphogl
ycerate mutase and monophosphoglycerate mutase: genetic evidence for
two separate loci. Am. J. Hum. Genet. 29: 405-407, 1977.
4. DiMauro, S.; Miranda, A. F.; Sakoda, S.; Schon, E. A.; Servidei,
S.; Shanske, S.; Zeviani, M.: Metabolic myopathies. Am. J. Med.
Genet. 25: 635-651, 1986.
5. Fundele, R.; Bucher, T.; Gropp, A.; Winking, H.: Enzyme patterns
in trisomy 19 of the mouse. Dev. Genet. 2: 291-303, 1981.
6. Gerald, P. S.; Grzeschik, K. H.: Report of the committee on the
genetic constitution of chromosomes 10, 11 and 12. Cytogenet. Cell
Genet. 37: 103-126, 1984.
7. Junien, C.; Despoisse, S.; Turleau, C.; de Grouchy, J.; Bucher,
T.; Fundele, R.: Assignment of phosphoglycerate mutase (PGAMA) to
human chromosome 10: regional mapping of GOT1 and PGAMA to subbands
10q26.1 (or q25.3). Ann. Genet. 25: 25-27, 1982.
8. Pretsch, W.; Favor, J.: A precise localization of a mouse gene
encoding increased phosphoglycerate mutase activity (Pgam1e1) on chromosome
19. Mammalian Genome 7: 619 only, 1996.
9. Sakoda, S.; Shanske, S.; DiMauro, S.; Schon, E. A.: Isolation
of a cDNA encoding the B isozyme of human phosphoglycerate mutase
(PGAM) and characterization of the PGAM gene family. J. Biol. Chem. 263:
16899-16905, 1988.
10. Vander Heiden, M. G.; Locasale, J. W.; Swanson, K. D.; Sharfi,
H.; Heffron, G. J.; Amador-Noguez, D.; Christofk, H. R.; Wagner, G.;
Rabinowitz, J. D.; Asara, J. M.; Cantley, L. C.: Evidence for an
alternative glycolytic pathway in rapidly proliferating cells. Science 329:
1492-1499, 2010.
*FIELD* CN
Ada Hamosh - updated: 11/2/2010
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
carol: 04/13/2011
carol: 4/12/2011
alopez: 11/8/2010
terry: 11/2/2010
carol: 6/1/2005
alopez: 1/20/2000
dkim: 12/16/1998
alopez: 6/25/1997
jamie: 11/22/1996
mark: 11/15/1996
terry: 11/14/1996
supermim: 3/16/1992
supermim: 3/20/1990
carol: 11/17/1989
ddp: 10/27/1989
carol: 6/8/1989
carol: 12/22/1988
*RECORD*
*FIELD* NO
172250
*FIELD* TI
*172250 PHOSPHOGLYCERATE MUTASE 1; PGAM1
PHOSPHOGLYCERATE MUTASE A; PGAMA;;
PHOSPHOGLYCERATE MUTASE, BRAIN; PGAMB
read more*FIELD* TX
DESCRIPTION
Phosphoglycerate mutase (PGAM; EC 5.4.2.1; formerly EC 2.7.5.3) is
widely distributed in mammalian tissues where it catalyzes the
reversible reaction of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate
(2-PGA) in the glycolytic pathway (summary by Chen et al., 1974).
CLONING
Monophosphoglycerate mutase (PGAM) of human red cells has strikingly
similar physicochemical and catalytic properties to
2,3-diphosphoglycerate mutase (613896) from the same source. However, by
studies of inherited electrophoretic variation, Chen et al. (1977)
showed that they are different.
Sakoda et al. (1988) described the isolation, the complete nucleotide
sequence, and a transcriptional, genomic, and evolutionary analysis of a
full-length cDNA encoding human PGAM. The cDNA encodes a deduced protein
of 254 amino acids, 79% identical to PGAM-M (612931) and containing a
913-nucleotide 3-prime untranslated region as compared to the unusually
short 37-nucleotide 3-prime untranslated region of PGAM-M. Genomic
Southern analysis implied the presence of a large PGAM family in the
human genome. Most of the PGAM-hybridizing sequences in both the human
and mouse genomes seem to be related to the B-isozyme gene; many members
of the PGAM-B gene family in humans are apparently processed
pseudogenes. The evolutionary analysis suggests that the PGAMB gene is
the progenitor of the PGAMM gene.
PGAM is a dimeric enzyme containing, in different tissues, different
proportions of a muscle (MM) isozyme, a brain (BB) isozyme, and a hybrid
form (MB). Electrophoresis of normal adult human muscle PGAM shows
marked predominance of the MM band with only faint BB and MB bands; see
612931. In most other human tissues, including brain, liver,
erythrocytes, and leukocytes, PGAM-BB is the only demonstrable isozyme.
In cardiac muscle extracts, all 3 bands are seen, although PGAM-MM
predominates. DiMauro et al. (1986) stated that PGAM-B is the same as
PGAM-A. This situation is comparable to that of lactate dehydrogenase in
which the subunits are referred to by the designations M and H, based on
predominance in skeletal muscle or heart muscle, respectively, but the
loci are referred to as A and B (see 150000, 150100).
MAPPING
The study of rare genetic variants of PGAM in a family studied by Chen
et al. (1974) failed to exclude X-linkage, but the finding of a
heterozygous male indicated autosomal localization of the gene.
By gene dosage studies, Junien et al. (1982) assigned phosphoglycerate
mutase A (PGAMA) and GOT1 (138180) to chromosome 10 (10q26.1-q25.3). In
view of previous regional localization, the position of both PGAMA and
GOT1 may be 10q25.3 (Gerald and Grzeschik, 1984). The fact that the
PGAMA and GOT1 loci are linked in the mouse (on chromosome 19) supports
the assignment of PGAMA to human chromosome 10.
BIOCHEMICAL FEATURES
The M2 isoform of pyruvate kinase (PKM2; 179050) promotes the metabolism
of glucose by aerobic glycolysis and contributes to anabolic metabolism.
Paradoxically, decreased pyruvate kinase enzyme activity accompanies the
expression of PKM2 in rapidly dividing cancer cells and tissues. Vander
Heiden et al. (2010) demonstrated that phosphoenolpyruvate (PEP), the
substrate for pyruvate kinase in cells, can act as a phosphate donor in
mammalian cells because PEP participates in the phosphorylation of the
glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing
cells. Vander Heiden et al. (2010) used mass spectrometry to show that
the phosphate from PEP is transferred to the catalytic histidine (His11)
on human PGAM1. This reaction occurred at physiologic concentrations of
PEP and produced pyruvate in the absence of PKM2 activity. The presence
of histidine-phosphorylated PGAM2 correlated with the expression of PKM2
in cancer cell lines and tumor tissues. Thus, Vander Heiden et al.
(2010) concluded that decreased pyruvate kinase activity in
PKM2-expressing cells allows PEP-dependent histidine phosphorylation of
PGAM1 and may provide an alternate glycolytic pathway that decouples
adenosine triphosphate production from PEP-mediated phosphotransfer,
allowing for the high rate of glycolysis to support the anabolic
metabolism observed in many proliferating cells.
MOLECULAR GENETICS
Working with starch gel electrophoresis, Chen et al. (1974) described
rare genetic variants of PGAM in red cells. (The same isozymes occur in
white cells, liver, and spleen. A second set of isozymes in muscle,
kidney and thymus suggests the existence of a second PGAM locus.)
ANIMAL MODEL
Trisomy 19 is the only trisomy in mice compatible with survival beyond
birth (Fundele et al., 1981). The PGAM activity in liver and
erythrocytes of these mice is elevated by a factor of 1.4 and 1.8,
respectively, which is compatible with a gene dosage effect. This is
further evidence of the mapping of the mouse locus to chromosome 19.
Charles and Pretsch (1987) demonstrated an ethylnitrosurea-induced
mutation of PGAM which in heterozygous state caused a 300% to 400%
elevation of PGAM activity in the blood compared with wildtype animals;
homozygous mutants were viable. Increased activity was not observed in
liver, lung, kidneys, spleen, heart, and brain of heterozygotes. Pretsch
and Favor (1996) suggested that the elevation of phosphoglycerate mutase
activity in this mutant might represent either a regulatory mutation or
a mutation of the erythrocyte-specific structural gene. By linkage
analyses utilizing this genetic variant, Pretsch and Favor (1996)
demonstrated that the gene (symbolized Pgam1e1 by them) maps to the
middle of chromosome 19.
*FIELD* RF
1. Charles, D. J.; Pretsch, W.: Linear dose-response relationship
of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated
mice. Mutat. Res. 176: 81-91, 1987.
2. Chen, S.-H.; Anderson, J.; Giblett, E. R.; Lewis, M.: Phosphoglyceric
acid mutase: rare genetic variants and tissue distribution. Am. J.
Hum. Genet. 26: 73-77, 1974.
3. Chen, S.-H.; Anderson, J. E.; Giblett, E. R.: Human red cell 2,3-diphosphogl
ycerate mutase and monophosphoglycerate mutase: genetic evidence for
two separate loci. Am. J. Hum. Genet. 29: 405-407, 1977.
4. DiMauro, S.; Miranda, A. F.; Sakoda, S.; Schon, E. A.; Servidei,
S.; Shanske, S.; Zeviani, M.: Metabolic myopathies. Am. J. Med.
Genet. 25: 635-651, 1986.
5. Fundele, R.; Bucher, T.; Gropp, A.; Winking, H.: Enzyme patterns
in trisomy 19 of the mouse. Dev. Genet. 2: 291-303, 1981.
6. Gerald, P. S.; Grzeschik, K. H.: Report of the committee on the
genetic constitution of chromosomes 10, 11 and 12. Cytogenet. Cell
Genet. 37: 103-126, 1984.
7. Junien, C.; Despoisse, S.; Turleau, C.; de Grouchy, J.; Bucher,
T.; Fundele, R.: Assignment of phosphoglycerate mutase (PGAMA) to
human chromosome 10: regional mapping of GOT1 and PGAMA to subbands
10q26.1 (or q25.3). Ann. Genet. 25: 25-27, 1982.
8. Pretsch, W.; Favor, J.: A precise localization of a mouse gene
encoding increased phosphoglycerate mutase activity (Pgam1e1) on chromosome
19. Mammalian Genome 7: 619 only, 1996.
9. Sakoda, S.; Shanske, S.; DiMauro, S.; Schon, E. A.: Isolation
of a cDNA encoding the B isozyme of human phosphoglycerate mutase
(PGAM) and characterization of the PGAM gene family. J. Biol. Chem. 263:
16899-16905, 1988.
10. Vander Heiden, M. G.; Locasale, J. W.; Swanson, K. D.; Sharfi,
H.; Heffron, G. J.; Amador-Noguez, D.; Christofk, H. R.; Wagner, G.;
Rabinowitz, J. D.; Asara, J. M.; Cantley, L. C.: Evidence for an
alternative glycolytic pathway in rapidly proliferating cells. Science 329:
1492-1499, 2010.
*FIELD* CN
Ada Hamosh - updated: 11/2/2010
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
carol: 04/13/2011
carol: 4/12/2011
alopez: 11/8/2010
terry: 11/2/2010
carol: 6/1/2005
alopez: 1/20/2000
dkim: 12/16/1998
alopez: 6/25/1997
jamie: 11/22/1996
mark: 11/15/1996
terry: 11/14/1996
supermim: 3/16/1992
supermim: 3/20/1990
carol: 11/17/1989
ddp: 10/27/1989
carol: 6/8/1989
carol: 12/22/1988