Full text data of PSMD4
PSMD4
(MCB1)
[Confidence: medium (present in either hRBCD or BSc_CH or PM22954596)]
26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10; 26S proteasome regulatory subunit S5A; Antisecretory factor 1; AF; ASF; Multiubiquitin chain-binding protein)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10; 26S proteasome regulatory subunit S5A; Antisecretory factor 1; AF; ASF; Multiubiquitin chain-binding protein)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P55036
ID PSMD4_HUMAN Reviewed; 377 AA.
AC P55036; D3DV16; Q5VWC5; Q9NS92;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-OCT-1996, sequence version 1.
DT 22-JAN-2014, entry version 141.
DE RecName: Full=26S proteasome non-ATPase regulatory subunit 4;
DE AltName: Full=26S proteasome regulatory subunit RPN10;
DE AltName: Full=26S proteasome regulatory subunit S5A;
DE AltName: Full=Antisecretory factor 1;
DE Short=AF;
DE Short=ASF;
DE AltName: Full=Multiubiquitin chain-binding protein;
GN Name=PSMD4; Synonyms=MCB1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PROTEIN SEQUENCE OF 63-75 AND 130-140.
RC TISSUE=Pituitary;
RX PubMed=7657640; DOI=10.1074/jbc.270.35.20615;
RA Johansson E., Loennroth I., Lange S., Jonson I., Jennische E.,
RA Loennroth C.;
RT "Molecular cloning and expression of a pituitary gland protein
RT modulating intestinal fluid secretion.";
RL J. Biol. Chem. 270:20615-20620(1995).
RN [2]
RP SEQUENCE REVISION.
RA Loennroth I.;
RL Submitted (MAY-1997) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=8641424; DOI=10.1016/0014-5793(96)00101-9;
RA Ferrell K., Deveraux Q., van Nocker S., Rechsteiner M.;
RT "Molecular cloning and expression of a multiubiquitin chain binding
RT subunit of the human 26S protease.";
RL FEBS Lett. 381:143-148(1996).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA], AND ALTERNATIVE SPLICING.
RC TISSUE=Fetal brain;
RX PubMed=10921894; DOI=10.1093/emboj/19.15.4144;
RA Kawahara H., Kasahara M., Nishiyama A., Ohsumi K., Goto T.,
RA Kishimoto T., Saeki Y., Yokosawa H., Shimbara N., Murata S., Chiba T.,
RA Suzuki K., Tanaka K.;
RT "Developmentally regulated, alternative splicing of the Rpn10 gene
RT generates multiple forms of 26S proteasomes.";
RL EMBO J. 19:4144-4153(2000).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Liver, and Lung;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 70-377.
RC TISSUE=Brain;
RA Fraser P.E., Levesque G., Rogaeva E.A., Yu G., St George-Hyslop P.H.;
RT "Proteolysis of presenilin 1 is associated with the 26S proteasome and
RT is altered in Alzheimer's disease.";
RL Submitted (SEP-1996) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP CHARACTERIZATION.
RX PubMed=3524692;
RA Loennroth I., Lange S.;
RT "Purification and characterization of the antisecretory factor: a
RT protein in the central nervous system and in the gut which inhibits
RT intestinal hypersecretion induced by cholera toxin.";
RL Biochim. Biophys. Acta 883:138-144(1986).
RN [10]
RP POLYUBIQUITIN BINDING SITES.
RX PubMed=9488668; DOI=10.1074/jbc.273.10.5461;
RA Young P., Deveraux Q., Beal R.E., Pickart C.M., Rechsteiner M.;
RT "Characterization of two polyubiquitin binding sites in the 26 S
RT protease subunit 5a.";
RL J. Biol. Chem. 273:5461-5467(1998).
RN [11]
RP INTERACTION WITH NUB1.
RX PubMed=11585840; DOI=10.1074/jbc.M108636200;
RA Kamitani T., Kito K., Fukuda-Kamitani T., Yeh E.T.H.;
RT "Targeting of NEDD8 and its conjugates for proteasomal degradation by
RT NUB1.";
RL J. Biol. Chem. 276:46655-46660(2001).
RN [12]
RP SPLICE ISOFORM(S) THAT ARE POTENTIAL NMD TARGET(S).
RX PubMed=14759258; DOI=10.1186/gb-2004-5-2-r8;
RA Hillman R.T., Green R.E., Brenner S.E.;
RT "An unappreciated role for RNA surveillance.";
RL Genome Biol. 5:R8.1-R8.16(2004).
RN [13]
RP INTERACTION WITH UBQLN4.
RX PubMed=15280365; DOI=10.1074/jbc.M406284200;
RA Riley B.E., Xu Y., Zoghbi H.Y., Orr H.T.;
RT "The effects of the polyglutamine repeat protein ataxin-1 on the UbL-
RT UBA protein A1Up.";
RL J. Biol. Chem. 279:42290-42301(2004).
RN [14]
RP INTERACTION WITH SQSTM1.
RX PubMed=15340068; DOI=10.1128/MCB.24.18.8055-8068.2004;
RA Seibenhener M.L., Babu J.R., Geetha T., Wong H.C., Krishna N.R.,
RA Wooten M.W.;
RT "Sequestosome 1/p62 is a polyubiquitin chain binding protein involved
RT in ubiquitin proteasome degradation.";
RL Mol. Cell. Biol. 24:8055-8068(2004).
RN [15]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-358 AND SER-361, AND
RP MASS SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17323924; DOI=10.1021/bi061994u;
RA Wang X., Chen C.-F., Baker P.R., Chen P.-L., Kaiser P., Huang L.;
RT "Mass spectrometric characterization of the affinity-purified human
RT 26S proteasome complex.";
RL Biochemistry 46:3553-3565(2007).
RN [16]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17525332; DOI=10.1126/science.1140321;
RA Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
RA Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
RA Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
RT "ATM and ATR substrate analysis reveals extensive protein networks
RT responsive to DNA damage.";
RL Science 316:1160-1166(2007).
RN [17]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [19]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [20]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [21]
RP INTERACTION WITH UBE3A.
RX PubMed=22645313; DOI=10.1128/MCB.00201-12;
RA Martinez-Noel G., Galligan J.T., Sowa M.E., Arndt V., Overton T.M.,
RA Harper J.W., Howley P.M.;
RT "Identification and proteomic analysis of distinct UBE3A/E6AP protein
RT complexes.";
RL Mol. Cell. Biol. 32:3095-3106(2012).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [23]
RP STRUCTURE BY NMR OF 263-306 IN COMPLEX WITH HR23A UBIQUITIN-LIKE
RP DOMAIN.
RX PubMed=12970176; DOI=10.1093/emboj/cdg467;
RA Mueller T.D., Feigon J.;
RT "Structural determinants for the binding of ubiquitin-like domains to
RT the proteasome.";
RL EMBO J. 22:4634-4645(2003).
RN [24]
RP STRUCTURE BY NMR OF 260-307 IN COMPLEX WITH HR23B UBIQUITIN-LIKE
RP DOMAIN.
RX PubMed=14585839; DOI=10.1074/jbc.M309448200;
RA Fujiwara K., Tenno T., Sugasawa K., Jee J.-G., Ohki I., Kojima C.,
RA Tochio H., Hiroaki H., Hanaoka F., Shirakawa M.;
RT "Structure of the ubiquitin-interacting motif of S5a bound to the
RT ubiquitin-like domain of HR23B.";
RL J. Biol. Chem. 279:4760-4767(2004).
CC -!- FUNCTION: Binds and presumably selects ubiquitin-conjugates for
CC destruction. Displays selectivity for longer polyubiquitin chains.
CC Modulates intestinal fluid secretion.
CC -!- SUBUNIT: The 26S proteasome is composed of a core protease, known
CC as the 20S proteasome, capped at one or both ends by the 19S
CC regulatory complex (RC). The RC is composed of at least 18
CC different subunits in two subcomplexes, the base and the lid,
CC which form the portions proximal and distal to the 20S proteolytic
CC core, respectively. Directly interacts with NUB1. Interacts with
CC SQSTM1. Interacts with UBQLN4. Interacts with UBE3A.
CC -!- INTERACTION:
CC Self; NbExp=3; IntAct=EBI-359318, EBI-359318;
CC Q16186:ADRM1; NbExp=2; IntAct=EBI-359318, EBI-954387;
CC P48510:DSK2 (xeno); NbExp=2; IntAct=EBI-359318, EBI-6174;
CC Q9SII8:DSK2B (xeno); NbExp=3; IntAct=EBI-359318, EBI-4433040;
CC P24610:Pax3 (xeno); NbExp=3; IntAct=EBI-359318, EBI-1208116;
CC P54725:RAD23A; NbExp=3; IntAct=EBI-359318, EBI-746453;
CC Q84L32:RAD23A (xeno); NbExp=3; IntAct=EBI-359318, EBI-6394924;
CC P54727:RAD23B; NbExp=12; IntAct=EBI-359318, EBI-954531;
CC Q62921:Rbck1 (xeno); NbExp=3; IntAct=EBI-359318, EBI-7266339;
CC Q9P0W5:SCHIP1; NbExp=2; IntAct=EBI-359318, EBI-1397509;
CC P0CG48:UBC; NbExp=8; IntAct=EBI-359318, EBI-3390054;
CC Q9UMX0:UBQLN1; NbExp=6; IntAct=EBI-359318, EBI-741480;
CC Q9UHD9:UBQLN2; NbExp=3; IntAct=EBI-359318, EBI-947187;
CC Q9Y5K5:UCHL5; NbExp=5; IntAct=EBI-359318, EBI-1051183;
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seem to exist;
CC Name=Rpn10A;
CC IsoId=P55036-1; Sequence=Displayed;
CC Name=Rpn10E;
CC IsoId=P55036-2; Sequence=VSP_005291, VSP_005292;
CC Note=May be produced at very low levels due to a premature stop
CC codon in the mRNA, leading to nonsense-mediated mRNA decay;
CC -!- DOMAIN: The 2 UIM motifs are involved in the binding to a multi-
CC ubiquitin chain in a cooperative way.
CC -!- SIMILARITY: Belongs to the proteasome subunit S5A family.
CC -!- SIMILARITY: Contains 2 UIM (ubiquitin-interacting motif) repeats.
CC -!- SIMILARITY: Contains 1 VWFA domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U51007; AAC50433.1; -; mRNA.
DR EMBL; U24704; AAB54057.1; -; mRNA.
DR EMBL; AB033605; BAA97581.1; -; mRNA.
DR EMBL; AL391069; CAH70329.1; -; Genomic_DNA.
DR EMBL; AL592424; CAH70329.1; JOINED; Genomic_DNA.
DR EMBL; AL592424; CAI16390.1; -; Genomic_DNA.
DR EMBL; AL391069; CAI16390.1; JOINED; Genomic_DNA.
DR EMBL; CH471121; EAW53457.1; -; Genomic_DNA.
DR EMBL; CH471121; EAW53458.1; -; Genomic_DNA.
DR EMBL; BC002365; AAH02365.1; -; mRNA.
DR EMBL; BC072008; AAH72008.1; -; mRNA.
DR EMBL; U72664; AAB68598.1; -; mRNA.
DR PIR; S63671; S63671.
DR RefSeq; NP_002801.1; NM_002810.2.
DR UniGene; Hs.505059; -.
DR PDB; 1P9C; NMR; -; A=263-307.
DR PDB; 1P9D; NMR; -; S=263-307.
DR PDB; 1UEL; NMR; -; B=263-307.
DR PDB; 1YX4; NMR; -; A=196-306.
DR PDB; 1YX5; NMR; -; A=196-306.
DR PDB; 1YX6; NMR; -; A=196-306.
DR PDB; 2KDE; NMR; -; A=196-306.
DR PDB; 2KDF; NMR; -; A=196-306.
DR PDBsum; 1P9C; -.
DR PDBsum; 1P9D; -.
DR PDBsum; 1UEL; -.
DR PDBsum; 1YX4; -.
DR PDBsum; 1YX5; -.
DR PDBsum; 1YX6; -.
DR PDBsum; 2KDE; -.
DR PDBsum; 2KDF; -.
DR ProteinModelPortal; P55036; -.
DR SMR; P55036; 1-193, 196-306.
DR IntAct; P55036; 58.
DR MINT; MINT-105366; -.
DR STRING; 9606.ENSP00000357879; -.
DR PhosphoSite; P55036; -.
DR DMDM; 1709796; -.
DR PaxDb; P55036; -.
DR PRIDE; P55036; -.
DR DNASU; 5710; -.
DR Ensembl; ENST00000368884; ENSP00000357879; ENSG00000159352.
DR GeneID; 5710; -.
DR KEGG; hsa:5710; -.
DR UCSC; uc001exl.3; human.
DR CTD; 5710; -.
DR GeneCards; GC01P151227; -.
DR HGNC; HGNC:9561; PSMD4.
DR HPA; CAB047300; -.
DR HPA; HPA039252; -.
DR MIM; 601648; gene.
DR neXtProt; NX_P55036; -.
DR PharmGKB; PA33907; -.
DR eggNOG; COG5148; -.
DR HOGENOM; HOG000165630; -.
DR HOVERGEN; HBG000425; -.
DR KO; K03029; -.
DR OrthoDB; EOG70W3DM; -.
DR PhylomeDB; P55036; -.
DR Reactome; REACT_111102; Signal Transduction.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_115566; Cell Cycle.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_13505; Proteasome mediated degradation of PAK-2p34.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_21300; Mitotic M-M/G1 phases.
DR Reactome; REACT_383; DNA Replication.
DR Reactome; REACT_578; Apoptosis.
DR Reactome; REACT_6850; Cdc20:Phospho-APC/C mediated degradation of Cyclin A.
DR Reactome; REACT_6900; Immune System.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; PSMD4; human.
DR EvolutionaryTrace; P55036; -.
DR GeneWiki; PSMD4; -.
DR GenomeRNAi; 5710; -.
DR NextBio; 22186; -.
DR PRO; PR:P55036; -.
DR ArrayExpress; P55036; -.
DR Bgee; P55036; -.
DR CleanEx; HS_PSMD4; -.
DR Genevestigator; P55036; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0022624; C:proteasome accessory complex; ISS:UniProtKB.
DR GO; GO:0008540; C:proteasome regulatory particle, base subcomplex; IEA:InterPro.
DR GO; GO:0031145; P:anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; TAS:Reactome.
DR GO; GO:0002479; P:antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent; TAS:Reactome.
DR GO; GO:0006915; P:apoptotic process; TAS:Reactome.
DR GO; GO:0006977; P:DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest; TAS:Reactome.
DR GO; GO:0000082; P:G1/S transition of mitotic cell cycle; TAS:Reactome.
DR GO; GO:0010467; P:gene expression; TAS:Reactome.
DR GO; GO:0016071; P:mRNA metabolic process; TAS:Reactome.
DR GO; GO:0043066; P:negative regulation of apoptotic process; TAS:Reactome.
DR GO; GO:0051436; P:negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; TAS:Reactome.
DR GO; GO:0051437; P:positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; TAS:Reactome.
DR GO; GO:0000209; P:protein polyubiquitination; TAS:Reactome.
DR GO; GO:0006521; P:regulation of cellular amino acid metabolic process; TAS:Reactome.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR GO; GO:0016032; P:viral process; TAS:Reactome.
DR Gene3D; 3.40.50.410; -; 1.
DR InterPro; IPR027040; Proteasome_su_Rpn10.
DR InterPro; IPR003903; Ubiquitin-int_motif.
DR InterPro; IPR002035; VWF_A.
DR PANTHER; PTHR10223; PTHR10223; 1.
DR Pfam; PF02809; UIM; 2.
DR SMART; SM00726; UIM; 2.
DR SMART; SM00327; VWA; 1.
DR PROSITE; PS50330; UIM; 2.
DR PROSITE; PS50234; VWFA; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Complete proteome;
KW Direct protein sequencing; Phosphoprotein; Proteasome;
KW Reference proteome; Repeat.
FT CHAIN 1 377 26S proteasome non-ATPase regulatory
FT subunit 4.
FT /FTId=PRO_0000173828.
FT DOMAIN 5 188 VWFA.
FT REPEAT 211 230 UIM 1.
FT REPEAT 282 301 UIM 2.
FT REGION 216 220 Essential for ubiquitin-binding.
FT REGION 287 291 Essential for ubiquitin-binding.
FT COMPBIAS 238 246 Poly-Ala.
FT MOD_RES 250 250 Phosphothreonine (By similarity).
FT MOD_RES 266 266 Phosphoserine.
FT MOD_RES 358 358 Phosphoserine.
FT MOD_RES 361 361 Phosphoserine.
FT VAR_SEQ 255 268 DSDDALLKMTISQQ -> GERGGIRSPGTAGC (in
FT isoform Rpn10E).
FT /FTId=VSP_005291.
FT VAR_SEQ 269 377 Missing (in isoform Rpn10E).
FT /FTId=VSP_005292.
FT STRAND 201 203
FT STRAND 205 208
FT HELIX 210 212
FT HELIX 214 244
FT STRAND 245 249
FT STRAND 268 270
FT STRAND 273 275
FT HELIX 278 294
FT STRAND 296 300
FT STRAND 302 304
SQ SEQUENCE 377 AA; 40737 MW; EC712EC4DB1CE9AB CRC64;
MVLESTMVCV DNSEYMRNGD FLPTRLQAQQ DAVNIVCHSK TRSNPENNVG LITLANDCEV
LTTLTPDTGR ILSKLHTVQP KGKITFCTGI RVAHLALKHR QGKNHKMRII AFVGSPVEDN
EKDLVKLAKR LKKEKVNVDI INFGEEEVNT EKLTAFVNTL NGKDGTGSHL VTVPPGPSLA
DALISSPILA GEGGAMLGLG ASDFEFGVDP SADPELALAL RVSMEEQRQR QEEEARRAAA
ASAAEAGIAT TGTEDSDDAL LKMTISQQEF GRTGLPDLSS MTEEEQIAYA MQMSLQGAEF
GQAESADIDA SSAMDTSEPA KEEDDYDVMQ DPEFLQSVLE NLPGVDPNNE AIRNAMGSLA
SQATKDGKKD KKEEDKK
//
ID PSMD4_HUMAN Reviewed; 377 AA.
AC P55036; D3DV16; Q5VWC5; Q9NS92;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-OCT-1996, sequence version 1.
DT 22-JAN-2014, entry version 141.
DE RecName: Full=26S proteasome non-ATPase regulatory subunit 4;
DE AltName: Full=26S proteasome regulatory subunit RPN10;
DE AltName: Full=26S proteasome regulatory subunit S5A;
DE AltName: Full=Antisecretory factor 1;
DE Short=AF;
DE Short=ASF;
DE AltName: Full=Multiubiquitin chain-binding protein;
GN Name=PSMD4; Synonyms=MCB1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PROTEIN SEQUENCE OF 63-75 AND 130-140.
RC TISSUE=Pituitary;
RX PubMed=7657640; DOI=10.1074/jbc.270.35.20615;
RA Johansson E., Loennroth I., Lange S., Jonson I., Jennische E.,
RA Loennroth C.;
RT "Molecular cloning and expression of a pituitary gland protein
RT modulating intestinal fluid secretion.";
RL J. Biol. Chem. 270:20615-20620(1995).
RN [2]
RP SEQUENCE REVISION.
RA Loennroth I.;
RL Submitted (MAY-1997) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=8641424; DOI=10.1016/0014-5793(96)00101-9;
RA Ferrell K., Deveraux Q., van Nocker S., Rechsteiner M.;
RT "Molecular cloning and expression of a multiubiquitin chain binding
RT subunit of the human 26S protease.";
RL FEBS Lett. 381:143-148(1996).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA], AND ALTERNATIVE SPLICING.
RC TISSUE=Fetal brain;
RX PubMed=10921894; DOI=10.1093/emboj/19.15.4144;
RA Kawahara H., Kasahara M., Nishiyama A., Ohsumi K., Goto T.,
RA Kishimoto T., Saeki Y., Yokosawa H., Shimbara N., Murata S., Chiba T.,
RA Suzuki K., Tanaka K.;
RT "Developmentally regulated, alternative splicing of the Rpn10 gene
RT generates multiple forms of 26S proteasomes.";
RL EMBO J. 19:4144-4153(2000).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Liver, and Lung;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 70-377.
RC TISSUE=Brain;
RA Fraser P.E., Levesque G., Rogaeva E.A., Yu G., St George-Hyslop P.H.;
RT "Proteolysis of presenilin 1 is associated with the 26S proteasome and
RT is altered in Alzheimer's disease.";
RL Submitted (SEP-1996) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP CHARACTERIZATION.
RX PubMed=3524692;
RA Loennroth I., Lange S.;
RT "Purification and characterization of the antisecretory factor: a
RT protein in the central nervous system and in the gut which inhibits
RT intestinal hypersecretion induced by cholera toxin.";
RL Biochim. Biophys. Acta 883:138-144(1986).
RN [10]
RP POLYUBIQUITIN BINDING SITES.
RX PubMed=9488668; DOI=10.1074/jbc.273.10.5461;
RA Young P., Deveraux Q., Beal R.E., Pickart C.M., Rechsteiner M.;
RT "Characterization of two polyubiquitin binding sites in the 26 S
RT protease subunit 5a.";
RL J. Biol. Chem. 273:5461-5467(1998).
RN [11]
RP INTERACTION WITH NUB1.
RX PubMed=11585840; DOI=10.1074/jbc.M108636200;
RA Kamitani T., Kito K., Fukuda-Kamitani T., Yeh E.T.H.;
RT "Targeting of NEDD8 and its conjugates for proteasomal degradation by
RT NUB1.";
RL J. Biol. Chem. 276:46655-46660(2001).
RN [12]
RP SPLICE ISOFORM(S) THAT ARE POTENTIAL NMD TARGET(S).
RX PubMed=14759258; DOI=10.1186/gb-2004-5-2-r8;
RA Hillman R.T., Green R.E., Brenner S.E.;
RT "An unappreciated role for RNA surveillance.";
RL Genome Biol. 5:R8.1-R8.16(2004).
RN [13]
RP INTERACTION WITH UBQLN4.
RX PubMed=15280365; DOI=10.1074/jbc.M406284200;
RA Riley B.E., Xu Y., Zoghbi H.Y., Orr H.T.;
RT "The effects of the polyglutamine repeat protein ataxin-1 on the UbL-
RT UBA protein A1Up.";
RL J. Biol. Chem. 279:42290-42301(2004).
RN [14]
RP INTERACTION WITH SQSTM1.
RX PubMed=15340068; DOI=10.1128/MCB.24.18.8055-8068.2004;
RA Seibenhener M.L., Babu J.R., Geetha T., Wong H.C., Krishna N.R.,
RA Wooten M.W.;
RT "Sequestosome 1/p62 is a polyubiquitin chain binding protein involved
RT in ubiquitin proteasome degradation.";
RL Mol. Cell. Biol. 24:8055-8068(2004).
RN [15]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-358 AND SER-361, AND
RP MASS SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17323924; DOI=10.1021/bi061994u;
RA Wang X., Chen C.-F., Baker P.R., Chen P.-L., Kaiser P., Huang L.;
RT "Mass spectrometric characterization of the affinity-purified human
RT 26S proteasome complex.";
RL Biochemistry 46:3553-3565(2007).
RN [16]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17525332; DOI=10.1126/science.1140321;
RA Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,
RA Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,
RA Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
RT "ATM and ATR substrate analysis reveals extensive protein networks
RT responsive to DNA damage.";
RL Science 316:1160-1166(2007).
RN [17]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [19]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [20]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-266, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [21]
RP INTERACTION WITH UBE3A.
RX PubMed=22645313; DOI=10.1128/MCB.00201-12;
RA Martinez-Noel G., Galligan J.T., Sowa M.E., Arndt V., Overton T.M.,
RA Harper J.W., Howley P.M.;
RT "Identification and proteomic analysis of distinct UBE3A/E6AP protein
RT complexes.";
RL Mol. Cell. Biol. 32:3095-3106(2012).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [23]
RP STRUCTURE BY NMR OF 263-306 IN COMPLEX WITH HR23A UBIQUITIN-LIKE
RP DOMAIN.
RX PubMed=12970176; DOI=10.1093/emboj/cdg467;
RA Mueller T.D., Feigon J.;
RT "Structural determinants for the binding of ubiquitin-like domains to
RT the proteasome.";
RL EMBO J. 22:4634-4645(2003).
RN [24]
RP STRUCTURE BY NMR OF 260-307 IN COMPLEX WITH HR23B UBIQUITIN-LIKE
RP DOMAIN.
RX PubMed=14585839; DOI=10.1074/jbc.M309448200;
RA Fujiwara K., Tenno T., Sugasawa K., Jee J.-G., Ohki I., Kojima C.,
RA Tochio H., Hiroaki H., Hanaoka F., Shirakawa M.;
RT "Structure of the ubiquitin-interacting motif of S5a bound to the
RT ubiquitin-like domain of HR23B.";
RL J. Biol. Chem. 279:4760-4767(2004).
CC -!- FUNCTION: Binds and presumably selects ubiquitin-conjugates for
CC destruction. Displays selectivity for longer polyubiquitin chains.
CC Modulates intestinal fluid secretion.
CC -!- SUBUNIT: The 26S proteasome is composed of a core protease, known
CC as the 20S proteasome, capped at one or both ends by the 19S
CC regulatory complex (RC). The RC is composed of at least 18
CC different subunits in two subcomplexes, the base and the lid,
CC which form the portions proximal and distal to the 20S proteolytic
CC core, respectively. Directly interacts with NUB1. Interacts with
CC SQSTM1. Interacts with UBQLN4. Interacts with UBE3A.
CC -!- INTERACTION:
CC Self; NbExp=3; IntAct=EBI-359318, EBI-359318;
CC Q16186:ADRM1; NbExp=2; IntAct=EBI-359318, EBI-954387;
CC P48510:DSK2 (xeno); NbExp=2; IntAct=EBI-359318, EBI-6174;
CC Q9SII8:DSK2B (xeno); NbExp=3; IntAct=EBI-359318, EBI-4433040;
CC P24610:Pax3 (xeno); NbExp=3; IntAct=EBI-359318, EBI-1208116;
CC P54725:RAD23A; NbExp=3; IntAct=EBI-359318, EBI-746453;
CC Q84L32:RAD23A (xeno); NbExp=3; IntAct=EBI-359318, EBI-6394924;
CC P54727:RAD23B; NbExp=12; IntAct=EBI-359318, EBI-954531;
CC Q62921:Rbck1 (xeno); NbExp=3; IntAct=EBI-359318, EBI-7266339;
CC Q9P0W5:SCHIP1; NbExp=2; IntAct=EBI-359318, EBI-1397509;
CC P0CG48:UBC; NbExp=8; IntAct=EBI-359318, EBI-3390054;
CC Q9UMX0:UBQLN1; NbExp=6; IntAct=EBI-359318, EBI-741480;
CC Q9UHD9:UBQLN2; NbExp=3; IntAct=EBI-359318, EBI-947187;
CC Q9Y5K5:UCHL5; NbExp=5; IntAct=EBI-359318, EBI-1051183;
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seem to exist;
CC Name=Rpn10A;
CC IsoId=P55036-1; Sequence=Displayed;
CC Name=Rpn10E;
CC IsoId=P55036-2; Sequence=VSP_005291, VSP_005292;
CC Note=May be produced at very low levels due to a premature stop
CC codon in the mRNA, leading to nonsense-mediated mRNA decay;
CC -!- DOMAIN: The 2 UIM motifs are involved in the binding to a multi-
CC ubiquitin chain in a cooperative way.
CC -!- SIMILARITY: Belongs to the proteasome subunit S5A family.
CC -!- SIMILARITY: Contains 2 UIM (ubiquitin-interacting motif) repeats.
CC -!- SIMILARITY: Contains 1 VWFA domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U51007; AAC50433.1; -; mRNA.
DR EMBL; U24704; AAB54057.1; -; mRNA.
DR EMBL; AB033605; BAA97581.1; -; mRNA.
DR EMBL; AL391069; CAH70329.1; -; Genomic_DNA.
DR EMBL; AL592424; CAH70329.1; JOINED; Genomic_DNA.
DR EMBL; AL592424; CAI16390.1; -; Genomic_DNA.
DR EMBL; AL391069; CAI16390.1; JOINED; Genomic_DNA.
DR EMBL; CH471121; EAW53457.1; -; Genomic_DNA.
DR EMBL; CH471121; EAW53458.1; -; Genomic_DNA.
DR EMBL; BC002365; AAH02365.1; -; mRNA.
DR EMBL; BC072008; AAH72008.1; -; mRNA.
DR EMBL; U72664; AAB68598.1; -; mRNA.
DR PIR; S63671; S63671.
DR RefSeq; NP_002801.1; NM_002810.2.
DR UniGene; Hs.505059; -.
DR PDB; 1P9C; NMR; -; A=263-307.
DR PDB; 1P9D; NMR; -; S=263-307.
DR PDB; 1UEL; NMR; -; B=263-307.
DR PDB; 1YX4; NMR; -; A=196-306.
DR PDB; 1YX5; NMR; -; A=196-306.
DR PDB; 1YX6; NMR; -; A=196-306.
DR PDB; 2KDE; NMR; -; A=196-306.
DR PDB; 2KDF; NMR; -; A=196-306.
DR PDBsum; 1P9C; -.
DR PDBsum; 1P9D; -.
DR PDBsum; 1UEL; -.
DR PDBsum; 1YX4; -.
DR PDBsum; 1YX5; -.
DR PDBsum; 1YX6; -.
DR PDBsum; 2KDE; -.
DR PDBsum; 2KDF; -.
DR ProteinModelPortal; P55036; -.
DR SMR; P55036; 1-193, 196-306.
DR IntAct; P55036; 58.
DR MINT; MINT-105366; -.
DR STRING; 9606.ENSP00000357879; -.
DR PhosphoSite; P55036; -.
DR DMDM; 1709796; -.
DR PaxDb; P55036; -.
DR PRIDE; P55036; -.
DR DNASU; 5710; -.
DR Ensembl; ENST00000368884; ENSP00000357879; ENSG00000159352.
DR GeneID; 5710; -.
DR KEGG; hsa:5710; -.
DR UCSC; uc001exl.3; human.
DR CTD; 5710; -.
DR GeneCards; GC01P151227; -.
DR HGNC; HGNC:9561; PSMD4.
DR HPA; CAB047300; -.
DR HPA; HPA039252; -.
DR MIM; 601648; gene.
DR neXtProt; NX_P55036; -.
DR PharmGKB; PA33907; -.
DR eggNOG; COG5148; -.
DR HOGENOM; HOG000165630; -.
DR HOVERGEN; HBG000425; -.
DR KO; K03029; -.
DR OrthoDB; EOG70W3DM; -.
DR PhylomeDB; P55036; -.
DR Reactome; REACT_111102; Signal Transduction.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_115566; Cell Cycle.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_13505; Proteasome mediated degradation of PAK-2p34.
DR Reactome; REACT_21257; Metabolism of RNA.
DR Reactome; REACT_21300; Mitotic M-M/G1 phases.
DR Reactome; REACT_383; DNA Replication.
DR Reactome; REACT_578; Apoptosis.
DR Reactome; REACT_6850; Cdc20:Phospho-APC/C mediated degradation of Cyclin A.
DR Reactome; REACT_6900; Immune System.
DR Reactome; REACT_71; Gene Expression.
DR ChiTaRS; PSMD4; human.
DR EvolutionaryTrace; P55036; -.
DR GeneWiki; PSMD4; -.
DR GenomeRNAi; 5710; -.
DR NextBio; 22186; -.
DR PRO; PR:P55036; -.
DR ArrayExpress; P55036; -.
DR Bgee; P55036; -.
DR CleanEx; HS_PSMD4; -.
DR Genevestigator; P55036; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0022624; C:proteasome accessory complex; ISS:UniProtKB.
DR GO; GO:0008540; C:proteasome regulatory particle, base subcomplex; IEA:InterPro.
DR GO; GO:0031145; P:anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; TAS:Reactome.
DR GO; GO:0002479; P:antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent; TAS:Reactome.
DR GO; GO:0006915; P:apoptotic process; TAS:Reactome.
DR GO; GO:0006977; P:DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest; TAS:Reactome.
DR GO; GO:0000082; P:G1/S transition of mitotic cell cycle; TAS:Reactome.
DR GO; GO:0010467; P:gene expression; TAS:Reactome.
DR GO; GO:0016071; P:mRNA metabolic process; TAS:Reactome.
DR GO; GO:0043066; P:negative regulation of apoptotic process; TAS:Reactome.
DR GO; GO:0051436; P:negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; TAS:Reactome.
DR GO; GO:0051437; P:positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle; TAS:Reactome.
DR GO; GO:0000209; P:protein polyubiquitination; TAS:Reactome.
DR GO; GO:0006521; P:regulation of cellular amino acid metabolic process; TAS:Reactome.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR GO; GO:0016032; P:viral process; TAS:Reactome.
DR Gene3D; 3.40.50.410; -; 1.
DR InterPro; IPR027040; Proteasome_su_Rpn10.
DR InterPro; IPR003903; Ubiquitin-int_motif.
DR InterPro; IPR002035; VWF_A.
DR PANTHER; PTHR10223; PTHR10223; 1.
DR Pfam; PF02809; UIM; 2.
DR SMART; SM00726; UIM; 2.
DR SMART; SM00327; VWA; 1.
DR PROSITE; PS50330; UIM; 2.
DR PROSITE; PS50234; VWFA; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Complete proteome;
KW Direct protein sequencing; Phosphoprotein; Proteasome;
KW Reference proteome; Repeat.
FT CHAIN 1 377 26S proteasome non-ATPase regulatory
FT subunit 4.
FT /FTId=PRO_0000173828.
FT DOMAIN 5 188 VWFA.
FT REPEAT 211 230 UIM 1.
FT REPEAT 282 301 UIM 2.
FT REGION 216 220 Essential for ubiquitin-binding.
FT REGION 287 291 Essential for ubiquitin-binding.
FT COMPBIAS 238 246 Poly-Ala.
FT MOD_RES 250 250 Phosphothreonine (By similarity).
FT MOD_RES 266 266 Phosphoserine.
FT MOD_RES 358 358 Phosphoserine.
FT MOD_RES 361 361 Phosphoserine.
FT VAR_SEQ 255 268 DSDDALLKMTISQQ -> GERGGIRSPGTAGC (in
FT isoform Rpn10E).
FT /FTId=VSP_005291.
FT VAR_SEQ 269 377 Missing (in isoform Rpn10E).
FT /FTId=VSP_005292.
FT STRAND 201 203
FT STRAND 205 208
FT HELIX 210 212
FT HELIX 214 244
FT STRAND 245 249
FT STRAND 268 270
FT STRAND 273 275
FT HELIX 278 294
FT STRAND 296 300
FT STRAND 302 304
SQ SEQUENCE 377 AA; 40737 MW; EC712EC4DB1CE9AB CRC64;
MVLESTMVCV DNSEYMRNGD FLPTRLQAQQ DAVNIVCHSK TRSNPENNVG LITLANDCEV
LTTLTPDTGR ILSKLHTVQP KGKITFCTGI RVAHLALKHR QGKNHKMRII AFVGSPVEDN
EKDLVKLAKR LKKEKVNVDI INFGEEEVNT EKLTAFVNTL NGKDGTGSHL VTVPPGPSLA
DALISSPILA GEGGAMLGLG ASDFEFGVDP SADPELALAL RVSMEEQRQR QEEEARRAAA
ASAAEAGIAT TGTEDSDDAL LKMTISQQEF GRTGLPDLSS MTEEEQIAYA MQMSLQGAEF
GQAESADIDA SSAMDTSEPA KEEDDYDVMQ DPEFLQSVLE NLPGVDPNNE AIRNAMGSLA
SQATKDGKKD KKEEDKK
//
MIM
601648
*RECORD*
*FIELD* NO
601648
*FIELD* TI
*601648 PROTEASOME 26S SUBUNIT, NON-ATPase, 4; PSMD4
;;PROTEASE 26S, SUBUNIT 5A; S5A;;
read moreRPN10
*FIELD* TX
DESCRIPTION
Ubiquitination targets proteins for degradation by the 26S proteasome.
The 26S proteasome contains a 20S catalytic core particle (see 602175)
capped at either or both ends by 19S regulatory particles, which prepare
substrates for hydrolysis in the core region. PSMD4 is a component of
the regulatory particle that functions as a polyubiquitin receptor and
captures substrates by recognizing their covalently attached ubiquitin
chains (Zhang et al., 2009).
CLONING
Deveraux et al. (1994) identified a 50-kD subunit of the regulatory
complex of the 26S proteasome. They called this protein subunit-5 (S5)
based upon its relative mobility on SDS-polyacrylamide gels. Deveraux et
al. (1994) demonstrated that 2 distinct subunits of the 26S protease
migrate as 50-kD proteins, and thus, S5 represents 2 proteins, which the
authors termed S5A, also called PSMD4, and S5B (PSMD5; 604452). PSMD4
focuses at pH 4.6 on 2-dimensional gels.
Ferrell et al. (1996) cloned a HeLa cell cDNA encoding S5A using cDNA
probes based upon the sequence of Mbp1, an Arabidopsis protein
physically, immunologically, and biochemically similar to S5A. The HeLa
cell-derived cDNA sequence is highly similar to Mbp1 and encodes
polypeptides obtained directly from human erythrocyte S5A. Expression of
recombinant S5A in E. coli resulted in a protein with an apparent
molecular mass matching that of the purified S5A subunit. The deduced
378-amino acid protein has a calculated molecular mass of 40.3 kD. S5A
has several domains that are highly conserved between Arabidopsis,
Drosophila, and Saccharomyces orthologs. A conserved 190-amino acid
N-terminal domain is followed by a conserved glycine-rich region, a
conserved C-terminal half containing repeated sequences, and a C
terminus rich in lysine and glutamate residues (KEKE region).
Using deletion analysis, Young et al. (1998) identified 2 conserved
polyubiquitin-binding sites in the C-terminal half of human S5A. These
sites, which the authors called PUbS1 and PUbS2, are about 30 amino
acids long and are separated by a 50-amino acid linker.
By PCR of an adult mouse testis cDNA library, Kawahara et al. (2000)
cloned mouse Rpn10a, which encodes a protein 95% identical to human S5A.
They cloned 4 other variants of mouse Rpn10, Rpn10b through Rpn10e, by
PCR of embryos and embryonic stem cells. The 5 Rpn10 variants differ in
the splicing of their last 4 exons, exons 7 through 10. The deduced
proteins are identical in their N-terminal halves, including the PUbS1,
but differ in their C-terminal halves by the presence or absence of a
short insertion between PUbS1 and PUbS2 and by various C-terminal
truncations. Only Rpn10a and Rpn10b contain the C-terminal KEKE region.
The shortest mouse isoform, Rpn10e, is truncated following PUbS1.
Kawahara et al. (2000) cloned human RPN10e by PCR of a human fetal brain
cDNA library. RT-PCR detected ubiquitous expression of mouse Rpn10a,
whereas Rpn10e was expressed exclusively in mouse embryos, with highest
expression in embryonic brain.
GENE FUNCTION
Deveraux et al. (1994) found that S5 bound ubiquitinated lysozyme as
well as free polymers of ubiquitin. S5 efficiently bound to tetrameric
ubiquitin and selected for longer ubiquitin polymers, a property
consistent with characteristics expected of a component that selects
ubiquitin conjugates for proteolysis. Deveraux et al. (1994) showed that
S5A bound to ubiquitin polymers in vitro, whereas S5B did not.
Ferrell et al. (1996) found that recombinant human S5A bound
multiubiquitin chains in a manner similar to that shown by the
endogenous erythrocyte proteasome regulatory complex.
Using deletion analysis, Young et al. (1998) found that PUbS1 and PUbS2
were required to bind ubiquitin. PUbS1 and PUbS2 differed by at least
10-fold in their apparent affinity for ubiquitin trimers and tetramers,
and in full-length S5A, they appeared to bind polyubiquitin chains in a
cooperative manner. Full-length S5A inhibited ubiquitin-lysozyme
conjugate degradation in rabbit reticulocyte lysates.
Kawahara et al. (2000) identified mouse Rpn10e as a component of an
embryo-specific proteasome. Both mouse Rpn10a and Rpn10e bound
multiubiquitinated lysozyme with similar affinities in vitro, and they
inhibited degradation of multiubiquitinated lysozyme by the proteasome
with similar efficiency. However, unlike Rpn10a, Rpn10e was unable to
inhibit degradation of cyclin B2 (CCNB2; 602755) in Xenopus egg
extracts.
Husnjak et al. (2008) reported the identification of Rpn13/ARM1 (ADRM1;
610650), a component of the proteasome, as a ubiquitin receptor. Like
proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds
ubiquitin-like domains of ubiquitin-like ubiquitin-associated proteins.
In yeast, a synthetic phenotype results when specific mutations of the
ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating
functional linkage between these ubiquitin receptors. Because Rpn13 is
also the proteasomal receptor for Uch37 (610667), a deubiquitinating
enzyme, Husnjak et al. (2008) concluded that their findings suggested a
coupling of chain recognition and disassembly at the proteasome.
BIOCHEMICAL FEATURES
Using nuclear magnetic resonance and analytical ultracentrifugation,
Zhang et al. (2009) characterized binding between the isolated
ubiquitin-interacting motifs (UIMs) of S5A and lys48 (K48)-linked
diubiquitin, in which K48 of the proximal ubiquitin subunit was
covalently bound to gly76 (G76) of the distal subunit. The UIMs of S5A
bound diubiquitin simultaneously, with a preference for UIM2 binding the
proximal subunit and UIM1 binding the distal subunit. The coordinated
binding of both UIMs to diubiquitin showed higher affinity than binding
of either UIM to monoubiquitin. S5A and RPN13 could bind a common
diubiquitin chain. In these complexes, RPN13 preferentially bound the
proximal subunit, and the 2 UIMs of S5A competed for the distal subunit.
Since the 2 UIMs of S5A preferentially bound separate ubiquitin subunits
in diubiquitin in the absence of RPN13, that authors suggested that the
UIMs of S5A would likely occupy separate ubiquitin subunits in longer
ubiquitin chains.
MAPPING
Hartz (2009) mapped the PSMD4 gene to chromosome 1q21.3 based on an
alignment of the PSMD4 sequence (GenBank GENBANK U24704) with the
genomic sequence (GRCh37).
Kawahara et al. (2000) mapped the mouse Psmd4 gene to chromosome 3.
*FIELD* SA
Deveraux et al. (1995)
*FIELD* RF
1. Deveraux, Q.; Jensen, C.; Rechsteiner, M.: Molecular cloning and
expression of a 26 S protease subunit enriched in dileucine repeats. J.
Biol. Chem. 270: 23726-23729, 1995.
2. Deveraux, Q.; Ustrell, V.; Pickart, C.; Rechsteiner, M.: A 26
S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269:
7059-7061, 1994.
3. Ferrell, K.; Deveraux, Q.; van Nocker, S.; Rechsteiner, M.: Molecular
cloning and expression of a multiubiquitin chain binding subunit of
the human 26S protease. FEBS Lett. 381: 143-148, 1996.
4. Hartz, P. A.: Personal Communication. Baltimore, Md. 10/5/2009.
5. Husnjak, K.; Elsasser, S.; Zhang, N.; Chen, X.; Randles, L.; Shi,
Y.; Hofmann, K.; Walters, K. J.; Finley, D.; Dikic, I.: Proteasome
subunit Rpn13 is a novel ubiquitin receptor. Nature 453: 481-488,
2008.
6. Kawahara, H.; Kasahara, M.; Nishiyama, A.; Ohsumi, K.; Goto, T.;
Kishimoto, T.; Saeki, Y.; Yokosawa, H.; Shimbara, N.; Murata, S.;
Chiba, T.; Suzuki, K.; Tanaka, K.: Developmentally regulated, alternative
splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO
J. 19: 4144-4153, 2000.
7. Young, P.; Deveraux, Q.; Beal, R. E.; Pickart, C. M.; Rechsteiner,
M.: Characterization of two polyubiquitin binding sites in the 26
S protease subunit 5a. J. Biol. Chem. 273: 5461-5467, 1998.
8. Zhang, N.; Wang, Q.; Ehlinger, A.; Randles, L.; Lary, J. W.; Kang,
Y.; Haririnia, A.; Storaska, A. J.; Cole, J. L.; Fushman, D.; Walters,
K. J.: Structure of the S5a:K48-linked diubiquitin complex and its
interactions with Rpn13. Molec. Cell 35: 280-290, 2009.
*FIELD* CN
Patricia A. Hartz - updated: 9/21/2009
Ada Hamosh - updated: 6/3/2008
Patti M. Sherman - updated: 1/21/2000
*FIELD* CD
Mark H. Paalman: 4/3/1997
*FIELD* ED
mgross: 10/05/2009
mgross: 10/5/2009
terry: 9/21/2009
alopez: 6/3/2008
terry: 6/3/2008
mgross: 1/24/2000
psherman: 1/21/2000
alopez: 10/5/1998
mark: 6/5/1997
alopez: 6/4/1997
mark: 6/3/1997
mark: 4/3/1997
*RECORD*
*FIELD* NO
601648
*FIELD* TI
*601648 PROTEASOME 26S SUBUNIT, NON-ATPase, 4; PSMD4
;;PROTEASE 26S, SUBUNIT 5A; S5A;;
read moreRPN10
*FIELD* TX
DESCRIPTION
Ubiquitination targets proteins for degradation by the 26S proteasome.
The 26S proteasome contains a 20S catalytic core particle (see 602175)
capped at either or both ends by 19S regulatory particles, which prepare
substrates for hydrolysis in the core region. PSMD4 is a component of
the regulatory particle that functions as a polyubiquitin receptor and
captures substrates by recognizing their covalently attached ubiquitin
chains (Zhang et al., 2009).
CLONING
Deveraux et al. (1994) identified a 50-kD subunit of the regulatory
complex of the 26S proteasome. They called this protein subunit-5 (S5)
based upon its relative mobility on SDS-polyacrylamide gels. Deveraux et
al. (1994) demonstrated that 2 distinct subunits of the 26S protease
migrate as 50-kD proteins, and thus, S5 represents 2 proteins, which the
authors termed S5A, also called PSMD4, and S5B (PSMD5; 604452). PSMD4
focuses at pH 4.6 on 2-dimensional gels.
Ferrell et al. (1996) cloned a HeLa cell cDNA encoding S5A using cDNA
probes based upon the sequence of Mbp1, an Arabidopsis protein
physically, immunologically, and biochemically similar to S5A. The HeLa
cell-derived cDNA sequence is highly similar to Mbp1 and encodes
polypeptides obtained directly from human erythrocyte S5A. Expression of
recombinant S5A in E. coli resulted in a protein with an apparent
molecular mass matching that of the purified S5A subunit. The deduced
378-amino acid protein has a calculated molecular mass of 40.3 kD. S5A
has several domains that are highly conserved between Arabidopsis,
Drosophila, and Saccharomyces orthologs. A conserved 190-amino acid
N-terminal domain is followed by a conserved glycine-rich region, a
conserved C-terminal half containing repeated sequences, and a C
terminus rich in lysine and glutamate residues (KEKE region).
Using deletion analysis, Young et al. (1998) identified 2 conserved
polyubiquitin-binding sites in the C-terminal half of human S5A. These
sites, which the authors called PUbS1 and PUbS2, are about 30 amino
acids long and are separated by a 50-amino acid linker.
By PCR of an adult mouse testis cDNA library, Kawahara et al. (2000)
cloned mouse Rpn10a, which encodes a protein 95% identical to human S5A.
They cloned 4 other variants of mouse Rpn10, Rpn10b through Rpn10e, by
PCR of embryos and embryonic stem cells. The 5 Rpn10 variants differ in
the splicing of their last 4 exons, exons 7 through 10. The deduced
proteins are identical in their N-terminal halves, including the PUbS1,
but differ in their C-terminal halves by the presence or absence of a
short insertion between PUbS1 and PUbS2 and by various C-terminal
truncations. Only Rpn10a and Rpn10b contain the C-terminal KEKE region.
The shortest mouse isoform, Rpn10e, is truncated following PUbS1.
Kawahara et al. (2000) cloned human RPN10e by PCR of a human fetal brain
cDNA library. RT-PCR detected ubiquitous expression of mouse Rpn10a,
whereas Rpn10e was expressed exclusively in mouse embryos, with highest
expression in embryonic brain.
GENE FUNCTION
Deveraux et al. (1994) found that S5 bound ubiquitinated lysozyme as
well as free polymers of ubiquitin. S5 efficiently bound to tetrameric
ubiquitin and selected for longer ubiquitin polymers, a property
consistent with characteristics expected of a component that selects
ubiquitin conjugates for proteolysis. Deveraux et al. (1994) showed that
S5A bound to ubiquitin polymers in vitro, whereas S5B did not.
Ferrell et al. (1996) found that recombinant human S5A bound
multiubiquitin chains in a manner similar to that shown by the
endogenous erythrocyte proteasome regulatory complex.
Using deletion analysis, Young et al. (1998) found that PUbS1 and PUbS2
were required to bind ubiquitin. PUbS1 and PUbS2 differed by at least
10-fold in their apparent affinity for ubiquitin trimers and tetramers,
and in full-length S5A, they appeared to bind polyubiquitin chains in a
cooperative manner. Full-length S5A inhibited ubiquitin-lysozyme
conjugate degradation in rabbit reticulocyte lysates.
Kawahara et al. (2000) identified mouse Rpn10e as a component of an
embryo-specific proteasome. Both mouse Rpn10a and Rpn10e bound
multiubiquitinated lysozyme with similar affinities in vitro, and they
inhibited degradation of multiubiquitinated lysozyme by the proteasome
with similar efficiency. However, unlike Rpn10a, Rpn10e was unable to
inhibit degradation of cyclin B2 (CCNB2; 602755) in Xenopus egg
extracts.
Husnjak et al. (2008) reported the identification of Rpn13/ARM1 (ADRM1;
610650), a component of the proteasome, as a ubiquitin receptor. Like
proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds
ubiquitin-like domains of ubiquitin-like ubiquitin-associated proteins.
In yeast, a synthetic phenotype results when specific mutations of the
ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating
functional linkage between these ubiquitin receptors. Because Rpn13 is
also the proteasomal receptor for Uch37 (610667), a deubiquitinating
enzyme, Husnjak et al. (2008) concluded that their findings suggested a
coupling of chain recognition and disassembly at the proteasome.
BIOCHEMICAL FEATURES
Using nuclear magnetic resonance and analytical ultracentrifugation,
Zhang et al. (2009) characterized binding between the isolated
ubiquitin-interacting motifs (UIMs) of S5A and lys48 (K48)-linked
diubiquitin, in which K48 of the proximal ubiquitin subunit was
covalently bound to gly76 (G76) of the distal subunit. The UIMs of S5A
bound diubiquitin simultaneously, with a preference for UIM2 binding the
proximal subunit and UIM1 binding the distal subunit. The coordinated
binding of both UIMs to diubiquitin showed higher affinity than binding
of either UIM to monoubiquitin. S5A and RPN13 could bind a common
diubiquitin chain. In these complexes, RPN13 preferentially bound the
proximal subunit, and the 2 UIMs of S5A competed for the distal subunit.
Since the 2 UIMs of S5A preferentially bound separate ubiquitin subunits
in diubiquitin in the absence of RPN13, that authors suggested that the
UIMs of S5A would likely occupy separate ubiquitin subunits in longer
ubiquitin chains.
MAPPING
Hartz (2009) mapped the PSMD4 gene to chromosome 1q21.3 based on an
alignment of the PSMD4 sequence (GenBank GENBANK U24704) with the
genomic sequence (GRCh37).
Kawahara et al. (2000) mapped the mouse Psmd4 gene to chromosome 3.
*FIELD* SA
Deveraux et al. (1995)
*FIELD* RF
1. Deveraux, Q.; Jensen, C.; Rechsteiner, M.: Molecular cloning and
expression of a 26 S protease subunit enriched in dileucine repeats. J.
Biol. Chem. 270: 23726-23729, 1995.
2. Deveraux, Q.; Ustrell, V.; Pickart, C.; Rechsteiner, M.: A 26
S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269:
7059-7061, 1994.
3. Ferrell, K.; Deveraux, Q.; van Nocker, S.; Rechsteiner, M.: Molecular
cloning and expression of a multiubiquitin chain binding subunit of
the human 26S protease. FEBS Lett. 381: 143-148, 1996.
4. Hartz, P. A.: Personal Communication. Baltimore, Md. 10/5/2009.
5. Husnjak, K.; Elsasser, S.; Zhang, N.; Chen, X.; Randles, L.; Shi,
Y.; Hofmann, K.; Walters, K. J.; Finley, D.; Dikic, I.: Proteasome
subunit Rpn13 is a novel ubiquitin receptor. Nature 453: 481-488,
2008.
6. Kawahara, H.; Kasahara, M.; Nishiyama, A.; Ohsumi, K.; Goto, T.;
Kishimoto, T.; Saeki, Y.; Yokosawa, H.; Shimbara, N.; Murata, S.;
Chiba, T.; Suzuki, K.; Tanaka, K.: Developmentally regulated, alternative
splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO
J. 19: 4144-4153, 2000.
7. Young, P.; Deveraux, Q.; Beal, R. E.; Pickart, C. M.; Rechsteiner,
M.: Characterization of two polyubiquitin binding sites in the 26
S protease subunit 5a. J. Biol. Chem. 273: 5461-5467, 1998.
8. Zhang, N.; Wang, Q.; Ehlinger, A.; Randles, L.; Lary, J. W.; Kang,
Y.; Haririnia, A.; Storaska, A. J.; Cole, J. L.; Fushman, D.; Walters,
K. J.: Structure of the S5a:K48-linked diubiquitin complex and its
interactions with Rpn13. Molec. Cell 35: 280-290, 2009.
*FIELD* CN
Patricia A. Hartz - updated: 9/21/2009
Ada Hamosh - updated: 6/3/2008
Patti M. Sherman - updated: 1/21/2000
*FIELD* CD
Mark H. Paalman: 4/3/1997
*FIELD* ED
mgross: 10/05/2009
mgross: 10/5/2009
terry: 9/21/2009
alopez: 6/3/2008
terry: 6/3/2008
mgross: 1/24/2000
psherman: 1/21/2000
alopez: 10/5/1998
mark: 6/5/1997
alopez: 6/4/1997
mark: 6/3/1997
mark: 4/3/1997