Full text data of RAB10
RAB10
[Confidence: high (present in two of the MS resources)]
Ras-related protein Rab-10
Ras-related protein Rab-10
hRBCD
IPI00016513
IPI00016513 Ras-related protein Rab-10 Ras-related protein Rab-10 membrane n/a 4 6 n/a 6 1 5 1 1 n/a 3 n/a 6 2 6 n/a 5 2 4 2 cytoplasmic and membrane associated n/a expected molecular weight found in band ~ 14 kDa
IPI00016513 Ras-related protein Rab-10 Ras-related protein Rab-10 membrane n/a 4 6 n/a 6 1 5 1 1 n/a 3 n/a 6 2 6 n/a 5 2 4 2 cytoplasmic and membrane associated n/a expected molecular weight found in band ~ 14 kDa
UniProt
P61026
ID RAB10_HUMAN Reviewed; 200 AA.
AC P61026; D6W538; O88386; Q6IA52; Q9D7X6; Q9H0T3;
DT 26-APR-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 26-APR-2004, sequence version 1.
DT 22-JAN-2014, entry version 105.
DE RecName: Full=Ras-related protein Rab-10;
GN Name=RAB10;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=12450215;
RA He H., Dai F.Y., Yu L., She X., Zhao Y., Jiang J., Chen X., Zhao S.Y.;
RT "Identification and characterization of nine novel human small GTPases
RT showing variable expressions in liver cancer tissues.";
RL Gene Expr. 10:231-242(2002).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RA Wong K., Hong W., Tang B.;
RL Submitted (AUG-2000) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Pituitary;
RX PubMed=10931946; DOI=10.1073/pnas.160270997;
RA Hu R.-M., Han Z.-G., Song H.-D., Peng Y.-D., Huang Q.-H., Ren S.-X.,
RA Gu Y.-J., Huang C.-H., Li Y.-B., Jiang C.-L., Fu G., Zhang Q.-H.,
RA Gu B.-W., Dai M., Mao Y.-F., Gao G.-F., Rong R., Ye M., Zhou J.,
RA Xu S.-H., Gu J., Shi J.-X., Jin W.-R., Zhang C.-K., Wu T.-M.,
RA Huang G.-Y., Chen Z., Chen M.-D., Chen J.-L.;
RT "Gene expression profiling in the human hypothalamus-pituitary-adrenal
RT axis and full-length cDNA cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 97:9543-9548(2000).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RX PubMed=11230166; DOI=10.1101/gr.GR1547R;
RA Wiemann S., Weil B., Wellenreuther R., Gassenhuber J., Glassl S.,
RA Ansorge W., Boecher M., Bloecker H., Bauersachs S., Blum H.,
RA Lauber J., Duesterhoeft A., Beyer A., Koehrer K., Strack N.,
RA Mewes H.-W., Ottenwaelder B., Obermaier B., Tampe J., Heubner D.,
RA Wambutt R., Korn B., Klein M., Poustka A.;
RT "Towards a catalog of human genes and proteins: sequencing and
RT analysis of 500 novel complete protein coding human cDNAs.";
RL Genome Res. 11:422-435(2001).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RA Puhl H.L. III, Ikeda S.R., Aronstam R.S.;
RT "cDNA clones of human proteins involved in signal transduction
RT sequenced by the Guthrie cDNA resource center (www.cdna.org).";
RL Submitted (APR-2002) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Cervix;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [10]
RP FUNCTION, AND SUBCELLULAR LOCATION.
RX PubMed=16641372; DOI=10.1091/mbc.E05-08-0799;
RA Babbey C.M., Ahktar N., Wang E., Chen C.C., Grant B.D., Dunn K.W.;
RT "Rab10 regulates membrane transport through early endosomes of
RT polarized Madin-Darby canine kidney cells.";
RL Mol. Biol. Cell 17:3156-3175(2006).
RN [11]
RP INTERACTION WITH GDI1 AND GDI2.
RX PubMed=19570034; DOI=10.1042/BJ20090624;
RA Chen Y., Deng Y., Zhang J., Yang L., Xie X., Xu T.;
RT "GDI-1 preferably interacts with Rab10 in insulin-stimulated GLUT4
RT translocation.";
RL Biochem. J. 422:229-235(2009).
RN [12]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-102, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [13]
RP SUBCELLULAR LOCATION, AND MUTAGENESIS OF THR-23 AND GLN-68.
RX PubMed=20576682; DOI=10.1152/ajprenal.00198.2010;
RA Babbey C.M., Bacallao R.L., Dunn K.W.;
RT "Rab10 associates with primary cilia and the exocyst complex in renal
RT epithelial cells.";
RL Am. J. Physiol. 299:F495-506(2010).
RN [14]
RP ENZYME REGULATION.
RX PubMed=20937701; DOI=10.1083/jcb.201008051;
RA Yoshimura S., Gerondopoulos A., Linford A., Rigden D.J., Barr F.A.;
RT "Family-wide characterization of the DENN domain Rab GDP-GTP exchange
RT factors.";
RL J. Cell Biol. 191:367-381(2010).
RN [15]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [16]
RP FUNCTION.
RX PubMed=21248164; DOI=10.1152/physrev.00059.2009;
RA Hutagalung A.H., Novick P.J.;
RT "Role of Rab GTPases in membrane traffic and cell physiology.";
RL Physiol. Rev. 91:119-149(2011).
RN [17]
RP SUBCELLULAR LOCATION, AND INTERACTION WITH MYO5A.
RX PubMed=22908308; DOI=10.1083/jcb.201111091;
RA Chen Y., Wang Y., Zhang J., Deng Y., Jiang L., Song E., Wu X.S.,
RA Hammer J.A., Xu T., Lippincott-Schwartz J.;
RT "Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle
RT translocation in adipocytes.";
RL J. Cell Biol. 198:545-560(2012).
RN [18]
RP FUNCTION IN ENDOPLASMIC RETICULUM MEMBRANE DYNAMICS, SUBCELLULAR
RP LOCATION, AND MUTAGENESIS OF THR-23.
RX PubMed=23263280; DOI=10.1038/ncb2647;
RA English A.R., Voeltz G.K.;
RT "Rab10 GTPase regulates ER dynamics and morphology.";
RL Nat. Cell Biol. 15:169-178(2012).
CC -!- FUNCTION: The small GTPases Rab are key regulators of
CC intracellular membrane trafficking, from the formation of
CC transport vesicles to their fusion with membranes. Rabs cycle
CC between an inactive GDP-bound form and an active GTP-bound form
CC that is able to recruit to membranes different set of downstream
CC effectors directly responsible for vesicle formation, movement,
CC tethering and fusion (By similarity). That Rab is mainly involved
CC in the biosynthetic transport of proteins from the Golgi to the
CC plasma membrane. Regulates, for instance, SLC2A4/GLUT4 glucose
CC transporter-enriched vesicles delivery to the plasma membrane. In
CC parallel, it regulates the transport of TLR4, a toll-like receptor
CC to the plasma membrane and therefore may be important for innate
CC immune response. Plays also a specific role in asymmetric protein
CC transport to the plasma membrane within the polarized neuron and
CC epithelial cells. In neurons, it is involved in axonogenesis
CC through regulation of vesicular membrane trafficking toward the
CC axonal plasma membrane while in epithelial cells, it regulates
CC transport from the Golgi to the basolateral membrane. Moreover,
CC may play a role in the basolateral recycling pathway and in
CC phagosome maturation. According to PubMed:23263280, may play a
CC role in endoplasmic reticulum dynamics and morphology controlling
CC tubulation along microtubules and tubules fusion.
CC -!- ENZYME REGULATION: Rab activation is generally mediated by a
CC guanine exchange factor (GEF), while inactivation through
CC hydrolysis of bound GTP is catalyzed by a GTPase activating
CC protein (GAP) (By similarity). That Rab is activated by the
CC DENND4C guanine exchange factor (GEF).
CC -!- SUBUNIT: Interacts with MYO5A; mediates the transport to the
CC plasma membrane of SLC2A4/GLUT4 storage vesicles. Interacts with
CC GDI1 and maybe with GDI2; negatively regulates RAB10 association
CC with membranes and activation. Interacts (GDP-bound form) with
CC LLGL1; the interaction is direct and promotes RAB10 association
CC with membranes and activation through competition with the Rab
CC inhibitor GDI1 (By similarity). Interacts with EXOC4; probably
CC associates with the exocyst (By similarity).
CC -!- SUBCELLULAR LOCATION: Cytoplasmic vesicle membrane; Lipid-anchor
CC (Probable); Cytoplasmic side (Probable). Golgi apparatus, trans-
CC Golgi network membrane (By similarity). Endosome membrane.
CC Recycling endosome membrane. Cytoplasmic vesicle, phagosome
CC membrane (By similarity). Cell projection, cilium. Endoplasmic
CC reticulum membrane. Note=Associates with SLC2A4/GLUT4 storage
CC vesicles. Localizes to the base of the cilium. Transiently
CC associates with phagosomes (By similarity). According to
CC PubMed:23263280 localizes to the endoplasmic reticulum at domains
CC of new tubule growth.
CC -!- SIMILARITY: Belongs to the small GTPase superfamily. Rab family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF086917; AAP97147.1; -; mRNA.
DR EMBL; AF297660; AAG13413.1; -; mRNA.
DR EMBL; AF106681; AAD43034.1; -; mRNA.
DR EMBL; AL136650; CAB66585.1; -; mRNA.
DR EMBL; AK023223; BAB14474.1; -; mRNA.
DR EMBL; AF498945; AAM21093.1; -; mRNA.
DR EMBL; CR457303; CAG33584.1; -; mRNA.
DR EMBL; CH471053; EAX00710.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX00711.1; -; Genomic_DNA.
DR EMBL; BC000896; AAH00896.1; -; mRNA.
DR RefSeq; NP_057215.3; NM_016131.4.
DR UniGene; Hs.467960; -.
DR ProteinModelPortal; P61026; -.
DR SMR; P61026; 7-173.
DR IntAct; P61026; 11.
DR MINT; MINT-1404404; -.
DR STRING; 9606.ENSP00000264710; -.
DR PhosphoSite; P61026; -.
DR DMDM; 46577638; -.
DR PaxDb; P61026; -.
DR PeptideAtlas; P61026; -.
DR PRIDE; P61026; -.
DR DNASU; 10890; -.
DR Ensembl; ENST00000264710; ENSP00000264710; ENSG00000084733.
DR GeneID; 10890; -.
DR KEGG; hsa:10890; -.
DR UCSC; uc002rgv.3; human.
DR CTD; 10890; -.
DR GeneCards; GC02P026256; -.
DR HGNC; HGNC:9759; RAB10.
DR HPA; HPA045611; -.
DR MIM; 612672; gene.
DR neXtProt; NX_P61026; -.
DR PharmGKB; PA34100; -.
DR eggNOG; COG1100; -.
DR HOGENOM; HOG000233968; -.
DR HOVERGEN; HBG009351; -.
DR InParanoid; P61026; -.
DR KO; K07903; -.
DR OMA; SNINIER; -.
DR OrthoDB; EOG7VB2H4; -.
DR PhylomeDB; P61026; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR ChiTaRS; RAB10; human.
DR GeneWiki; RAB10; -.
DR GenomeRNAi; 10890; -.
DR NextBio; 41349; -.
DR PRO; PR:P61026; -.
DR ArrayExpress; P61026; -.
DR Bgee; P61026; -.
DR CleanEx; HS_RAB10; -.
DR Genevestigator; P61026; -.
DR GO; GO:0030659; C:cytoplasmic vesicle membrane; TAS:Reactome.
DR GO; GO:0005789; C:endoplasmic reticulum membrane; IDA:UniProtKB.
DR GO; GO:0071782; C:endoplasmic reticulum tubular network; IDA:UniProtKB.
DR GO; GO:0005794; C:Golgi apparatus; IDA:UniProtKB.
DR GO; GO:0032593; C:insulin-responsive compartment; IDA:UniProtKB.
DR GO; GO:0030670; C:phagocytic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0072372; C:primary cilium; IDA:UniProtKB.
DR GO; GO:0055037; C:recycling endosome; IDA:UniProtKB.
DR GO; GO:0055038; C:recycling endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005802; C:trans-Golgi network; ISS:UniProtKB.
DR GO; GO:0019003; F:GDP binding; IDA:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IDA:UniProtKB.
DR GO; GO:0003924; F:GTPase activity; EXP:Reactome.
DR GO; GO:0007409; P:axonogenesis; ISS:UniProtKB.
DR GO; GO:0061467; P:basolateral protein localization; ISS:UniProtKB.
DR GO; GO:0032869; P:cellular response to insulin stimulus; ISS:UniProtKB.
DR GO; GO:0071786; P:endoplasmic reticulum tubular network organization; IMP:UniProtKB.
DR GO; GO:0016197; P:endosomal transport; IMP:UniProtKB.
DR GO; GO:0045200; P:establishment of neuroblast polarity; ISS:UniProtKB.
DR GO; GO:0097051; P:establishment of protein localization to endoplasmic reticulum membrane; IMP:UniProtKB.
DR GO; GO:0043001; P:Golgi to plasma membrane protein transport; ISS:UniProtKB.
DR GO; GO:0030859; P:polarized epithelial cell differentiation; ISS:UniProtKB.
DR GO; GO:0007264; P:small GTPase mediated signal transduction; IEA:InterPro.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR005225; Small_GTP-bd_dom.
DR InterPro; IPR001806; Small_GTPase.
DR InterPro; IPR003579; Small_GTPase_Rab_type.
DR Pfam; PF00071; Ras; 1.
DR PRINTS; PR00449; RASTRNSFRMNG.
DR SMART; SM00175; RAB; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR TIGRFAMs; TIGR00231; small_GTP; 1.
DR PROSITE; PS51419; RAB; 1.
PE 1: Evidence at protein level;
KW Acetylation; Cell projection; Complete proteome; Cytoplasmic vesicle;
KW Endoplasmic reticulum; Endosome; Golgi apparatus; GTP-binding;
KW Lipoprotein; Membrane; Nucleotide-binding; Prenylation;
KW Protein transport; Reference proteome; Transport.
FT CHAIN 1 200 Ras-related protein Rab-10.
FT /FTId=PRO_0000121146.
FT NP_BIND 16 23 GTP (By similarity).
FT NP_BIND 64 68 GTP (By similarity).
FT NP_BIND 122 125 GTP (By similarity).
FT MOTIF 38 46 Effector region (By similarity).
FT MOD_RES 102 102 N6-acetyllysine.
FT LIPID 199 199 S-geranylgeranyl cysteine (By
FT similarity).
FT LIPID 200 200 S-geranylgeranyl cysteine (By
FT similarity).
FT MUTAGEN 23 23 T->N: Probable dominant negative mutant
FT locked in the inactive GDP-bound form;
FT alters the basolateral recycling pathway
FT in epithelial cells and endoplasmic
FT reticulum membrane morphology.
FT MUTAGEN 68 68 Q->L: Probable constitutively active
FT mutant unable to hydrolyze GTP;
FT accumulates at the base of the primary
FT cilium and alters the basolateral
FT recycling pathway in epithelial cells.
FT CONFLICT 138 138 E -> G (in Ref. 4; CAB66585).
SQ SEQUENCE 200 AA; 22541 MW; 7F02B8E8E46EE1E8 CRC64;
MAKKTYDLLF KLLLIGDSGV GKTCVLFRFS DDAFNTTFIS TIGIDFKIKT VELQGKKIKL
QIWDTAGQER FHTITTSYYR GAMGIMLVYD ITNGKSFENI SKWLRNIDEH ANEDVERMLL
GNKCDMDDKR VVPKGKGEQI AREHGIRFFE TSAKANINIE KAFLTLAEDI LRKTPVKEPN
SENVDISSGG GVTGWKSKCC
//
ID RAB10_HUMAN Reviewed; 200 AA.
AC P61026; D6W538; O88386; Q6IA52; Q9D7X6; Q9H0T3;
DT 26-APR-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 26-APR-2004, sequence version 1.
DT 22-JAN-2014, entry version 105.
DE RecName: Full=Ras-related protein Rab-10;
GN Name=RAB10;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=12450215;
RA He H., Dai F.Y., Yu L., She X., Zhao Y., Jiang J., Chen X., Zhao S.Y.;
RT "Identification and characterization of nine novel human small GTPases
RT showing variable expressions in liver cancer tissues.";
RL Gene Expr. 10:231-242(2002).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RA Wong K., Hong W., Tang B.;
RL Submitted (AUG-2000) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Pituitary;
RX PubMed=10931946; DOI=10.1073/pnas.160270997;
RA Hu R.-M., Han Z.-G., Song H.-D., Peng Y.-D., Huang Q.-H., Ren S.-X.,
RA Gu Y.-J., Huang C.-H., Li Y.-B., Jiang C.-L., Fu G., Zhang Q.-H.,
RA Gu B.-W., Dai M., Mao Y.-F., Gao G.-F., Rong R., Ye M., Zhou J.,
RA Xu S.-H., Gu J., Shi J.-X., Jin W.-R., Zhang C.-K., Wu T.-M.,
RA Huang G.-Y., Chen Z., Chen M.-D., Chen J.-L.;
RT "Gene expression profiling in the human hypothalamus-pituitary-adrenal
RT axis and full-length cDNA cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 97:9543-9548(2000).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RX PubMed=11230166; DOI=10.1101/gr.GR1547R;
RA Wiemann S., Weil B., Wellenreuther R., Gassenhuber J., Glassl S.,
RA Ansorge W., Boecher M., Bloecker H., Bauersachs S., Blum H.,
RA Lauber J., Duesterhoeft A., Beyer A., Koehrer K., Strack N.,
RA Mewes H.-W., Ottenwaelder B., Obermaier B., Tampe J., Heubner D.,
RA Wambutt R., Korn B., Klein M., Poustka A.;
RT "Towards a catalog of human genes and proteins: sequencing and
RT analysis of 500 novel complete protein coding human cDNAs.";
RL Genome Res. 11:422-435(2001).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain;
RA Puhl H.L. III, Ikeda S.R., Aronstam R.S.;
RT "cDNA clones of human proteins involved in signal transduction
RT sequenced by the Guthrie cDNA resource center (www.cdna.org).";
RL Submitted (APR-2002) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Cervix;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [10]
RP FUNCTION, AND SUBCELLULAR LOCATION.
RX PubMed=16641372; DOI=10.1091/mbc.E05-08-0799;
RA Babbey C.M., Ahktar N., Wang E., Chen C.C., Grant B.D., Dunn K.W.;
RT "Rab10 regulates membrane transport through early endosomes of
RT polarized Madin-Darby canine kidney cells.";
RL Mol. Biol. Cell 17:3156-3175(2006).
RN [11]
RP INTERACTION WITH GDI1 AND GDI2.
RX PubMed=19570034; DOI=10.1042/BJ20090624;
RA Chen Y., Deng Y., Zhang J., Yang L., Xie X., Xu T.;
RT "GDI-1 preferably interacts with Rab10 in insulin-stimulated GLUT4
RT translocation.";
RL Biochem. J. 422:229-235(2009).
RN [12]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-102, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [13]
RP SUBCELLULAR LOCATION, AND MUTAGENESIS OF THR-23 AND GLN-68.
RX PubMed=20576682; DOI=10.1152/ajprenal.00198.2010;
RA Babbey C.M., Bacallao R.L., Dunn K.W.;
RT "Rab10 associates with primary cilia and the exocyst complex in renal
RT epithelial cells.";
RL Am. J. Physiol. 299:F495-506(2010).
RN [14]
RP ENZYME REGULATION.
RX PubMed=20937701; DOI=10.1083/jcb.201008051;
RA Yoshimura S., Gerondopoulos A., Linford A., Rigden D.J., Barr F.A.;
RT "Family-wide characterization of the DENN domain Rab GDP-GTP exchange
RT factors.";
RL J. Cell Biol. 191:367-381(2010).
RN [15]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [16]
RP FUNCTION.
RX PubMed=21248164; DOI=10.1152/physrev.00059.2009;
RA Hutagalung A.H., Novick P.J.;
RT "Role of Rab GTPases in membrane traffic and cell physiology.";
RL Physiol. Rev. 91:119-149(2011).
RN [17]
RP SUBCELLULAR LOCATION, AND INTERACTION WITH MYO5A.
RX PubMed=22908308; DOI=10.1083/jcb.201111091;
RA Chen Y., Wang Y., Zhang J., Deng Y., Jiang L., Song E., Wu X.S.,
RA Hammer J.A., Xu T., Lippincott-Schwartz J.;
RT "Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle
RT translocation in adipocytes.";
RL J. Cell Biol. 198:545-560(2012).
RN [18]
RP FUNCTION IN ENDOPLASMIC RETICULUM MEMBRANE DYNAMICS, SUBCELLULAR
RP LOCATION, AND MUTAGENESIS OF THR-23.
RX PubMed=23263280; DOI=10.1038/ncb2647;
RA English A.R., Voeltz G.K.;
RT "Rab10 GTPase regulates ER dynamics and morphology.";
RL Nat. Cell Biol. 15:169-178(2012).
CC -!- FUNCTION: The small GTPases Rab are key regulators of
CC intracellular membrane trafficking, from the formation of
CC transport vesicles to their fusion with membranes. Rabs cycle
CC between an inactive GDP-bound form and an active GTP-bound form
CC that is able to recruit to membranes different set of downstream
CC effectors directly responsible for vesicle formation, movement,
CC tethering and fusion (By similarity). That Rab is mainly involved
CC in the biosynthetic transport of proteins from the Golgi to the
CC plasma membrane. Regulates, for instance, SLC2A4/GLUT4 glucose
CC transporter-enriched vesicles delivery to the plasma membrane. In
CC parallel, it regulates the transport of TLR4, a toll-like receptor
CC to the plasma membrane and therefore may be important for innate
CC immune response. Plays also a specific role in asymmetric protein
CC transport to the plasma membrane within the polarized neuron and
CC epithelial cells. In neurons, it is involved in axonogenesis
CC through regulation of vesicular membrane trafficking toward the
CC axonal plasma membrane while in epithelial cells, it regulates
CC transport from the Golgi to the basolateral membrane. Moreover,
CC may play a role in the basolateral recycling pathway and in
CC phagosome maturation. According to PubMed:23263280, may play a
CC role in endoplasmic reticulum dynamics and morphology controlling
CC tubulation along microtubules and tubules fusion.
CC -!- ENZYME REGULATION: Rab activation is generally mediated by a
CC guanine exchange factor (GEF), while inactivation through
CC hydrolysis of bound GTP is catalyzed by a GTPase activating
CC protein (GAP) (By similarity). That Rab is activated by the
CC DENND4C guanine exchange factor (GEF).
CC -!- SUBUNIT: Interacts with MYO5A; mediates the transport to the
CC plasma membrane of SLC2A4/GLUT4 storage vesicles. Interacts with
CC GDI1 and maybe with GDI2; negatively regulates RAB10 association
CC with membranes and activation. Interacts (GDP-bound form) with
CC LLGL1; the interaction is direct and promotes RAB10 association
CC with membranes and activation through competition with the Rab
CC inhibitor GDI1 (By similarity). Interacts with EXOC4; probably
CC associates with the exocyst (By similarity).
CC -!- SUBCELLULAR LOCATION: Cytoplasmic vesicle membrane; Lipid-anchor
CC (Probable); Cytoplasmic side (Probable). Golgi apparatus, trans-
CC Golgi network membrane (By similarity). Endosome membrane.
CC Recycling endosome membrane. Cytoplasmic vesicle, phagosome
CC membrane (By similarity). Cell projection, cilium. Endoplasmic
CC reticulum membrane. Note=Associates with SLC2A4/GLUT4 storage
CC vesicles. Localizes to the base of the cilium. Transiently
CC associates with phagosomes (By similarity). According to
CC PubMed:23263280 localizes to the endoplasmic reticulum at domains
CC of new tubule growth.
CC -!- SIMILARITY: Belongs to the small GTPase superfamily. Rab family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF086917; AAP97147.1; -; mRNA.
DR EMBL; AF297660; AAG13413.1; -; mRNA.
DR EMBL; AF106681; AAD43034.1; -; mRNA.
DR EMBL; AL136650; CAB66585.1; -; mRNA.
DR EMBL; AK023223; BAB14474.1; -; mRNA.
DR EMBL; AF498945; AAM21093.1; -; mRNA.
DR EMBL; CR457303; CAG33584.1; -; mRNA.
DR EMBL; CH471053; EAX00710.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX00711.1; -; Genomic_DNA.
DR EMBL; BC000896; AAH00896.1; -; mRNA.
DR RefSeq; NP_057215.3; NM_016131.4.
DR UniGene; Hs.467960; -.
DR ProteinModelPortal; P61026; -.
DR SMR; P61026; 7-173.
DR IntAct; P61026; 11.
DR MINT; MINT-1404404; -.
DR STRING; 9606.ENSP00000264710; -.
DR PhosphoSite; P61026; -.
DR DMDM; 46577638; -.
DR PaxDb; P61026; -.
DR PeptideAtlas; P61026; -.
DR PRIDE; P61026; -.
DR DNASU; 10890; -.
DR Ensembl; ENST00000264710; ENSP00000264710; ENSG00000084733.
DR GeneID; 10890; -.
DR KEGG; hsa:10890; -.
DR UCSC; uc002rgv.3; human.
DR CTD; 10890; -.
DR GeneCards; GC02P026256; -.
DR HGNC; HGNC:9759; RAB10.
DR HPA; HPA045611; -.
DR MIM; 612672; gene.
DR neXtProt; NX_P61026; -.
DR PharmGKB; PA34100; -.
DR eggNOG; COG1100; -.
DR HOGENOM; HOG000233968; -.
DR HOVERGEN; HBG009351; -.
DR InParanoid; P61026; -.
DR KO; K07903; -.
DR OMA; SNINIER; -.
DR OrthoDB; EOG7VB2H4; -.
DR PhylomeDB; P61026; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR ChiTaRS; RAB10; human.
DR GeneWiki; RAB10; -.
DR GenomeRNAi; 10890; -.
DR NextBio; 41349; -.
DR PRO; PR:P61026; -.
DR ArrayExpress; P61026; -.
DR Bgee; P61026; -.
DR CleanEx; HS_RAB10; -.
DR Genevestigator; P61026; -.
DR GO; GO:0030659; C:cytoplasmic vesicle membrane; TAS:Reactome.
DR GO; GO:0005789; C:endoplasmic reticulum membrane; IDA:UniProtKB.
DR GO; GO:0071782; C:endoplasmic reticulum tubular network; IDA:UniProtKB.
DR GO; GO:0005794; C:Golgi apparatus; IDA:UniProtKB.
DR GO; GO:0032593; C:insulin-responsive compartment; IDA:UniProtKB.
DR GO; GO:0030670; C:phagocytic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0072372; C:primary cilium; IDA:UniProtKB.
DR GO; GO:0055037; C:recycling endosome; IDA:UniProtKB.
DR GO; GO:0055038; C:recycling endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005802; C:trans-Golgi network; ISS:UniProtKB.
DR GO; GO:0019003; F:GDP binding; IDA:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IDA:UniProtKB.
DR GO; GO:0003924; F:GTPase activity; EXP:Reactome.
DR GO; GO:0007409; P:axonogenesis; ISS:UniProtKB.
DR GO; GO:0061467; P:basolateral protein localization; ISS:UniProtKB.
DR GO; GO:0032869; P:cellular response to insulin stimulus; ISS:UniProtKB.
DR GO; GO:0071786; P:endoplasmic reticulum tubular network organization; IMP:UniProtKB.
DR GO; GO:0016197; P:endosomal transport; IMP:UniProtKB.
DR GO; GO:0045200; P:establishment of neuroblast polarity; ISS:UniProtKB.
DR GO; GO:0097051; P:establishment of protein localization to endoplasmic reticulum membrane; IMP:UniProtKB.
DR GO; GO:0043001; P:Golgi to plasma membrane protein transport; ISS:UniProtKB.
DR GO; GO:0030859; P:polarized epithelial cell differentiation; ISS:UniProtKB.
DR GO; GO:0007264; P:small GTPase mediated signal transduction; IEA:InterPro.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR005225; Small_GTP-bd_dom.
DR InterPro; IPR001806; Small_GTPase.
DR InterPro; IPR003579; Small_GTPase_Rab_type.
DR Pfam; PF00071; Ras; 1.
DR PRINTS; PR00449; RASTRNSFRMNG.
DR SMART; SM00175; RAB; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR TIGRFAMs; TIGR00231; small_GTP; 1.
DR PROSITE; PS51419; RAB; 1.
PE 1: Evidence at protein level;
KW Acetylation; Cell projection; Complete proteome; Cytoplasmic vesicle;
KW Endoplasmic reticulum; Endosome; Golgi apparatus; GTP-binding;
KW Lipoprotein; Membrane; Nucleotide-binding; Prenylation;
KW Protein transport; Reference proteome; Transport.
FT CHAIN 1 200 Ras-related protein Rab-10.
FT /FTId=PRO_0000121146.
FT NP_BIND 16 23 GTP (By similarity).
FT NP_BIND 64 68 GTP (By similarity).
FT NP_BIND 122 125 GTP (By similarity).
FT MOTIF 38 46 Effector region (By similarity).
FT MOD_RES 102 102 N6-acetyllysine.
FT LIPID 199 199 S-geranylgeranyl cysteine (By
FT similarity).
FT LIPID 200 200 S-geranylgeranyl cysteine (By
FT similarity).
FT MUTAGEN 23 23 T->N: Probable dominant negative mutant
FT locked in the inactive GDP-bound form;
FT alters the basolateral recycling pathway
FT in epithelial cells and endoplasmic
FT reticulum membrane morphology.
FT MUTAGEN 68 68 Q->L: Probable constitutively active
FT mutant unable to hydrolyze GTP;
FT accumulates at the base of the primary
FT cilium and alters the basolateral
FT recycling pathway in epithelial cells.
FT CONFLICT 138 138 E -> G (in Ref. 4; CAB66585).
SQ SEQUENCE 200 AA; 22541 MW; 7F02B8E8E46EE1E8 CRC64;
MAKKTYDLLF KLLLIGDSGV GKTCVLFRFS DDAFNTTFIS TIGIDFKIKT VELQGKKIKL
QIWDTAGQER FHTITTSYYR GAMGIMLVYD ITNGKSFENI SKWLRNIDEH ANEDVERMLL
GNKCDMDDKR VVPKGKGEQI AREHGIRFFE TSAKANINIE KAFLTLAEDI LRKTPVKEPN
SENVDISSGG GVTGWKSKCC
//
MIM
612672
*RECORD*
*FIELD* NO
612672
*FIELD* TI
*612672 RAS-ASSOCIATED PROTEIN RAB10; RAB10
*FIELD* TX
DESCRIPTION
RAB10 belongs to the RAS (see HRAS; 190020) superfamily of small
read moreGTPases. RAB proteins localize to exocytic and endocytic compartments
and regulate intracellular vesicle trafficking (Bao et al., 1998).
CLONING
Using degenerate oligonucleotide primers to amplify RAB family members
from human skeletal muscle total RNA, Bao et al. (1998) obtained a
partial RAB10 clone. The deduced 49-amino acid sequence includes the
first 2 GTP-binding regions and effector domain residues that are
conserved in RAB proteins. Bao et al. (1998) stated that RAB10 protein
localizes to the distal Golgi complex.
By searching databases for RAS family members, followed by PCR, He et
al. (2002) cloned RAB10. The deduced 200-amino acid RAB10 protein
contains 4 highly conserved GTPase motifs and a C-terminal
geranylgeranylation motif. Northern blot analysis detected a major
transcript of about 4 kb and a smaller minor transcript. Highest
expression was detected in heart and skeletal muscle, followed by brain,
placenta, lung, liver, kidney, pancreas, testis, and spleen. Low
expression was detected in ovary, prostate, and colon, and little to no
expression was detected in thymus, small intestine, and leukocytes.
GENE FUNCTION
In muscle and fat cells, insulin (INS; 176730) stimulation activates a
signaling cascade that causes intracellular vesicles containing glucose
transporter-4 (GLUT4, or SLC2A4; 138190) to translocate to and fuse with
the plasma membrane. Using mass spectrometry, Larance et al. (2005)
identified Rab10, Rab11 (see RAB11A; 605570), and Rab14 (612673) on
Glut4 vesicles from cultured mouse adipocytes. These vesicles also
contained the RAB GTPase-activating protein (GAP) As160 (TBC1D4;
612465), suggesting that the RAB proteins may be AS160 substrates.
Miinea et al. (2005) found that the purified recombinant GAP domain of
human AS160 showed GAP activity with RAB2A (RAB2; 179509), RAB8A
(165040), RAB10, and RAB14, but not with 14 other RABs. Immunoblot
analysis showed that these RABs associated with Glut4-positive vesicles
in mouse adipocytes. Miinea et al. (2005) concluded that AK160 functions
as a RAB GAP and that RABs may participate in GLUT4 translocation.
GENE STRUCTURE
He et al. (2002) determined that the RAB10 gene contains 5 exons and
spans over 36.7 kb.
MAPPING
By radiation hybrid analysis, He et al. (2002) mapped the RAB10 gene to
chromosome 2p23.1-p22.3.
Hartz (2009) mapped the RAB10 gene to chromosome 2p23.3 based on an
alignment of the RAB10 sequence (GENBANK GenBank AF106681) with the
genomic sequence (build 36.1).
*FIELD* RF
1. Bao, S.; Zhu, J.; Garvey, W. T.: Cloning of Rab GTPases expressed
in human skeletal muscle: studies in insulin-resistant subjects. Horm.
Metab. Res. 30: 656-662, 1998.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 3/18/2009.
3. He, H.; Dai, F.; Yu, L.; She, X.; Zhao, Y.; Jiang, J.; Chen, X.;
Zhao, S.: Identification and characterization of nine novel human
small GTPases showing variable expressions in liver cancer tissues. Gene
Expr. 10: 231-242, 2002.
4. Larance, M.; Ramm, G.; Stockli, J.; van Dam, E. M.; Winata, S.;
Wasinger, V.; Simpson, F.; Graham, M.; Junutula, J. R.; Guilhaus,
M.; James, D. E.: Characterization of the role of the Rab GTPase-activating
protein AS160 in insulin-regulated GLUT4 trafficking. J. Biol. Chem. 280:
37803-37813, 2005.
5. Miinea, C. P.; Sano, H.; Kane, S.; Sano, E.; Fukuda, M.; Peranen,
J.; Lane, W. S.; Lienhard, G. E.: AS160, the Akt substrate regulating
GLUT4 translocation, has a functional Rab GTPase-activating protein
domain. Biochem. J. 391: 87-93, 2005.
*FIELD* CN
Patricia A. Hartz - updated: 7/23/2009
*FIELD* CD
Patricia A. Hartz: 3/18/2009
*FIELD* ED
mgross: 08/18/2009
terry: 7/23/2009
mgross: 3/18/2009
*RECORD*
*FIELD* NO
612672
*FIELD* TI
*612672 RAS-ASSOCIATED PROTEIN RAB10; RAB10
*FIELD* TX
DESCRIPTION
RAB10 belongs to the RAS (see HRAS; 190020) superfamily of small
read moreGTPases. RAB proteins localize to exocytic and endocytic compartments
and regulate intracellular vesicle trafficking (Bao et al., 1998).
CLONING
Using degenerate oligonucleotide primers to amplify RAB family members
from human skeletal muscle total RNA, Bao et al. (1998) obtained a
partial RAB10 clone. The deduced 49-amino acid sequence includes the
first 2 GTP-binding regions and effector domain residues that are
conserved in RAB proteins. Bao et al. (1998) stated that RAB10 protein
localizes to the distal Golgi complex.
By searching databases for RAS family members, followed by PCR, He et
al. (2002) cloned RAB10. The deduced 200-amino acid RAB10 protein
contains 4 highly conserved GTPase motifs and a C-terminal
geranylgeranylation motif. Northern blot analysis detected a major
transcript of about 4 kb and a smaller minor transcript. Highest
expression was detected in heart and skeletal muscle, followed by brain,
placenta, lung, liver, kidney, pancreas, testis, and spleen. Low
expression was detected in ovary, prostate, and colon, and little to no
expression was detected in thymus, small intestine, and leukocytes.
GENE FUNCTION
In muscle and fat cells, insulin (INS; 176730) stimulation activates a
signaling cascade that causes intracellular vesicles containing glucose
transporter-4 (GLUT4, or SLC2A4; 138190) to translocate to and fuse with
the plasma membrane. Using mass spectrometry, Larance et al. (2005)
identified Rab10, Rab11 (see RAB11A; 605570), and Rab14 (612673) on
Glut4 vesicles from cultured mouse adipocytes. These vesicles also
contained the RAB GTPase-activating protein (GAP) As160 (TBC1D4;
612465), suggesting that the RAB proteins may be AS160 substrates.
Miinea et al. (2005) found that the purified recombinant GAP domain of
human AS160 showed GAP activity with RAB2A (RAB2; 179509), RAB8A
(165040), RAB10, and RAB14, but not with 14 other RABs. Immunoblot
analysis showed that these RABs associated with Glut4-positive vesicles
in mouse adipocytes. Miinea et al. (2005) concluded that AK160 functions
as a RAB GAP and that RABs may participate in GLUT4 translocation.
GENE STRUCTURE
He et al. (2002) determined that the RAB10 gene contains 5 exons and
spans over 36.7 kb.
MAPPING
By radiation hybrid analysis, He et al. (2002) mapped the RAB10 gene to
chromosome 2p23.1-p22.3.
Hartz (2009) mapped the RAB10 gene to chromosome 2p23.3 based on an
alignment of the RAB10 sequence (GENBANK GenBank AF106681) with the
genomic sequence (build 36.1).
*FIELD* RF
1. Bao, S.; Zhu, J.; Garvey, W. T.: Cloning of Rab GTPases expressed
in human skeletal muscle: studies in insulin-resistant subjects. Horm.
Metab. Res. 30: 656-662, 1998.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 3/18/2009.
3. He, H.; Dai, F.; Yu, L.; She, X.; Zhao, Y.; Jiang, J.; Chen, X.;
Zhao, S.: Identification and characterization of nine novel human
small GTPases showing variable expressions in liver cancer tissues. Gene
Expr. 10: 231-242, 2002.
4. Larance, M.; Ramm, G.; Stockli, J.; van Dam, E. M.; Winata, S.;
Wasinger, V.; Simpson, F.; Graham, M.; Junutula, J. R.; Guilhaus,
M.; James, D. E.: Characterization of the role of the Rab GTPase-activating
protein AS160 in insulin-regulated GLUT4 trafficking. J. Biol. Chem. 280:
37803-37813, 2005.
5. Miinea, C. P.; Sano, H.; Kane, S.; Sano, E.; Fukuda, M.; Peranen,
J.; Lane, W. S.; Lienhard, G. E.: AS160, the Akt substrate regulating
GLUT4 translocation, has a functional Rab GTPase-activating protein
domain. Biochem. J. 391: 87-93, 2005.
*FIELD* CN
Patricia A. Hartz - updated: 7/23/2009
*FIELD* CD
Patricia A. Hartz: 3/18/2009
*FIELD* ED
mgross: 08/18/2009
terry: 7/23/2009
mgross: 3/18/2009