Full text data of RAD23B
RAD23B
[Confidence: low (only semi-automatic identification from reviews)]
UV excision repair protein RAD23 homolog B; HR23B; hHR23B (XP-C repair-complementing complex 58 kDa protein; p58)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UV excision repair protein RAD23 homolog B; HR23B; hHR23B (XP-C repair-complementing complex 58 kDa protein; p58)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P54727
ID RD23B_HUMAN Reviewed; 409 AA.
AC P54727; B3KWK8; G5E9P0; Q7Z5K8; Q8WUB0;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-OCT-1996, sequence version 1.
DT 22-JAN-2014, entry version 140.
DE RecName: Full=UV excision repair protein RAD23 homolog B;
DE Short=HR23B;
DE Short=hHR23B;
DE AltName: Full=XP-C repair-complementing complex 58 kDa protein;
DE Short=p58;
GN Name=RAD23B;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=8168482;
RA Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M.,
RA Enomoto T., Takio K., Tanaka K., van der Spek P.J., Bootsma D.,
RA Hoeijmakers J.H.J., Hanaoka F.;
RT "Purification and cloning of a nucleotide excision repair complex
RT involving the Xeroderma pigmentosum group C protein and a human
RT homologue of yeast RAD23.";
RL EMBO J. 13:1831-1843(1994).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), VARIANT VAL-249, ALTERNATIVE
RP SPLICING, AND TISSUE SPECIFICITY (ISOFORM 2).
RC TISSUE=Testis;
RX PubMed=15064313;
RA Huang X., Wang H., Xu M., Lu L., Xu Z., Li J., Zhou Z., Sha J.;
RT "Expression of a novel RAD23B mRNA splice variant in the human
RT testis.";
RL J. Androl. 25:363-368(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT VAL-249.
RG NIEHS SNPs program;
RL Submitted (OCT-2002) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15164053; DOI=10.1038/nature02465;
RA Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E.,
RA Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C.,
RA Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I.S.,
RA Babbage A.K., Babbage S., Bagguley C.L., Bailey J., Banerjee R.,
RA Barker D.J., Barlow K.F., Bates K., Beasley H., Beasley O., Bird C.P.,
RA Bray-Allen S., Brown A.J., Brown J.Y., Burford D., Burrill W.,
RA Burton J., Carder C., Carter N.P., Chapman J.C., Chen Y., Clarke G.,
RA Clark S.Y., Clee C.M., Clegg S., Collier R.E., Corby N., Crosier M.,
RA Cummings A.T., Davies J., Dhami P., Dunn M., Dutta I., Dyer L.W.,
RA Earthrowl M.E., Faulkner L., Fleming C.J., Frankish A.,
RA Frankland J.A., French L., Fricker D.G., Garner P., Garnett J.,
RA Ghori J., Gilbert J.G.R., Glison C., Grafham D.V., Gribble S.,
RA Griffiths C., Griffiths-Jones S., Grocock R., Guy J., Hall R.E.,
RA Hammond S., Harley J.L., Harrison E.S.I., Hart E.A., Heath P.D.,
RA Henderson C.D., Hopkins B.L., Howard P.J., Howden P.J., Huckle E.,
RA Johnson C., Johnson D., Joy A.A., Kay M., Keenan S., Kershaw J.K.,
RA Kimberley A.M., King A., Knights A., Laird G.K., Langford C.,
RA Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C., Lloyd D.M.,
RA Lovell J., Martin S., Mashreghi-Mohammadi M., Matthews L., McLaren S.,
RA McLay K.E., McMurray A., Milne S., Nickerson T., Nisbett J.,
RA Nordsiek G., Pearce A.V., Peck A.I., Porter K.M., Pandian R.,
RA Pelan S., Phillimore B., Povey S., Ramsey Y., Rand V., Scharfe M.,
RA Sehra H.K., Shownkeen R., Sims S.K., Skuce C.D., Smith M.,
RA Steward C.A., Swarbreck D., Sycamore N., Tester J., Thorpe A.,
RA Tracey A., Tromans A., Thomas D.W., Wall M., Wallis J.M., West A.P.,
RA Whitehead S.L., Willey D.L., Williams S.A., Wilming L., Wray P.W.,
RA Young L., Ashurst J.L., Coulson A., Blocker H., Durbin R.M.,
RA Sulston J.E., Hubbard T., Jackson M.J., Bentley D.R., Beck S.,
RA Rogers J., Dunham I.;
RT "DNA sequence and analysis of human chromosome 9.";
RL Nature 429:369-374(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP VAL-249.
RC TISSUE=Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP FUNCTION.
RX PubMed=9372924;
RA Sugasawa K., Ng J.M., Masutani C., Maekawa T., Uchida A.,
RA van der Spek P.J., Eker A.P., Rademakers S., Visser C.,
RA Aboussekhra A., Wood R.D., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
RT "Two human homologs of Rad23 are functionally interchangeable in
RT complex formation and stimulation of XPC repair activity.";
RL Mol. Cell. Biol. 17:6924-6931(1997).
RN [9]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=9734359; DOI=10.1016/S1097-2765(00)80132-X;
RA Sugasawa K., Ng J.M., Masutani C., Iwai S., van der Spek P.J.,
RA Eker A.P., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
RT "Xeroderma pigmentosum group C protein complex is the initiator of
RT global genome nucleotide excision repair.";
RL Mol. Cell 2:223-232(1998).
RN [10]
RP INTERACTION WITH PSMD4 AND PSMC5.
RX PubMed=10488153; DOI=10.1074/jbc.274.39.28019;
RA Hiyama H., Yokoi M., Masutani C., Sugasawa K., Maekawa T., Tanaka K.,
RA Hoeijmakers J.H., Hanaoka F.;
RT "Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23
RT mediates interaction with S5a subunit of 26 S proteasome.";
RL J. Biol. Chem. 274:28019-28025(1999).
RN [11]
RP INTERACTION WITH ATXN3.
RX PubMed=10915768; DOI=10.1093/hmg/9.12.1795;
RA Wang G., Sawai N., Kotliarova S., Kanazawa I., Nukina N.;
RT "Ataxin-3, the MJD1 gene product, interacts with the two human
RT homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B.";
RL Hum. Mol. Genet. 9:1795-1803(2000).
RN [12]
RP FUNCTION, AND FUNCTION OF THE XPC COMPLEX.
RX PubMed=10873465; DOI=10.1006/jmbi.2000.3857;
RA Batty D., Rapic'-Otrin V., Levine A.S., Wood R.D.;
RT "Stable binding of human XPC complex to irradiated DNA confers strong
RT discrimination for damaged sites.";
RL J. Mol. Biol. 300:275-290(2000).
RN [13]
RP INTERACTION WITH CETN2, SUBCELLULAR LOCATION, AND CHARACTERIZATION OF
RP THE XPC COMPLEX.
RX PubMed=11279143; DOI=10.1074/jbc.M100855200;
RA Araki M., Masutani C., Takemura M., Uchida A., Sugasawa K., Kondoh J.,
RA Ohkuma Y., Hanaoka F.;
RT "Centrosome protein centrin 2/caltractin 1 is part of the xeroderma
RT pigmentosum group C complex that initiates global genome nucleotide
RT excision repair.";
RL J. Biol. Chem. 276:18665-18672(2001).
RN [14]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=12509299; DOI=10.1016/S1568-7864(01)00008-8;
RA Sugasawa K., Shimizu Y., Iwai S., Hanaoka F.;
RT "A molecular mechanism for DNA damage recognition by the xeroderma
RT pigmentosum group C protein complex.";
RL DNA Repair 1:95-107(2002).
RN [15]
RP INTERACTION WITH XPC.
RX PubMed=12509233; DOI=10.1016/S1568-7864(02)00031-9;
RA Uchida A., Sugasawa K., Masutani C., Dohmae N., Araki M., Yokoi M.,
RA Ohkuma Y., Hanaoka F.;
RT "The carboxy-terminal domain of the XPC protein plays a crucial role
RT in nucleotide excision repair through interactions with transcription
RT factor IIH.";
RL DNA Repair 1:449-461(2002).
RN [16]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=12547395; DOI=10.1016/S1568-7864(02)00222-7;
RA Janicijevic A., Sugasawa K., Shimizu Y., Hanaoka F., Wijgers N.,
RA Djurica M., Hoeijmakers J.H., Wyman C.;
RT "DNA bending by the human damage recognition complex XPC-HR23B.";
RL DNA Repair 2:325-336(2003).
RN [17]
RP FUNCTION.
RX PubMed=12815074; DOI=10.1101/gad.260003;
RA Ng J.M., Vermeulen W., van der Horst G.T., Bergink S., Sugasawa K.,
RA Vrieling H., Hoeijmakers J.H.;
RT "A novel regulation mechanism of DNA repair by damage-induced and
RT RAD23-dependent stabilization of xeroderma pigmentosum group C
RT protein.";
RL Genes Dev. 17:1630-1645(2003).
RN [18]
RP INTERACTION WITH NGLY1 AND PSMC1.
RX PubMed=15358861; DOI=10.1073/pnas.0405663101;
RA Katiyar S., Li G., Lennarz W.J.;
RT "A complex between peptide:N-glycanase and two proteasome-linked
RT proteins suggests a mechanism for the degradation of misfolded
RT glycoproteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 101:13774-13779(2004).
RN [19]
RP SUBCELLULAR LOCATION.
RX PubMed=16253613; DOI=10.1016/j.bbrc.2005.09.192;
RA Katiyar S., Lennarz W.J.;
RT "Studies on the intracellular localization of hHR23B.";
RL Biochem. Biophys. Res. Commun. 337:1296-1300(2005).
RN [20]
RP INTERACTION WITH XPC.
RX PubMed=15964821; DOI=10.1128/MCB.25.13.5664-5674.2005;
RA Nishi R., Okuda Y., Watanabe E., Mori T., Iwai S., Masutani C.,
RA Sugasawa K., Hanaoka F.;
RT "Centrin 2 stimulates nucleotide excision repair by interacting with
RT xeroderma pigmentosum group C protein.";
RL Mol. Cell. Biol. 25:5664-5674(2005).
RN [21]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [22]
RP INTERACTION WITH EEF1A1, AND MUTAGENESIS OF LYS-6.
RX PubMed=16712842; DOI=10.1016/j.febslet.2006.05.012;
RA Chen L., Madura K.;
RT "Evidence for distinct functions for human DNA repair factors hHR23A
RT and hHR23B.";
RL FEBS Lett. 580:3401-3408(2006).
RN [23]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-155, AND MASS
RP SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17323924; DOI=10.1021/bi061994u;
RA Wang X., Chen C.-F., Baker P.R., Chen P.-L., Kaiser P., Huang L.;
RT "Mass spectrometric characterization of the affinity-purified human
RT 26S proteasome complex.";
RL Biochemistry 46:3553-3565(2007).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
RA Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
RA Greff Z., Keri G., Stemmann O., Mann M.;
RT "Kinase-selective enrichment enables quantitative phosphoproteomics of
RT the kinome across the cell cycle.";
RL Mol. Cell 31:438-448(2008).
RN [25]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [26]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [27]
RP FUNCTION IN PROTEASOMAL DEGRADATION, AND POLYUBIQUITIN-BINDING.
RX PubMed=19435460; DOI=10.1042/BJ20090528;
RA Li X., Demartino G.N.;
RT "Variably modulated gating of the 26S proteasome by ATP and
RT polyubiquitin.";
RL Biochem. J. 421:397-404(2009).
RN [28]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=19941824; DOI=10.1016/j.molcel.2009.09.035;
RA Sugasawa K., Akagi J., Nishi R., Iwai S., Hanaoka F.;
RT "Two-step recognition of DNA damage for mammalian nucleotide excision
RT repair: Directional binding of the XPC complex and DNA strand
RT scanning.";
RL Mol. Cell 36:642-653(2009).
RN [29]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [30]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=20028083; DOI=10.1021/bi901575h;
RA Neher T.M., Rechkunova N.I., Lavrik O.I., Turchi J.J.;
RT "Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals
RT contacts with both strands of the DNA duplex and spans the DNA
RT adduct.";
RL Biochemistry 49:669-678(2010).
RN [31]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=20798892; DOI=10.4061/2010/805698;
RA Shimizu Y., Uchimura Y., Dohmae N., Saitoh H., Hanaoka F.,
RA Sugasawa K.;
RT "Stimulation of DNA glycosylase activities by XPC Protein Complex:
RT Roles of protein-protein interactions.";
RL J. Nucleic Acids 2010:455-459(2010).
RN [32]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [35]
RP STRUCTURE BY NMR OF 1-82.
RX PubMed=12832454; DOI=10.1074/jbc.M304628200;
RA Ryu K.-S., Lee K.-J., Bae S.-H., Kim B.-K., Kim K.-A., Choi B.-S.;
RT "Binding surface mapping of intra- and interdomain interactions among
RT hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a.";
RL J. Biol. Chem. 278:36621-36627(2003).
RN [36]
RP STRUCTURE BY NMR OF 1-87 IN COMPLEX WITH PSMD4.
RX PubMed=14585839; DOI=10.1074/jbc.M309448200;
RA Fujiwara K., Tenno T., Sugasawa K., Jee J.-G., Ohki I., Kojima C.,
RA Tochio H., Hiroaki H., Hanaoka F., Shirakawa M.;
RT "Structure of the ubiquitin-interacting motif of S5a bound to the
RT ubiquitin-like domain of HR23B.";
RL J. Biol. Chem. 279:4760-4767(2004).
RN [37]
RP STRUCTURE BY NMR OF 275-342, AND FUNCTION.
RX PubMed=15885096; DOI=10.1111/j.1742-4658.2005.04667.x;
RA Kim B., Ryu K.-S., Kim H.-J., Cho S.-J., Choi B.-S.;
RT "Solution structure and backbone dynamics of the XPC-binding domain of
RT the human DNA repair protein hHR23B.";
RL FEBS J. 272:2467-2476(2005).
CC -!- FUNCTION: Multiubiquitin chain receptor involved in modulation of
CC proteasomal degradation. Binds to polyubiquitin chains. Proposed
CC to be capable to bind simultaneously to the 26S proteasome and to
CC polyubiquitinated substrates and to deliver ubiquitinated proteins
CC to the proteasome. May play a role in endoplasmic reticulum-
CC associated degradation (ERAD) of misfolded glycoproteins by
CC association with PNGase and delivering deglycosylated proteins to
CC the proteasome.
CC -!- FUNCTION: Involved in global genome nucleotide excision repair
CC (GG-NER) by acting as component of the XPC complex. Cooperatively
CC with CETN2 appears to stabilize XPC. May protect XPC from
CC proteasomal degradation.
CC -!- FUNCTION: The XPC complex is proposed to represent the first
CC factor bound at the sites of DNA damage and together with other
CC core recognition factors, XPA, RPA and the TFIIH complex, is part
CC of the pre-incision (or initial recognition) complex. The XPC
CC complex recognizes a wide spectrum of damaged DNA characterized by
CC distortions of the DNA helix such as single-stranded loops,
CC mismatched bubbles or single-stranded overhangs. The orientation
CC of XPC complex binding appears to be crucial for inducing a
CC productive NER. XPC complex is proposed to recognize and to
CC interact with unpaired bases on the undamaged DNA strand which is
CC followed by recruitment of the TFIIH complex and subsequent
CC scanning for lesions in the opposite strand in a 5'-to-3'
CC direction by the NER machinery. Cyclobutane pyrimidine dimers
CC (CPDs) which are formed upon UV-induced DNA damage esacpe
CC detection by the XPC complex due to a low degree of structural
CC perurbation. Instead they are detected by the UV-DDB complex which
CC in turn recruits and cooperates with the XPC complex in the
CC respective DNA repair. In vitro, the XPC:RAD23B dimer is
CC sufficient to initiate NER; it preferentially binds to cisplatin
CC and UV-damaged double-stranded DNA and also binds to a variety of
CC chemically and structurally diverse DNA adducts. XPC:RAD23B
CC contacts DNA both 5' and 3' of a cisplatin lesion with a
CC preference for the 5' side. XPC:RAD23B induces a bend in DNA upon
CC binding. XPC:RAD23B stimulates the activity of DNA glycosylases
CC TDG and SMUG1.
CC -!- SUBUNIT: Component of the XPC complex composed of XPC, RAD23B and
CC CETN2. Interacts with NGLY1 and PSMC1. Interacts with ATXN3.
CC Interacts with PSMD4 and PSMC5. Interacts with AMFR. Interacts
CC with VCP; the interaction is indirect and mediated by NGLY1 (By
CC similarity).
CC -!- INTERACTION:
CC Q16186:ADRM1; NbExp=2; IntAct=EBI-954531, EBI-954387;
CC P54252:ATXN3; NbExp=2; IntAct=EBI-954531, EBI-946046;
CC P19447:ERCC3; NbExp=2; IntAct=EBI-954531, EBI-1183307;
CC P24610:Pax3 (xeno); NbExp=4; IntAct=EBI-954531, EBI-1208116;
CC P55036:PSMD4; NbExp=12; IntAct=EBI-954531, EBI-359318;
CC P55034:RPN10 (xeno); NbExp=3; IntAct=EBI-954531, EBI-2620423;
CC Q8TBC4:UBA3; NbExp=2; IntAct=EBI-954531, EBI-717567;
CC P0CG48:UBC; NbExp=4; IntAct=EBI-954531, EBI-3390054;
CC P45974:USP5; NbExp=2; IntAct=EBI-954531, EBI-741277;
CC P08670:VIM; NbExp=2; IntAct=EBI-954531, EBI-353844;
CC Q01831:XPC; NbExp=5; IntAct=EBI-954531, EBI-372610;
CC -!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Note=The intracellular
CC distribution is cell cycle dependent. Localized to the nucleus and
CC the cytoplasm during G1 phase. Nuclear levels decrease during S-
CC phase; upon entering mitosis, relocalizes in the cytoplasm without
CC association with chromatin.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P54727-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P54727-2; Sequence=VSP_045606;
CC Note=Highly expressed in the testis and in ejaculated
CC spermatozoa;
CC -!- DOMAIN: The ubiquitin-like domain mediates interaction with ATXN3.
CC -!- SIMILARITY: Belongs to the RAD23 family.
CC -!- SIMILARITY: Contains 1 STI1 domain.
CC -!- SIMILARITY: Contains 2 UBA domains.
CC -!- SIMILARITY: Contains 1 ubiquitin-like domain.
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/rad23b/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; D21090; BAA04652.1; -; mRNA.
DR EMBL; AY313777; AAP81008.1; -; mRNA.
DR EMBL; AY165178; AAN47194.1; -; Genomic_DNA.
DR EMBL; AK125226; BAG54170.1; -; mRNA.
DR EMBL; AL137852; CAD13275.1; -; Genomic_DNA.
DR EMBL; CH471105; EAW59016.1; -; Genomic_DNA.
DR EMBL; CH471105; EAW59017.1; -; Genomic_DNA.
DR EMBL; BC020973; AAH20973.1; -; mRNA.
DR PIR; S44346; S44346.
DR RefSeq; NP_001231653.1; NM_001244724.1.
DR RefSeq; NP_002865.1; NM_002874.4.
DR UniGene; Hs.521640; -.
DR PDB; 1P1A; NMR; -; A=1-82.
DR PDB; 1PVE; NMR; -; A=275-342.
DR PDB; 1UEL; NMR; -; A=1-87.
DR PDBsum; 1P1A; -.
DR PDBsum; 1PVE; -.
DR PDBsum; 1UEL; -.
DR ProteinModelPortal; P54727; -.
DR SMR; P54727; 1-409.
DR IntAct; P54727; 39.
DR MINT; MINT-5006025; -.
DR STRING; 9606.ENSP00000350708; -.
DR PhosphoSite; P54727; -.
DR DMDM; 1709985; -.
DR OGP; P54727; -.
DR PaxDb; P54727; -.
DR PeptideAtlas; P54727; -.
DR PRIDE; P54727; -.
DR DNASU; 5887; -.
DR Ensembl; ENST00000358015; ENSP00000350708; ENSG00000119318.
DR Ensembl; ENST00000416373; ENSP00000405623; ENSG00000119318.
DR GeneID; 5887; -.
DR KEGG; hsa:5887; -.
DR UCSC; uc004bde.3; human.
DR CTD; 5887; -.
DR GeneCards; GC09P110045; -.
DR HGNC; HGNC:9813; RAD23B.
DR HPA; CAB033868; -.
DR HPA; HPA029718; -.
DR HPA; HPA029720; -.
DR MIM; 600062; gene.
DR neXtProt; NX_P54727; -.
DR PharmGKB; PA34173; -.
DR eggNOG; COG5272; -.
DR HOGENOM; HOG000172162; -.
DR HOVERGEN; HBG055042; -.
DR InParanoid; P54727; -.
DR KO; K10839; -.
DR OMA; QSNPATT; -.
DR OrthoDB; EOG72C51D; -.
DR PhylomeDB; P54727; -.
DR Reactome; REACT_216; DNA Repair.
DR ChiTaRS; RAD23B; human.
DR EvolutionaryTrace; P54727; -.
DR GeneWiki; RAD23B; -.
DR GenomeRNAi; 5887; -.
DR NextBio; 22892; -.
DR PMAP-CutDB; P54727; -.
DR PRO; PR:P54727; -.
DR ArrayExpress; P54727; -.
DR Bgee; P54727; -.
DR CleanEx; HS_RAD23B; -.
DR Genevestigator; P54727; -.
DR GO; GO:0005737; C:cytoplasm; IDA:HPA.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0000502; C:proteasome complex; IEA:UniProtKB-KW.
DR GO; GO:0071942; C:XPC complex; IDA:UniProtKB.
DR GO; GO:0003684; F:damaged DNA binding; IEA:InterPro.
DR GO; GO:0031593; F:polyubiquitin binding; IDA:UniProtKB.
DR GO; GO:0003697; F:single-stranded DNA binding; TAS:ProtInc.
DR GO; GO:0000715; P:nucleotide-excision repair, DNA damage recognition; IDA:UniProtKB.
DR GO; GO:0000718; P:nucleotide-excision repair, DNA damage removal; TAS:Reactome.
DR GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IEA:InterPro.
DR GO; GO:0032434; P:regulation of proteasomal ubiquitin-dependent protein catabolic process; IDA:UniProtKB.
DR GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
DR Gene3D; 1.10.10.540; -; 1.
DR InterPro; IPR004806; Rad23.
DR InterPro; IPR006636; STI1_HS-bd.
DR InterPro; IPR009060; UBA-like.
DR InterPro; IPR015940; UBA/transl_elong_EF1B_N_euk.
DR InterPro; IPR000449; UBA/Ts_N.
DR InterPro; IPR000626; Ubiquitin_dom.
DR InterPro; IPR015360; XPC-bd.
DR Pfam; PF00627; UBA; 2.
DR Pfam; PF00240; ubiquitin; 1.
DR Pfam; PF09280; XPC-binding; 1.
DR PRINTS; PR01839; RAD23PROTEIN.
DR SMART; SM00727; STI1; 1.
DR SMART; SM00165; UBA; 2.
DR SMART; SM00213; UBQ; 1.
DR SUPFAM; SSF101238; SSF101238; 1.
DR SUPFAM; SSF46934; SSF46934; 2.
DR TIGRFAMs; TIGR00601; rad23; 1.
DR PROSITE; PS50030; UBA; 2.
DR PROSITE; PS00299; UBIQUITIN_1; FALSE_NEG.
DR PROSITE; PS50053; UBIQUITIN_2; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Complete proteome; Cytoplasm;
KW Direct protein sequencing; DNA damage; DNA repair; Nucleus;
KW Phosphoprotein; Polymorphism; Proteasome; Reference proteome; Repeat;
KW Ubl conjugation pathway.
FT CHAIN 1 409 UV excision repair protein RAD23 homolog
FT B.
FT /FTId=PRO_0000114906.
FT DOMAIN 1 79 Ubiquitin-like.
FT DOMAIN 188 228 UBA 1.
FT DOMAIN 274 317 STI1.
FT DOMAIN 364 404 UBA 2.
FT COMPBIAS 103 106 Poly-Thr.
FT COMPBIAS 254 260 Poly-Ala.
FT COMPBIAS 261 269 Poly-Thr.
FT COMPBIAS 336 348 Poly-Gly.
FT MOD_RES 155 155 Phosphothreonine.
FT MOD_RES 160 160 Phosphoserine.
FT MOD_RES 174 174 Phosphoserine (By similarity).
FT MOD_RES 186 186 Phosphothreonine (By similarity).
FT MOD_RES 199 199 Phosphoserine (By similarity).
FT MOD_RES 202 202 Phosphotyrosine (By similarity).
FT VAR_SEQ 1 72 Missing (in isoform 2).
FT /FTId=VSP_045606.
FT VARIANT 249 249 A -> V (in dbSNP:rs1805329).
FT /FTId=VAR_014350.
FT MUTAGEN 6 6 K->A: Impairs interaction with EEF1A1.
FT STRAND 1 7
FT STRAND 12 17
FT HELIX 23 34
FT TURN 36 38
FT HELIX 41 43
FT STRAND 44 48
FT HELIX 59 62
FT STRAND 68 74
FT HELIX 277 279
FT TURN 283 287
FT HELIX 288 292
FT HELIX 296 298
FT HELIX 299 307
FT HELIX 311 318
FT HELIX 321 329
FT HELIX 335 338
SQ SEQUENCE 409 AA; 43171 MW; C026C78273BCB289 CRC64;
MQVTLKTLQQ QTFKIDIDPE ETVKALKEKI ESEKGKDAFP VAGQKLIYAG KILNDDTALK
EYKIDEKNFV VVMVTKPKAV STPAPATTQQ SAPASTTAVT SSTTTTVAQA PTPVPALAPT
STPASITPAS ATASSEPAPA SAAKQEKPAE KPAETPVATS PTATDSTSGD SSRSNLFEDA
TSALVTGQSY ENMVTEIMSM GYEREQVIAA LRASFNNPDR AVEYLLMGIP GDRESQAVVD
PPQAASTGAP QSSAVAAAAA TTTATTTTTS SGGHPLEFLR NQPQFQQMRQ IIQQNPSLLP
ALLQQIGREN PQLLQQISQH QEHFIQMLNE PVQEAGGQGG GGGGGSGGIA EAGSGHMNYI
QVTPQEKEAI ERLKALGFPE GLVIQAYFAC EKNENLAANF LLQQNFDED
//
ID RD23B_HUMAN Reviewed; 409 AA.
AC P54727; B3KWK8; G5E9P0; Q7Z5K8; Q8WUB0;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-OCT-1996, sequence version 1.
DT 22-JAN-2014, entry version 140.
DE RecName: Full=UV excision repair protein RAD23 homolog B;
DE Short=HR23B;
DE Short=hHR23B;
DE AltName: Full=XP-C repair-complementing complex 58 kDa protein;
DE Short=p58;
GN Name=RAD23B;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=8168482;
RA Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M.,
RA Enomoto T., Takio K., Tanaka K., van der Spek P.J., Bootsma D.,
RA Hoeijmakers J.H.J., Hanaoka F.;
RT "Purification and cloning of a nucleotide excision repair complex
RT involving the Xeroderma pigmentosum group C protein and a human
RT homologue of yeast RAD23.";
RL EMBO J. 13:1831-1843(1994).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), VARIANT VAL-249, ALTERNATIVE
RP SPLICING, AND TISSUE SPECIFICITY (ISOFORM 2).
RC TISSUE=Testis;
RX PubMed=15064313;
RA Huang X., Wang H., Xu M., Lu L., Xu Z., Li J., Zhou Z., Sha J.;
RT "Expression of a novel RAD23B mRNA splice variant in the human
RT testis.";
RL J. Androl. 25:363-368(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT VAL-249.
RG NIEHS SNPs program;
RL Submitted (OCT-2002) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15164053; DOI=10.1038/nature02465;
RA Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E.,
RA Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C.,
RA Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I.S.,
RA Babbage A.K., Babbage S., Bagguley C.L., Bailey J., Banerjee R.,
RA Barker D.J., Barlow K.F., Bates K., Beasley H., Beasley O., Bird C.P.,
RA Bray-Allen S., Brown A.J., Brown J.Y., Burford D., Burrill W.,
RA Burton J., Carder C., Carter N.P., Chapman J.C., Chen Y., Clarke G.,
RA Clark S.Y., Clee C.M., Clegg S., Collier R.E., Corby N., Crosier M.,
RA Cummings A.T., Davies J., Dhami P., Dunn M., Dutta I., Dyer L.W.,
RA Earthrowl M.E., Faulkner L., Fleming C.J., Frankish A.,
RA Frankland J.A., French L., Fricker D.G., Garner P., Garnett J.,
RA Ghori J., Gilbert J.G.R., Glison C., Grafham D.V., Gribble S.,
RA Griffiths C., Griffiths-Jones S., Grocock R., Guy J., Hall R.E.,
RA Hammond S., Harley J.L., Harrison E.S.I., Hart E.A., Heath P.D.,
RA Henderson C.D., Hopkins B.L., Howard P.J., Howden P.J., Huckle E.,
RA Johnson C., Johnson D., Joy A.A., Kay M., Keenan S., Kershaw J.K.,
RA Kimberley A.M., King A., Knights A., Laird G.K., Langford C.,
RA Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C., Lloyd D.M.,
RA Lovell J., Martin S., Mashreghi-Mohammadi M., Matthews L., McLaren S.,
RA McLay K.E., McMurray A., Milne S., Nickerson T., Nisbett J.,
RA Nordsiek G., Pearce A.V., Peck A.I., Porter K.M., Pandian R.,
RA Pelan S., Phillimore B., Povey S., Ramsey Y., Rand V., Scharfe M.,
RA Sehra H.K., Shownkeen R., Sims S.K., Skuce C.D., Smith M.,
RA Steward C.A., Swarbreck D., Sycamore N., Tester J., Thorpe A.,
RA Tracey A., Tromans A., Thomas D.W., Wall M., Wallis J.M., West A.P.,
RA Whitehead S.L., Willey D.L., Williams S.A., Wilming L., Wray P.W.,
RA Young L., Ashurst J.L., Coulson A., Blocker H., Durbin R.M.,
RA Sulston J.E., Hubbard T., Jackson M.J., Bentley D.R., Beck S.,
RA Rogers J., Dunham I.;
RT "DNA sequence and analysis of human chromosome 9.";
RL Nature 429:369-374(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP VAL-249.
RC TISSUE=Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP FUNCTION.
RX PubMed=9372924;
RA Sugasawa K., Ng J.M., Masutani C., Maekawa T., Uchida A.,
RA van der Spek P.J., Eker A.P., Rademakers S., Visser C.,
RA Aboussekhra A., Wood R.D., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
RT "Two human homologs of Rad23 are functionally interchangeable in
RT complex formation and stimulation of XPC repair activity.";
RL Mol. Cell. Biol. 17:6924-6931(1997).
RN [9]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=9734359; DOI=10.1016/S1097-2765(00)80132-X;
RA Sugasawa K., Ng J.M., Masutani C., Iwai S., van der Spek P.J.,
RA Eker A.P., Hanaoka F., Bootsma D., Hoeijmakers J.H.;
RT "Xeroderma pigmentosum group C protein complex is the initiator of
RT global genome nucleotide excision repair.";
RL Mol. Cell 2:223-232(1998).
RN [10]
RP INTERACTION WITH PSMD4 AND PSMC5.
RX PubMed=10488153; DOI=10.1074/jbc.274.39.28019;
RA Hiyama H., Yokoi M., Masutani C., Sugasawa K., Maekawa T., Tanaka K.,
RA Hoeijmakers J.H., Hanaoka F.;
RT "Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23
RT mediates interaction with S5a subunit of 26 S proteasome.";
RL J. Biol. Chem. 274:28019-28025(1999).
RN [11]
RP INTERACTION WITH ATXN3.
RX PubMed=10915768; DOI=10.1093/hmg/9.12.1795;
RA Wang G., Sawai N., Kotliarova S., Kanazawa I., Nukina N.;
RT "Ataxin-3, the MJD1 gene product, interacts with the two human
RT homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B.";
RL Hum. Mol. Genet. 9:1795-1803(2000).
RN [12]
RP FUNCTION, AND FUNCTION OF THE XPC COMPLEX.
RX PubMed=10873465; DOI=10.1006/jmbi.2000.3857;
RA Batty D., Rapic'-Otrin V., Levine A.S., Wood R.D.;
RT "Stable binding of human XPC complex to irradiated DNA confers strong
RT discrimination for damaged sites.";
RL J. Mol. Biol. 300:275-290(2000).
RN [13]
RP INTERACTION WITH CETN2, SUBCELLULAR LOCATION, AND CHARACTERIZATION OF
RP THE XPC COMPLEX.
RX PubMed=11279143; DOI=10.1074/jbc.M100855200;
RA Araki M., Masutani C., Takemura M., Uchida A., Sugasawa K., Kondoh J.,
RA Ohkuma Y., Hanaoka F.;
RT "Centrosome protein centrin 2/caltractin 1 is part of the xeroderma
RT pigmentosum group C complex that initiates global genome nucleotide
RT excision repair.";
RL J. Biol. Chem. 276:18665-18672(2001).
RN [14]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=12509299; DOI=10.1016/S1568-7864(01)00008-8;
RA Sugasawa K., Shimizu Y., Iwai S., Hanaoka F.;
RT "A molecular mechanism for DNA damage recognition by the xeroderma
RT pigmentosum group C protein complex.";
RL DNA Repair 1:95-107(2002).
RN [15]
RP INTERACTION WITH XPC.
RX PubMed=12509233; DOI=10.1016/S1568-7864(02)00031-9;
RA Uchida A., Sugasawa K., Masutani C., Dohmae N., Araki M., Yokoi M.,
RA Ohkuma Y., Hanaoka F.;
RT "The carboxy-terminal domain of the XPC protein plays a crucial role
RT in nucleotide excision repair through interactions with transcription
RT factor IIH.";
RL DNA Repair 1:449-461(2002).
RN [16]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=12547395; DOI=10.1016/S1568-7864(02)00222-7;
RA Janicijevic A., Sugasawa K., Shimizu Y., Hanaoka F., Wijgers N.,
RA Djurica M., Hoeijmakers J.H., Wyman C.;
RT "DNA bending by the human damage recognition complex XPC-HR23B.";
RL DNA Repair 2:325-336(2003).
RN [17]
RP FUNCTION.
RX PubMed=12815074; DOI=10.1101/gad.260003;
RA Ng J.M., Vermeulen W., van der Horst G.T., Bergink S., Sugasawa K.,
RA Vrieling H., Hoeijmakers J.H.;
RT "A novel regulation mechanism of DNA repair by damage-induced and
RT RAD23-dependent stabilization of xeroderma pigmentosum group C
RT protein.";
RL Genes Dev. 17:1630-1645(2003).
RN [18]
RP INTERACTION WITH NGLY1 AND PSMC1.
RX PubMed=15358861; DOI=10.1073/pnas.0405663101;
RA Katiyar S., Li G., Lennarz W.J.;
RT "A complex between peptide:N-glycanase and two proteasome-linked
RT proteins suggests a mechanism for the degradation of misfolded
RT glycoproteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 101:13774-13779(2004).
RN [19]
RP SUBCELLULAR LOCATION.
RX PubMed=16253613; DOI=10.1016/j.bbrc.2005.09.192;
RA Katiyar S., Lennarz W.J.;
RT "Studies on the intracellular localization of hHR23B.";
RL Biochem. Biophys. Res. Commun. 337:1296-1300(2005).
RN [20]
RP INTERACTION WITH XPC.
RX PubMed=15964821; DOI=10.1128/MCB.25.13.5664-5674.2005;
RA Nishi R., Okuda Y., Watanabe E., Mori T., Iwai S., Masutani C.,
RA Sugasawa K., Hanaoka F.;
RT "Centrin 2 stimulates nucleotide excision repair by interacting with
RT xeroderma pigmentosum group C protein.";
RL Mol. Cell. Biol. 25:5664-5674(2005).
RN [21]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [22]
RP INTERACTION WITH EEF1A1, AND MUTAGENESIS OF LYS-6.
RX PubMed=16712842; DOI=10.1016/j.febslet.2006.05.012;
RA Chen L., Madura K.;
RT "Evidence for distinct functions for human DNA repair factors hHR23A
RT and hHR23B.";
RL FEBS Lett. 580:3401-3408(2006).
RN [23]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-155, AND MASS
RP SPECTROMETRY.
RC TISSUE=Embryonic kidney;
RX PubMed=17323924; DOI=10.1021/bi061994u;
RA Wang X., Chen C.-F., Baker P.R., Chen P.-L., Kaiser P., Huang L.;
RT "Mass spectrometric characterization of the affinity-purified human
RT 26S proteasome complex.";
RL Biochemistry 46:3553-3565(2007).
RN [24]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18691976; DOI=10.1016/j.molcel.2008.07.007;
RA Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,
RA Greff Z., Keri G., Stemmann O., Mann M.;
RT "Kinase-selective enrichment enables quantitative phosphoproteomics of
RT the kinome across the cell cycle.";
RL Mol. Cell 31:438-448(2008).
RN [25]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [26]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [27]
RP FUNCTION IN PROTEASOMAL DEGRADATION, AND POLYUBIQUITIN-BINDING.
RX PubMed=19435460; DOI=10.1042/BJ20090528;
RA Li X., Demartino G.N.;
RT "Variably modulated gating of the 26S proteasome by ATP and
RT polyubiquitin.";
RL Biochem. J. 421:397-404(2009).
RN [28]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=19941824; DOI=10.1016/j.molcel.2009.09.035;
RA Sugasawa K., Akagi J., Nishi R., Iwai S., Hanaoka F.;
RT "Two-step recognition of DNA damage for mammalian nucleotide excision
RT repair: Directional binding of the XPC complex and DNA strand
RT scanning.";
RL Mol. Cell 36:642-653(2009).
RN [29]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [30]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=20028083; DOI=10.1021/bi901575h;
RA Neher T.M., Rechkunova N.I., Lavrik O.I., Turchi J.J.;
RT "Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals
RT contacts with both strands of the DNA duplex and spans the DNA
RT adduct.";
RL Biochemistry 49:669-678(2010).
RN [31]
RP FUNCTION OF THE XPC COMPLEX.
RX PubMed=20798892; DOI=10.4061/2010/805698;
RA Shimizu Y., Uchimura Y., Dohmae N., Saitoh H., Hanaoka F.,
RA Sugasawa K.;
RT "Stimulation of DNA glycosylase activities by XPC Protein Complex:
RT Roles of protein-protein interactions.";
RL J. Nucleic Acids 2010:455-459(2010).
RN [32]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-160, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [35]
RP STRUCTURE BY NMR OF 1-82.
RX PubMed=12832454; DOI=10.1074/jbc.M304628200;
RA Ryu K.-S., Lee K.-J., Bae S.-H., Kim B.-K., Kim K.-A., Choi B.-S.;
RT "Binding surface mapping of intra- and interdomain interactions among
RT hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a.";
RL J. Biol. Chem. 278:36621-36627(2003).
RN [36]
RP STRUCTURE BY NMR OF 1-87 IN COMPLEX WITH PSMD4.
RX PubMed=14585839; DOI=10.1074/jbc.M309448200;
RA Fujiwara K., Tenno T., Sugasawa K., Jee J.-G., Ohki I., Kojima C.,
RA Tochio H., Hiroaki H., Hanaoka F., Shirakawa M.;
RT "Structure of the ubiquitin-interacting motif of S5a bound to the
RT ubiquitin-like domain of HR23B.";
RL J. Biol. Chem. 279:4760-4767(2004).
RN [37]
RP STRUCTURE BY NMR OF 275-342, AND FUNCTION.
RX PubMed=15885096; DOI=10.1111/j.1742-4658.2005.04667.x;
RA Kim B., Ryu K.-S., Kim H.-J., Cho S.-J., Choi B.-S.;
RT "Solution structure and backbone dynamics of the XPC-binding domain of
RT the human DNA repair protein hHR23B.";
RL FEBS J. 272:2467-2476(2005).
CC -!- FUNCTION: Multiubiquitin chain receptor involved in modulation of
CC proteasomal degradation. Binds to polyubiquitin chains. Proposed
CC to be capable to bind simultaneously to the 26S proteasome and to
CC polyubiquitinated substrates and to deliver ubiquitinated proteins
CC to the proteasome. May play a role in endoplasmic reticulum-
CC associated degradation (ERAD) of misfolded glycoproteins by
CC association with PNGase and delivering deglycosylated proteins to
CC the proteasome.
CC -!- FUNCTION: Involved in global genome nucleotide excision repair
CC (GG-NER) by acting as component of the XPC complex. Cooperatively
CC with CETN2 appears to stabilize XPC. May protect XPC from
CC proteasomal degradation.
CC -!- FUNCTION: The XPC complex is proposed to represent the first
CC factor bound at the sites of DNA damage and together with other
CC core recognition factors, XPA, RPA and the TFIIH complex, is part
CC of the pre-incision (or initial recognition) complex. The XPC
CC complex recognizes a wide spectrum of damaged DNA characterized by
CC distortions of the DNA helix such as single-stranded loops,
CC mismatched bubbles or single-stranded overhangs. The orientation
CC of XPC complex binding appears to be crucial for inducing a
CC productive NER. XPC complex is proposed to recognize and to
CC interact with unpaired bases on the undamaged DNA strand which is
CC followed by recruitment of the TFIIH complex and subsequent
CC scanning for lesions in the opposite strand in a 5'-to-3'
CC direction by the NER machinery. Cyclobutane pyrimidine dimers
CC (CPDs) which are formed upon UV-induced DNA damage esacpe
CC detection by the XPC complex due to a low degree of structural
CC perurbation. Instead they are detected by the UV-DDB complex which
CC in turn recruits and cooperates with the XPC complex in the
CC respective DNA repair. In vitro, the XPC:RAD23B dimer is
CC sufficient to initiate NER; it preferentially binds to cisplatin
CC and UV-damaged double-stranded DNA and also binds to a variety of
CC chemically and structurally diverse DNA adducts. XPC:RAD23B
CC contacts DNA both 5' and 3' of a cisplatin lesion with a
CC preference for the 5' side. XPC:RAD23B induces a bend in DNA upon
CC binding. XPC:RAD23B stimulates the activity of DNA glycosylases
CC TDG and SMUG1.
CC -!- SUBUNIT: Component of the XPC complex composed of XPC, RAD23B and
CC CETN2. Interacts with NGLY1 and PSMC1. Interacts with ATXN3.
CC Interacts with PSMD4 and PSMC5. Interacts with AMFR. Interacts
CC with VCP; the interaction is indirect and mediated by NGLY1 (By
CC similarity).
CC -!- INTERACTION:
CC Q16186:ADRM1; NbExp=2; IntAct=EBI-954531, EBI-954387;
CC P54252:ATXN3; NbExp=2; IntAct=EBI-954531, EBI-946046;
CC P19447:ERCC3; NbExp=2; IntAct=EBI-954531, EBI-1183307;
CC P24610:Pax3 (xeno); NbExp=4; IntAct=EBI-954531, EBI-1208116;
CC P55036:PSMD4; NbExp=12; IntAct=EBI-954531, EBI-359318;
CC P55034:RPN10 (xeno); NbExp=3; IntAct=EBI-954531, EBI-2620423;
CC Q8TBC4:UBA3; NbExp=2; IntAct=EBI-954531, EBI-717567;
CC P0CG48:UBC; NbExp=4; IntAct=EBI-954531, EBI-3390054;
CC P45974:USP5; NbExp=2; IntAct=EBI-954531, EBI-741277;
CC P08670:VIM; NbExp=2; IntAct=EBI-954531, EBI-353844;
CC Q01831:XPC; NbExp=5; IntAct=EBI-954531, EBI-372610;
CC -!- SUBCELLULAR LOCATION: Nucleus. Cytoplasm. Note=The intracellular
CC distribution is cell cycle dependent. Localized to the nucleus and
CC the cytoplasm during G1 phase. Nuclear levels decrease during S-
CC phase; upon entering mitosis, relocalizes in the cytoplasm without
CC association with chromatin.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P54727-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P54727-2; Sequence=VSP_045606;
CC Note=Highly expressed in the testis and in ejaculated
CC spermatozoa;
CC -!- DOMAIN: The ubiquitin-like domain mediates interaction with ATXN3.
CC -!- SIMILARITY: Belongs to the RAD23 family.
CC -!- SIMILARITY: Contains 1 STI1 domain.
CC -!- SIMILARITY: Contains 2 UBA domains.
CC -!- SIMILARITY: Contains 1 ubiquitin-like domain.
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/rad23b/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; D21090; BAA04652.1; -; mRNA.
DR EMBL; AY313777; AAP81008.1; -; mRNA.
DR EMBL; AY165178; AAN47194.1; -; Genomic_DNA.
DR EMBL; AK125226; BAG54170.1; -; mRNA.
DR EMBL; AL137852; CAD13275.1; -; Genomic_DNA.
DR EMBL; CH471105; EAW59016.1; -; Genomic_DNA.
DR EMBL; CH471105; EAW59017.1; -; Genomic_DNA.
DR EMBL; BC020973; AAH20973.1; -; mRNA.
DR PIR; S44346; S44346.
DR RefSeq; NP_001231653.1; NM_001244724.1.
DR RefSeq; NP_002865.1; NM_002874.4.
DR UniGene; Hs.521640; -.
DR PDB; 1P1A; NMR; -; A=1-82.
DR PDB; 1PVE; NMR; -; A=275-342.
DR PDB; 1UEL; NMR; -; A=1-87.
DR PDBsum; 1P1A; -.
DR PDBsum; 1PVE; -.
DR PDBsum; 1UEL; -.
DR ProteinModelPortal; P54727; -.
DR SMR; P54727; 1-409.
DR IntAct; P54727; 39.
DR MINT; MINT-5006025; -.
DR STRING; 9606.ENSP00000350708; -.
DR PhosphoSite; P54727; -.
DR DMDM; 1709985; -.
DR OGP; P54727; -.
DR PaxDb; P54727; -.
DR PeptideAtlas; P54727; -.
DR PRIDE; P54727; -.
DR DNASU; 5887; -.
DR Ensembl; ENST00000358015; ENSP00000350708; ENSG00000119318.
DR Ensembl; ENST00000416373; ENSP00000405623; ENSG00000119318.
DR GeneID; 5887; -.
DR KEGG; hsa:5887; -.
DR UCSC; uc004bde.3; human.
DR CTD; 5887; -.
DR GeneCards; GC09P110045; -.
DR HGNC; HGNC:9813; RAD23B.
DR HPA; CAB033868; -.
DR HPA; HPA029718; -.
DR HPA; HPA029720; -.
DR MIM; 600062; gene.
DR neXtProt; NX_P54727; -.
DR PharmGKB; PA34173; -.
DR eggNOG; COG5272; -.
DR HOGENOM; HOG000172162; -.
DR HOVERGEN; HBG055042; -.
DR InParanoid; P54727; -.
DR KO; K10839; -.
DR OMA; QSNPATT; -.
DR OrthoDB; EOG72C51D; -.
DR PhylomeDB; P54727; -.
DR Reactome; REACT_216; DNA Repair.
DR ChiTaRS; RAD23B; human.
DR EvolutionaryTrace; P54727; -.
DR GeneWiki; RAD23B; -.
DR GenomeRNAi; 5887; -.
DR NextBio; 22892; -.
DR PMAP-CutDB; P54727; -.
DR PRO; PR:P54727; -.
DR ArrayExpress; P54727; -.
DR Bgee; P54727; -.
DR CleanEx; HS_RAD23B; -.
DR Genevestigator; P54727; -.
DR GO; GO:0005737; C:cytoplasm; IDA:HPA.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0000502; C:proteasome complex; IEA:UniProtKB-KW.
DR GO; GO:0071942; C:XPC complex; IDA:UniProtKB.
DR GO; GO:0003684; F:damaged DNA binding; IEA:InterPro.
DR GO; GO:0031593; F:polyubiquitin binding; IDA:UniProtKB.
DR GO; GO:0003697; F:single-stranded DNA binding; TAS:ProtInc.
DR GO; GO:0000715; P:nucleotide-excision repair, DNA damage recognition; IDA:UniProtKB.
DR GO; GO:0000718; P:nucleotide-excision repair, DNA damage removal; TAS:Reactome.
DR GO; GO:0043161; P:proteasome-mediated ubiquitin-dependent protein catabolic process; IEA:InterPro.
DR GO; GO:0032434; P:regulation of proteasomal ubiquitin-dependent protein catabolic process; IDA:UniProtKB.
DR GO; GO:0007283; P:spermatogenesis; IEA:Ensembl.
DR Gene3D; 1.10.10.540; -; 1.
DR InterPro; IPR004806; Rad23.
DR InterPro; IPR006636; STI1_HS-bd.
DR InterPro; IPR009060; UBA-like.
DR InterPro; IPR015940; UBA/transl_elong_EF1B_N_euk.
DR InterPro; IPR000449; UBA/Ts_N.
DR InterPro; IPR000626; Ubiquitin_dom.
DR InterPro; IPR015360; XPC-bd.
DR Pfam; PF00627; UBA; 2.
DR Pfam; PF00240; ubiquitin; 1.
DR Pfam; PF09280; XPC-binding; 1.
DR PRINTS; PR01839; RAD23PROTEIN.
DR SMART; SM00727; STI1; 1.
DR SMART; SM00165; UBA; 2.
DR SMART; SM00213; UBQ; 1.
DR SUPFAM; SSF101238; SSF101238; 1.
DR SUPFAM; SSF46934; SSF46934; 2.
DR TIGRFAMs; TIGR00601; rad23; 1.
DR PROSITE; PS50030; UBA; 2.
DR PROSITE; PS00299; UBIQUITIN_1; FALSE_NEG.
DR PROSITE; PS50053; UBIQUITIN_2; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Complete proteome; Cytoplasm;
KW Direct protein sequencing; DNA damage; DNA repair; Nucleus;
KW Phosphoprotein; Polymorphism; Proteasome; Reference proteome; Repeat;
KW Ubl conjugation pathway.
FT CHAIN 1 409 UV excision repair protein RAD23 homolog
FT B.
FT /FTId=PRO_0000114906.
FT DOMAIN 1 79 Ubiquitin-like.
FT DOMAIN 188 228 UBA 1.
FT DOMAIN 274 317 STI1.
FT DOMAIN 364 404 UBA 2.
FT COMPBIAS 103 106 Poly-Thr.
FT COMPBIAS 254 260 Poly-Ala.
FT COMPBIAS 261 269 Poly-Thr.
FT COMPBIAS 336 348 Poly-Gly.
FT MOD_RES 155 155 Phosphothreonine.
FT MOD_RES 160 160 Phosphoserine.
FT MOD_RES 174 174 Phosphoserine (By similarity).
FT MOD_RES 186 186 Phosphothreonine (By similarity).
FT MOD_RES 199 199 Phosphoserine (By similarity).
FT MOD_RES 202 202 Phosphotyrosine (By similarity).
FT VAR_SEQ 1 72 Missing (in isoform 2).
FT /FTId=VSP_045606.
FT VARIANT 249 249 A -> V (in dbSNP:rs1805329).
FT /FTId=VAR_014350.
FT MUTAGEN 6 6 K->A: Impairs interaction with EEF1A1.
FT STRAND 1 7
FT STRAND 12 17
FT HELIX 23 34
FT TURN 36 38
FT HELIX 41 43
FT STRAND 44 48
FT HELIX 59 62
FT STRAND 68 74
FT HELIX 277 279
FT TURN 283 287
FT HELIX 288 292
FT HELIX 296 298
FT HELIX 299 307
FT HELIX 311 318
FT HELIX 321 329
FT HELIX 335 338
SQ SEQUENCE 409 AA; 43171 MW; C026C78273BCB289 CRC64;
MQVTLKTLQQ QTFKIDIDPE ETVKALKEKI ESEKGKDAFP VAGQKLIYAG KILNDDTALK
EYKIDEKNFV VVMVTKPKAV STPAPATTQQ SAPASTTAVT SSTTTTVAQA PTPVPALAPT
STPASITPAS ATASSEPAPA SAAKQEKPAE KPAETPVATS PTATDSTSGD SSRSNLFEDA
TSALVTGQSY ENMVTEIMSM GYEREQVIAA LRASFNNPDR AVEYLLMGIP GDRESQAVVD
PPQAASTGAP QSSAVAAAAA TTTATTTTTS SGGHPLEFLR NQPQFQQMRQ IIQQNPSLLP
ALLQQIGREN PQLLQQISQH QEHFIQMLNE PVQEAGGQGG GGGGGSGGIA EAGSGHMNYI
QVTPQEKEAI ERLKALGFPE GLVIQAYFAC EKNENLAANF LLQQNFDED
//
MIM
600062
*RECORD*
*FIELD* NO
600062
*FIELD* TI
*600062 RAD23, YEAST, HOMOLOG OF, B; RAD23B
;;HHR23B;;
HR23B
*FIELD* TX
DESCRIPTION
read more
Volker et al. (2001) described the assembly of the nucleotide excision
repair (NER) complex in normal and repair-deficient (xeroderma
pigmentosum) human cells by employing a novel technique of local
ultraviolet irradiation combined with fluorescent antibody labeling. The
damage-recognition complex XPC (613208)-HHR23B (RAD23B) appeared to be
essential for the recruitment of all subsequent NER factors in the
preincision complex, including transcription repair factor TFIIH (see
189972). Volker et al. (2001) found that XPA (611153) associates
relatively late, is required for anchoring of ERCC1 (126380)-XPF
(133520), and may be essential for activation of the endonuclease
activity of XPG (133530). These findings identified XPC as the earliest
known NER factor in the reaction mechanism, gave insight into the order
of subsequent NER components, provided evidence for a dual role of XPA,
and supported a concept of sequential assembly of repair proteins at the
site of damage rather than a preassembled repairosome. The XPC-RAD23B
complex is specifically involved in global genome but not
transcription-coupled NER.
CLONING
Masutani et al. (1994) cloned human RAD23A (600061) and RAD23B, which
they called HHR23A and HHR23B.
GENE FUNCTION
Using a DNA damage recognition-competition assay, Sugasawa et al. (1998)
identified XPC-RAD23B as the earliest damage detector to initiate NER;
it acts before the known damage-binding protein XPA.
Coimmunoprecipitation and DNase I footprinting showed that XPC-RAD23B
binds to a variety of NER lesions. This provides a plausible explanation
for the extreme damage specificity exhibited by global genome repair.
Machado-Joseph disease (MJD; 109150) is an autosomal dominant
neurodegenerative disorder caused by an expansion of the polyglutamine
tract near the C terminus of the MJD1 gene product, ataxin-3. The mutant
ataxin-3 forms intranuclear inclusions in cultured cells as well as in
diseased human brain and also causes cell death in transfected cells.
Using a 2-hybrid system, Wang et al. (2000) found that ataxin-3
interacts with 2 human homologs of the yeast DNA repair protein RAD23,
RAD23A and RAD23B. Both normal and mutant ataxin-3 proteins interact
with the ubiquitin-like domain at the N terminus of the HHR23 proteins,
which is a motif important for nucleotide excision repair. However, in
human embryonic kidney cells, HHR23A is recruited to intranuclear
inclusions formed by the mutant ataxin-3 through its interaction with
ataxin-3. The authors suggested that this interaction is associated with
the normal function of ataxin-3, and that some functional abnormality of
the RAD23 proteins may exist in MJD.
MAPPING
By fluorescence in situ hybridization, van der Spek et al. (1994) showed
that the RAD23B and XPC genes, the products of which form a tight
complex, colocalize on 3p25.1. Pulsed-field gel electrophoresis revealed
that the HHR23B and XPC genes possibly share a MluI restriction fragment
of about 625 kb. In the mouse, van der Spek et al. (1996) found that the
homologs of the Xpc and Rad23b genes are on different chromosomes,
namely 6B and 4B3, respectively. The authors stated that physical
disconnection of the genes in the mouse argues against a functional
significance of the colocalization of these genes in the human.
The International Radiation Hybrid Mapping Consortium mapped the RAD23B
gene to chromosome 9 (TMAP A006X46) in a region showing syntenic
homology with mouse chromosome 4.
ANIMAL MODEL
Ng et al. (2002) created a Rad23B knockout mouse model. Fibroblasts
cultured from embryonic animals were not UV sensitive and retained the
repair characteristics of wildtype cells, suggesting that Rad23A can
functionally replace Rad23B in NER. However, there was a high rate of
intrauterine or neonatal death in Rad23B -/- animals, and surviving
animals displayed a variety of abnormalities, including retarded growth,
facial dysmorphology, and male sterility. These findings suggested a
function for Rad23B in normal development that cannot be compensated for
by Rad23A.
*FIELD* RF
1. Masutani, C.; Sugasawa, K.; Yanagisawa, J.; Sonoyama, T.; Ui, M.;
Enomoto, T.; Takio, K.; Tanaka, K.; van der Spek, P. J.; Bootsma,
D.; Hoeijmakers, J. H. J.; Hanaoka, F.: Purification and cloning
of a nucleotide excision repair complex involving the xeroderma pigmentosum
group C protein and a human homologue of yeast RAD23. EMBO J. 13:
1831-1843, 1994.
2. Ng, J. M. Y.; Vrieling, H.; Sugasawa, K.; Ooms, M. P.; Grootegoed,
J. A.; Vreeburg, J. T. M.; Visser, P.; Beems, R. B.; Gorgels, T. G.
M. F.; Hanaoka, F.; Hoeijmakers, J. H. J.; van der Horst, G. T. J.
: Developmental defects and male sterility in mice lacking the ubiquitin-like
DNA repair gene mHR23B. Molec. Cell. Biol. 22: 1233-1245, 2002.
3. Sugasawa, K.; Ng, J. M. Y.; Masutani, C.; Iwai, S.; van der Spek,
P. J.; Eker, A. P. M.; Hanaoka, F.; Bootsma, D.; Hoeijmakers, J. H.
J.: Xeroderma pigmentosum group C protein complex is the initiator
of global genome nucleotide excision repair. Molec. Cell 2: 223-232,
1998.
4. van der Spek, P. J.; Smit, E. M. E.; Beverloo, H. B.; Sugasawa,
K.; Masutani, C.; Hanaoka, F.; Hoeijmakers, J. H. J.; Hagemeijer,
A.: Chromosomal localization of three repair genes: the xeroderma
pigmentosum group C gene and two human homologs of yeast RAD23. Genomics 23:
651-658, 1994.
5. van der Spek, P. J.; Visser, C. E.; Hanaoka, F.; Smit, B.; Hagemeijer,
A.; Bootsma, D.; Hoeijmakers, J. H. J.: Cloning, comparative mapping,
and RNA expression of the mouse homologues of the Saccharomyces cerevisiae
nucleotide excision repair gene RAD23. Genomics 31: 20-27, 1996.
6. Volker, M.; Mone, M. J.; Karmakar, P.; van Hoffen, A.; Schul, W.;
Vermeulen, W.; Hoeijmakers, J. H. J.; van Driel, R.; van Zeeland,
A. A.; Mullenders, L. H. F.: Sequential assembly of the nucleotide
excision repair factors in vivo. Molec. Cell 8: 213-224, 2001.
7. Wang, G.; Sawai, N.; Kotliarova, S.; Kanazawa, I.; Nukina, N.:
Ataxin-3, the MJD1 gene product, interacts with the two human homologs
of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Molec.
Genet. 9: 1795-1803, 2000.
*FIELD* CN
Patricia A. Hartz - updated: 3/27/2002
Joanna S. Amberger - updated: 3/27/2002
Stylianos E. Antonarakis - updated: 8/3/2001
George E. Tiller - updated: 9/21/2000
Stylianos E. Antonarakis - updated: 12/23/1998
*FIELD* CD
Victor A. McKusick: 7/28/1994
*FIELD* ED
carol: 01/12/2010
carol: 7/12/2007
carol: 4/15/2002
terry: 3/27/2002
joanna: 3/27/2002
mgross: 8/3/2001
alopez: 9/21/2000
carol: 12/23/1998
dkim: 10/16/1998
mark: 2/7/1996
terry: 2/1/1996
carol: 12/14/1994
jason: 7/28/1994
*RECORD*
*FIELD* NO
600062
*FIELD* TI
*600062 RAD23, YEAST, HOMOLOG OF, B; RAD23B
;;HHR23B;;
HR23B
*FIELD* TX
DESCRIPTION
read more
Volker et al. (2001) described the assembly of the nucleotide excision
repair (NER) complex in normal and repair-deficient (xeroderma
pigmentosum) human cells by employing a novel technique of local
ultraviolet irradiation combined with fluorescent antibody labeling. The
damage-recognition complex XPC (613208)-HHR23B (RAD23B) appeared to be
essential for the recruitment of all subsequent NER factors in the
preincision complex, including transcription repair factor TFIIH (see
189972). Volker et al. (2001) found that XPA (611153) associates
relatively late, is required for anchoring of ERCC1 (126380)-XPF
(133520), and may be essential for activation of the endonuclease
activity of XPG (133530). These findings identified XPC as the earliest
known NER factor in the reaction mechanism, gave insight into the order
of subsequent NER components, provided evidence for a dual role of XPA,
and supported a concept of sequential assembly of repair proteins at the
site of damage rather than a preassembled repairosome. The XPC-RAD23B
complex is specifically involved in global genome but not
transcription-coupled NER.
CLONING
Masutani et al. (1994) cloned human RAD23A (600061) and RAD23B, which
they called HHR23A and HHR23B.
GENE FUNCTION
Using a DNA damage recognition-competition assay, Sugasawa et al. (1998)
identified XPC-RAD23B as the earliest damage detector to initiate NER;
it acts before the known damage-binding protein XPA.
Coimmunoprecipitation and DNase I footprinting showed that XPC-RAD23B
binds to a variety of NER lesions. This provides a plausible explanation
for the extreme damage specificity exhibited by global genome repair.
Machado-Joseph disease (MJD; 109150) is an autosomal dominant
neurodegenerative disorder caused by an expansion of the polyglutamine
tract near the C terminus of the MJD1 gene product, ataxin-3. The mutant
ataxin-3 forms intranuclear inclusions in cultured cells as well as in
diseased human brain and also causes cell death in transfected cells.
Using a 2-hybrid system, Wang et al. (2000) found that ataxin-3
interacts with 2 human homologs of the yeast DNA repair protein RAD23,
RAD23A and RAD23B. Both normal and mutant ataxin-3 proteins interact
with the ubiquitin-like domain at the N terminus of the HHR23 proteins,
which is a motif important for nucleotide excision repair. However, in
human embryonic kidney cells, HHR23A is recruited to intranuclear
inclusions formed by the mutant ataxin-3 through its interaction with
ataxin-3. The authors suggested that this interaction is associated with
the normal function of ataxin-3, and that some functional abnormality of
the RAD23 proteins may exist in MJD.
MAPPING
By fluorescence in situ hybridization, van der Spek et al. (1994) showed
that the RAD23B and XPC genes, the products of which form a tight
complex, colocalize on 3p25.1. Pulsed-field gel electrophoresis revealed
that the HHR23B and XPC genes possibly share a MluI restriction fragment
of about 625 kb. In the mouse, van der Spek et al. (1996) found that the
homologs of the Xpc and Rad23b genes are on different chromosomes,
namely 6B and 4B3, respectively. The authors stated that physical
disconnection of the genes in the mouse argues against a functional
significance of the colocalization of these genes in the human.
The International Radiation Hybrid Mapping Consortium mapped the RAD23B
gene to chromosome 9 (TMAP A006X46) in a region showing syntenic
homology with mouse chromosome 4.
ANIMAL MODEL
Ng et al. (2002) created a Rad23B knockout mouse model. Fibroblasts
cultured from embryonic animals were not UV sensitive and retained the
repair characteristics of wildtype cells, suggesting that Rad23A can
functionally replace Rad23B in NER. However, there was a high rate of
intrauterine or neonatal death in Rad23B -/- animals, and surviving
animals displayed a variety of abnormalities, including retarded growth,
facial dysmorphology, and male sterility. These findings suggested a
function for Rad23B in normal development that cannot be compensated for
by Rad23A.
*FIELD* RF
1. Masutani, C.; Sugasawa, K.; Yanagisawa, J.; Sonoyama, T.; Ui, M.;
Enomoto, T.; Takio, K.; Tanaka, K.; van der Spek, P. J.; Bootsma,
D.; Hoeijmakers, J. H. J.; Hanaoka, F.: Purification and cloning
of a nucleotide excision repair complex involving the xeroderma pigmentosum
group C protein and a human homologue of yeast RAD23. EMBO J. 13:
1831-1843, 1994.
2. Ng, J. M. Y.; Vrieling, H.; Sugasawa, K.; Ooms, M. P.; Grootegoed,
J. A.; Vreeburg, J. T. M.; Visser, P.; Beems, R. B.; Gorgels, T. G.
M. F.; Hanaoka, F.; Hoeijmakers, J. H. J.; van der Horst, G. T. J.
: Developmental defects and male sterility in mice lacking the ubiquitin-like
DNA repair gene mHR23B. Molec. Cell. Biol. 22: 1233-1245, 2002.
3. Sugasawa, K.; Ng, J. M. Y.; Masutani, C.; Iwai, S.; van der Spek,
P. J.; Eker, A. P. M.; Hanaoka, F.; Bootsma, D.; Hoeijmakers, J. H.
J.: Xeroderma pigmentosum group C protein complex is the initiator
of global genome nucleotide excision repair. Molec. Cell 2: 223-232,
1998.
4. van der Spek, P. J.; Smit, E. M. E.; Beverloo, H. B.; Sugasawa,
K.; Masutani, C.; Hanaoka, F.; Hoeijmakers, J. H. J.; Hagemeijer,
A.: Chromosomal localization of three repair genes: the xeroderma
pigmentosum group C gene and two human homologs of yeast RAD23. Genomics 23:
651-658, 1994.
5. van der Spek, P. J.; Visser, C. E.; Hanaoka, F.; Smit, B.; Hagemeijer,
A.; Bootsma, D.; Hoeijmakers, J. H. J.: Cloning, comparative mapping,
and RNA expression of the mouse homologues of the Saccharomyces cerevisiae
nucleotide excision repair gene RAD23. Genomics 31: 20-27, 1996.
6. Volker, M.; Mone, M. J.; Karmakar, P.; van Hoffen, A.; Schul, W.;
Vermeulen, W.; Hoeijmakers, J. H. J.; van Driel, R.; van Zeeland,
A. A.; Mullenders, L. H. F.: Sequential assembly of the nucleotide
excision repair factors in vivo. Molec. Cell 8: 213-224, 2001.
7. Wang, G.; Sawai, N.; Kotliarova, S.; Kanazawa, I.; Nukina, N.:
Ataxin-3, the MJD1 gene product, interacts with the two human homologs
of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Molec.
Genet. 9: 1795-1803, 2000.
*FIELD* CN
Patricia A. Hartz - updated: 3/27/2002
Joanna S. Amberger - updated: 3/27/2002
Stylianos E. Antonarakis - updated: 8/3/2001
George E. Tiller - updated: 9/21/2000
Stylianos E. Antonarakis - updated: 12/23/1998
*FIELD* CD
Victor A. McKusick: 7/28/1994
*FIELD* ED
carol: 01/12/2010
carol: 7/12/2007
carol: 4/15/2002
terry: 3/27/2002
joanna: 3/27/2002
mgross: 8/3/2001
alopez: 9/21/2000
carol: 12/23/1998
dkim: 10/16/1998
mark: 2/7/1996
terry: 2/1/1996
carol: 12/14/1994
jason: 7/28/1994