Full text data of NAPA
NAPA
(SNAPA)
[Confidence: medium (present in either hRBCD or BSc_CH or PM22954596)]
Alpha-soluble NSF attachment protein; SNAP-alpha (N-ethylmaleimide-sensitive factor attachment protein alpha)
Alpha-soluble NSF attachment protein; SNAP-alpha (N-ethylmaleimide-sensitive factor attachment protein alpha)
UniProt
P54920
ID SNAA_HUMAN Reviewed; 295 AA.
AC P54920; A8K879; Q96IK3; Q9BVJ3;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 17-OCT-2006, sequence version 3.
DT 22-JAN-2014, entry version 126.
DE RecName: Full=Alpha-soluble NSF attachment protein;
DE Short=SNAP-alpha;
DE AltName: Full=N-ethylmaleimide-sensitive factor attachment protein alpha;
GN Name=NAPA; Synonyms=SNAPA;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Platelet;
RX PubMed=9269766;
RA Lemons P.P., Chen D., Bernstein A.M., Bennett M.K., Whiteheart S.W.;
RT "Regulated secretion in platelets: identification of elements of the
RT platelet exocytosis machinery.";
RL Blood 90:1490-1500(1997).
RN [2]
RP SEQUENCE REVISION TO 91; 133 AND 289.
RA Chen D., Shao H.P., Whiteheart S.W.;
RL Submitted (NOV-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (OCT-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Testis;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, Lung, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND IDENTIFICATION IN A COMPLEX
RP WITH RINT1; USE1L; NAPA AND ZW10.
RX PubMed=15029241; DOI=10.1038/sj.emboj.7600135;
RA Hirose H., Arasaki K., Dohmae N., Takio K., Hatsuzawa K., Nagahama M.,
RA Tani K., Yamamoto A., Tohyama M., Tagaya M.;
RT "Implication of ZW10 in membrane trafficking between the endoplasmic
RT reticulum and Golgi.";
RL EMBO J. 23:1267-1278(2004).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [9]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
CC -!- FUNCTION: Required for vesicular transport between the endoplasmic
CC reticulum and the Golgi apparatus.
CC -!- SUBUNIT: Interacts with PRKCABP, and disrupts the interaction
CC between GRIA2 and PRKCABP, leading to the internalization of
CC GRIA2. Found in a complex with VAMP8 (By similarity). Component of
CC a SNARE-like complex that contains at least ZW10, USE1L, RINT1,
CC STX18 and NAPA/SNAP-alpha. Interacts with VTI1A. Interacts with
CC STX12 (By similarity).
CC -!- INTERACTION:
CC P46459:NSF; NbExp=2; IntAct=EBI-749652, EBI-712251;
CC O00161:SNAP23; NbExp=2; IntAct=EBI-749652, EBI-745000;
CC Q12846:STX4; NbExp=2; IntAct=EBI-749652, EBI-744942;
CC -!- SUBCELLULAR LOCATION: Membrane; Peripheral membrane protein.
CC -!- SIMILARITY: Belongs to the SNAP family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U39412; AAC80170.1; -; mRNA.
DR EMBL; BT019568; AAV38375.1; -; mRNA.
DR EMBL; AK292244; BAF84933.1; -; mRNA.
DR EMBL; CH471126; EAW57491.1; -; Genomic_DNA.
DR EMBL; BC001165; AAH01165.1; -; mRNA.
DR EMBL; BC007432; AAH07432.1; -; mRNA.
DR EMBL; BC028234; AAH28234.1; -; mRNA.
DR EMBL; BC091511; AAH91511.1; -; mRNA.
DR PIR; G02238; G02238.
DR RefSeq; NP_003818.2; NM_003827.3.
DR UniGene; Hs.730799; -.
DR UniGene; Hs.744881; -.
DR ProteinModelPortal; P54920; -.
DR SMR; P54920; 8-293.
DR DIP; DIP-393N; -.
DR IntAct; P54920; 7.
DR MINT; MINT-3020680; -.
DR STRING; 9606.ENSP00000263354; -.
DR PhosphoSite; P54920; -.
DR DMDM; 116242794; -.
DR OGP; P54920; -.
DR PaxDb; P54920; -.
DR PeptideAtlas; P54920; -.
DR PRIDE; P54920; -.
DR DNASU; 8775; -.
DR Ensembl; ENST00000263354; ENSP00000263354; ENSG00000105402.
DR GeneID; 8775; -.
DR KEGG; hsa:8775; -.
DR UCSC; uc002pha.2; human.
DR CTD; 8775; -.
DR GeneCards; GC19M047990; -.
DR H-InvDB; HIX0137469; -.
DR HGNC; HGNC:7641; NAPA.
DR HPA; CAB010100; -.
DR MIM; 603215; gene.
DR neXtProt; NX_P54920; -.
DR PharmGKB; PA31443; -.
DR eggNOG; NOG245914; -.
DR HOGENOM; HOG000165015; -.
DR HOVERGEN; HBG001325; -.
DR InParanoid; P54920; -.
DR KO; K15296; -.
DR OMA; INCLNRA; -.
DR OrthoDB; EOG7FNC80; -.
DR PhylomeDB; P54920; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR GeneWiki; NAPA_(gene); -.
DR GenomeRNAi; 8775; -.
DR NextBio; 32904; -.
DR PMAP-CutDB; P54920; -.
DR PRO; PR:P54920; -.
DR ArrayExpress; P54920; -.
DR Bgee; P54920; -.
DR CleanEx; HS_NAPA; -.
DR Genevestigator; P54920; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0070044; C:synaptobrevin 2-SNAP-25-syntaxin-1a complex; IEA:Ensembl.
DR GO; GO:0045176; P:apical protein localization; IEA:Ensembl.
DR GO; GO:0007420; P:brain development; IEA:Ensembl.
DR GO; GO:0006891; P:intra-Golgi vesicle-mediated transport; TAS:ProtInc.
DR GO; GO:0006886; P:intracellular protein transport; IEA:Ensembl.
DR GO; GO:0061025; P:membrane fusion; TAS:ProtInc.
DR GO; GO:0030182; P:neuron differentiation; IEA:Ensembl.
DR GO; GO:0006892; P:post-Golgi vesicle-mediated transport; TAS:Reactome.
DR GO; GO:0010807; P:regulation of synaptic vesicle priming; IEA:Ensembl.
DR GO; GO:0035494; P:SNARE complex disassembly; IEA:Ensembl.
DR GO; GO:0035249; P:synaptic transmission, glutamatergic; IEA:Ensembl.
DR Gene3D; 1.25.40.10; -; 1.
DR InterPro; IPR000744; NSF_attach.
DR InterPro; IPR011990; TPR-like_helical.
DR PANTHER; PTHR13768; PTHR13768; 1.
DR PRINTS; PR00448; NSFATTACHMNT.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; ER-Golgi transport; Membrane;
KW Protein transport; Reference proteome; Transport.
FT CHAIN 1 295 Alpha-soluble NSF attachment protein.
FT /FTId=PRO_0000219056.
FT MOD_RES 1 1 N-acetylmethionine.
FT CONFLICT 195 195 S -> T (in Ref. 1; AAC80170).
SQ SEQUENCE 295 AA; 33233 MW; 7704A619A441E609 CRC64;
MDNSGKEAEA MALLAEAERK VKNSQSFFSG LFGGSSKIEE ACEIYARAAN MFKMAKNWSA
AGNAFCQAAQ LHLQLQSKHD AATCFVDAGN AFKKADPQEA INCLMRAIEI YTDMGRFTIA
AKHHISIAEI YETELVDIEK AIAHYEQSAD YYKGEESNSS ANKCLLKVAG YAALLEQYQK
AIDIYEQVGT NAMDSPLLKY SAKDYFFKAA LCHFCIDMLN AKLAVQKYEE LFPAFSDSRE
CKLMKKLLEA HEEQNVDSYT ESVKEYDSIS RLDQWLTTML LRIKKTIQGD EEDLR
//
ID SNAA_HUMAN Reviewed; 295 AA.
AC P54920; A8K879; Q96IK3; Q9BVJ3;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 17-OCT-2006, sequence version 3.
DT 22-JAN-2014, entry version 126.
DE RecName: Full=Alpha-soluble NSF attachment protein;
DE Short=SNAP-alpha;
DE AltName: Full=N-ethylmaleimide-sensitive factor attachment protein alpha;
GN Name=NAPA; Synonyms=SNAPA;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Platelet;
RX PubMed=9269766;
RA Lemons P.P., Chen D., Bernstein A.M., Bennett M.K., Whiteheart S.W.;
RT "Regulated secretion in platelets: identification of elements of the
RT platelet exocytosis machinery.";
RL Blood 90:1490-1500(1997).
RN [2]
RP SEQUENCE REVISION TO 91; 133 AND 289.
RA Chen D., Shao H.P., Whiteheart S.W.;
RL Submitted (NOV-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (OCT-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Testis;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Brain, Lung, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND IDENTIFICATION IN A COMPLEX
RP WITH RINT1; USE1L; NAPA AND ZW10.
RX PubMed=15029241; DOI=10.1038/sj.emboj.7600135;
RA Hirose H., Arasaki K., Dohmae N., Takio K., Hatsuzawa K., Nagahama M.,
RA Tani K., Yamamoto A., Tohyama M., Tagaya M.;
RT "Implication of ZW10 in membrane trafficking between the endoplasmic
RT reticulum and Golgi.";
RL EMBO J. 23:1267-1278(2004).
RN [8]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [9]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
CC -!- FUNCTION: Required for vesicular transport between the endoplasmic
CC reticulum and the Golgi apparatus.
CC -!- SUBUNIT: Interacts with PRKCABP, and disrupts the interaction
CC between GRIA2 and PRKCABP, leading to the internalization of
CC GRIA2. Found in a complex with VAMP8 (By similarity). Component of
CC a SNARE-like complex that contains at least ZW10, USE1L, RINT1,
CC STX18 and NAPA/SNAP-alpha. Interacts with VTI1A. Interacts with
CC STX12 (By similarity).
CC -!- INTERACTION:
CC P46459:NSF; NbExp=2; IntAct=EBI-749652, EBI-712251;
CC O00161:SNAP23; NbExp=2; IntAct=EBI-749652, EBI-745000;
CC Q12846:STX4; NbExp=2; IntAct=EBI-749652, EBI-744942;
CC -!- SUBCELLULAR LOCATION: Membrane; Peripheral membrane protein.
CC -!- SIMILARITY: Belongs to the SNAP family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U39412; AAC80170.1; -; mRNA.
DR EMBL; BT019568; AAV38375.1; -; mRNA.
DR EMBL; AK292244; BAF84933.1; -; mRNA.
DR EMBL; CH471126; EAW57491.1; -; Genomic_DNA.
DR EMBL; BC001165; AAH01165.1; -; mRNA.
DR EMBL; BC007432; AAH07432.1; -; mRNA.
DR EMBL; BC028234; AAH28234.1; -; mRNA.
DR EMBL; BC091511; AAH91511.1; -; mRNA.
DR PIR; G02238; G02238.
DR RefSeq; NP_003818.2; NM_003827.3.
DR UniGene; Hs.730799; -.
DR UniGene; Hs.744881; -.
DR ProteinModelPortal; P54920; -.
DR SMR; P54920; 8-293.
DR DIP; DIP-393N; -.
DR IntAct; P54920; 7.
DR MINT; MINT-3020680; -.
DR STRING; 9606.ENSP00000263354; -.
DR PhosphoSite; P54920; -.
DR DMDM; 116242794; -.
DR OGP; P54920; -.
DR PaxDb; P54920; -.
DR PeptideAtlas; P54920; -.
DR PRIDE; P54920; -.
DR DNASU; 8775; -.
DR Ensembl; ENST00000263354; ENSP00000263354; ENSG00000105402.
DR GeneID; 8775; -.
DR KEGG; hsa:8775; -.
DR UCSC; uc002pha.2; human.
DR CTD; 8775; -.
DR GeneCards; GC19M047990; -.
DR H-InvDB; HIX0137469; -.
DR HGNC; HGNC:7641; NAPA.
DR HPA; CAB010100; -.
DR MIM; 603215; gene.
DR neXtProt; NX_P54920; -.
DR PharmGKB; PA31443; -.
DR eggNOG; NOG245914; -.
DR HOGENOM; HOG000165015; -.
DR HOVERGEN; HBG001325; -.
DR InParanoid; P54920; -.
DR KO; K15296; -.
DR OMA; INCLNRA; -.
DR OrthoDB; EOG7FNC80; -.
DR PhylomeDB; P54920; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR GeneWiki; NAPA_(gene); -.
DR GenomeRNAi; 8775; -.
DR NextBio; 32904; -.
DR PMAP-CutDB; P54920; -.
DR PRO; PR:P54920; -.
DR ArrayExpress; P54920; -.
DR Bgee; P54920; -.
DR CleanEx; HS_NAPA; -.
DR Genevestigator; P54920; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0070044; C:synaptobrevin 2-SNAP-25-syntaxin-1a complex; IEA:Ensembl.
DR GO; GO:0045176; P:apical protein localization; IEA:Ensembl.
DR GO; GO:0007420; P:brain development; IEA:Ensembl.
DR GO; GO:0006891; P:intra-Golgi vesicle-mediated transport; TAS:ProtInc.
DR GO; GO:0006886; P:intracellular protein transport; IEA:Ensembl.
DR GO; GO:0061025; P:membrane fusion; TAS:ProtInc.
DR GO; GO:0030182; P:neuron differentiation; IEA:Ensembl.
DR GO; GO:0006892; P:post-Golgi vesicle-mediated transport; TAS:Reactome.
DR GO; GO:0010807; P:regulation of synaptic vesicle priming; IEA:Ensembl.
DR GO; GO:0035494; P:SNARE complex disassembly; IEA:Ensembl.
DR GO; GO:0035249; P:synaptic transmission, glutamatergic; IEA:Ensembl.
DR Gene3D; 1.25.40.10; -; 1.
DR InterPro; IPR000744; NSF_attach.
DR InterPro; IPR011990; TPR-like_helical.
DR PANTHER; PTHR13768; PTHR13768; 1.
DR PRINTS; PR00448; NSFATTACHMNT.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; ER-Golgi transport; Membrane;
KW Protein transport; Reference proteome; Transport.
FT CHAIN 1 295 Alpha-soluble NSF attachment protein.
FT /FTId=PRO_0000219056.
FT MOD_RES 1 1 N-acetylmethionine.
FT CONFLICT 195 195 S -> T (in Ref. 1; AAC80170).
SQ SEQUENCE 295 AA; 33233 MW; 7704A619A441E609 CRC64;
MDNSGKEAEA MALLAEAERK VKNSQSFFSG LFGGSSKIEE ACEIYARAAN MFKMAKNWSA
AGNAFCQAAQ LHLQLQSKHD AATCFVDAGN AFKKADPQEA INCLMRAIEI YTDMGRFTIA
AKHHISIAEI YETELVDIEK AIAHYEQSAD YYKGEESNSS ANKCLLKVAG YAALLEQYQK
AIDIYEQVGT NAMDSPLLKY SAKDYFFKAA LCHFCIDMLN AKLAVQKYEE LFPAFSDSRE
CKLMKKLLEA HEEQNVDSYT ESVKEYDSIS RLDQWLTTML LRIKKTIQGD EEDLR
//
MIM
603215
*RECORD*
*FIELD* NO
603215
*FIELD* TI
*603215 N-ETHYLMALEIMIDE-SENSITIVE FACTOR ATTACHMENT PROTEIN, ALPHA; NAPA
;;SOLUBLE NSF-ATTACHMENT PROTEIN, ALPHA; SNAPA;;
read moreSNAP, ALPHA
*FIELD* TX
CLONING
Whiteheart et al. (1993) cloned bovine cDNAs encoding alpha-, beta-, and
gamma-SNAP (see 603216). They reported that alpha- and gamma-SNAP are
found in a wide range of tissues and act synergistically in intra-Golgi
transport.
By PCR using degenerate primers based on regions of alpha-SNAP conserved
between several species, Lemons et al. (1997) isolated a human
megakaryocyte cell cDNA encoding alpha-SNAP. The sequence of the
predicted 295-amino acid human protein shares 37%, 60%, and 67% identity
with the sequences of yeast, Drosophila, and squid alpha-SNAP,
respectively.
GENE FUNCTION
The 'SNARE hypothesis' is a model explaining the process of docking and
fusion of vesicles to their target membranes. According to this model,
membrane proteins from the vesicle (v-SNAREs) and proteins from the
target membrane (t-SNAREs) govern the specificity of vesicle targeting
and docking through mutual recognition. Once the 2 classes of SNAREs
bind to each other, they form a complex that recruits the general
elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive
factor; 601633) and SNAPs (soluble NSF-attachment proteins), to the site
of membrane fusion, thereby forming the 20S fusion complex. Lemons et
al. (1997) found that platelets contain some of the same proteins,
including NSF, p115/TAP (603344), alpha-SNAP, gamma-SNAP, and the
t-SNAREs syntaxin-2 and syntaxin-4 (186591), that are used in many
vesicular transport processes in other cell types. They concluded that
platelet exocytosis uses a molecular mechanism similar to that used by
other secretory cells, such as neurons, although the proteins used by
the platelet and their modes of regulation may be quite different.
By yeast 2-hybrid analysis of a testis cDNA library, Andreeva et al.
(2005) identified alpha-SNAP as an interacting partner of G-alpha-12
(GNA12; 604394). Protein pull-down assays confirmed that G-alpha-12
interacted directly with alpha-SNAP in COS-7 and human umbilical vein
endothelial cells (HUVECs). Domain-swapping experiments and mutation
analysis showed that the first 37 N-terminal amino acids of G-alpha-12
and the convex surface of alpha-SNAP were necessary for the interaction.
Cotransfection of HUVECs with G-alpha-12 and alpha-SNAP stabilized
VE-cadherin (CDH5; 601120) at the plasma membrane, whereas
downregulation of alpha-SNAP with small interfering RNA resulted in loss
of VE-cadherin from the cell surface. Downregulation of alpha-SNAP in
conjunction with G-alpha-12 overexpression decreased HUVEC endothelial
barrier function.
MAPPING
Chae et al. (2002) noted that homology maps between human chromosome 19
and mouse chromosome 7, where the hyh gene (see later) maps, show gene
content and order within the hyh candidate interval to be preserved
between mouse and human. They placed the human homolog, SNAPA, on
chromosome 19q13.3.
ANIMAL MODEL
The 'hyh' (hydrocephalus with hop gait) mouse shows a markedly small
cerebral cortex at birth and dies postnatally from progressive
enlargement of the ventricular system (Bronson and Lane, 1990). Chae et
al. (2002) mapped the hyh phenotype to a region on mouse chromosome 7
containing 5 genes. Mutation was found only in the gene encoding
alpha-Snap (Napa); sequence analysis showed a G-to-A transition in exon
4 that resulted in the amino acid substitution M105I.
Chae et al. (2004) showed that the small hyh cortex reflects altered
cell fate. Neural progenitor cells withdraw prematurely from the cell
cycle, producing more early-born, deep-layer cerebral cortical neurons
but depleting the cortical progenitor pool, such that late-born,
upper-layer cortical neurons are underproduced, creating a small cortex.
Met105 is conserved in all known mammalian alpha-Snap proteins, and Chae
et al. (2004) showed that the M105I change is a hypomorphic mutation in
many cellular contexts. A targeted null Napa mutation is embryonically
lethal. Altered neural cell fate is accompanied by abnormal localization
of many apical proteins implicated in regulation of neural cell fate.
Chae et al. (2004) presented evidence that alpha-Snap is essential for
apical protein localization and cell fate determination in
neuroepithelial cells.
In hyh mice homozygous for the Napa M105I mutation, Hong et al. (2004)
demonstrated that the mutant is not a null allele and is expressed;
however, the mutant protein was 40% less abundant in hyh mice.
*FIELD* RF
1. Andreeva, A. V.; Kutuzov, M. A.; Vaiskunaite, R.; Profirovic, J.;
Meigs, T. E.; Predescu, S.; Malik, A. B.; Voyno-Yasenetskaya, T.:
G-alpha-12 interaction with alpha-SNAP induces VE-cadherin localization
at endothelial junctions and regulates barrier function. J. Biol.
Chem. 280: 30376-30383, 2005.
2. Bronson, R. T.; Lane, P. W.: Hydrocephalus with hop gait (hyh):
a new mutation on chromosome 7 in the mouse. Dev. Brain Res. 54:
131-136, 1990.
3. Chae, T. H.; Allen, K. M.; Davisson, M. T.; Sweet, H. O.; Walsh,
C. A.: Mapping of the mouse hyh gene to a YAC/BAC contig on proximal
chromosome 7. Mammalian Genome 13: 239-244, 2002.
4. Chae, T. H.; Kim, S.; Marz, K. E.; Hanson, P. I.; Walsh, C. A.
: The hyh mutation uncovers roles for alpha-Snap in apical protein
localization and control of neural cell fate. Nature Genet. 36:
264-270, 2004. Note: Erratum: Nature Genet. 36: 427 only, 2004.
5. Hong, H.-K.; Chakravarti, A.; Takahashi, J. S.: The gene for soluble
N-ethylmaleimide sensitive factor attachment protein alpha is mutated
in hydrocephaly with hop gait (hyh) mice. Proc. Nat. Acad. Sci. 101:
1748-1753, 2004.
6. Lemons, P. P.; Chen, D.; Bernstein, A. M.; Bennett, M. K.; Whiteheart,
S. W.: Regulated secretion in platelets: identification of elements
of the platelet exocytosis machinery. Blood 90: 1490-1500, 1997.
7. Whiteheart, S. W.; Griff, I. C.; Brunner, M.; Clary, D. O.; Mayer,
T.; Buhrow, S. A.; Rothman, J. E.: SNAP family of NSF attachment
proteins includes a brain-specific isoform. Nature 362: 353-355,
1993.
*FIELD* CN
Patricia A. Hartz - updated: 3/6/2008
Victor A. McKusick - updated: 5/12/2004
Victor A. McKusick - updated: 2/13/2004
*FIELD* CD
Rebekah S. Rasooly: 10/27/1998
*FIELD* ED
terry: 06/20/2012
mgross: 3/6/2008
terry: 11/4/2004
tkritzer: 5/18/2004
terry: 5/12/2004
alopez: 4/5/2004
alopez: 3/1/2004
alopez: 2/20/2004
alopez: 2/16/2004
terry: 2/13/2004
alopez: 7/19/1999
carol: 3/22/1999
alopez: 12/21/1998
alopez: 12/7/1998
psherman: 10/27/1998
*RECORD*
*FIELD* NO
603215
*FIELD* TI
*603215 N-ETHYLMALEIMIDE-SENSITIVE FACTOR ATTACHMENT PROTEIN, ALPHA; NAPA
;;SOLUBLE NSF-ATTACHMENT PROTEIN, ALPHA; SNAPA;;
read moreSNAP, ALPHA
*FIELD* TX
CLONING
Whiteheart et al. (1993) cloned bovine cDNAs encoding alpha-, beta-, and
gamma-SNAP (see 603216). They reported that alpha- and gamma-SNAP are
found in a wide range of tissues and act synergistically in intra-Golgi
transport.
By PCR using degenerate primers based on regions of alpha-SNAP conserved
between several species, Lemons et al. (1997) isolated a human
megakaryocyte cell cDNA encoding alpha-SNAP. The sequence of the
predicted 295-amino acid human protein shares 37%, 60%, and 67% identity
with the sequences of yeast, Drosophila, and squid alpha-SNAP,
respectively.
GENE FUNCTION
The 'SNARE hypothesis' is a model explaining the process of docking and
fusion of vesicles to their target membranes. According to this model,
membrane proteins from the vesicle (v-SNAREs) and proteins from the
target membrane (t-SNAREs) govern the specificity of vesicle targeting
and docking through mutual recognition. Once the 2 classes of SNAREs
bind to each other, they form a complex that recruits the general
elements of the fusion apparatus, namely NSF (N-ethylmaleimide-sensitive
factor; 601633) and SNAPs (soluble NSF-attachment proteins), to the site
of membrane fusion, thereby forming the 20S fusion complex. Lemons et
al. (1997) found that platelets contain some of the same proteins,
including NSF, p115/TAP (603344), alpha-SNAP, gamma-SNAP, and the
t-SNAREs syntaxin-2 and syntaxin-4 (186591), that are used in many
vesicular transport processes in other cell types. They concluded that
platelet exocytosis uses a molecular mechanism similar to that used by
other secretory cells, such as neurons, although the proteins used by
the platelet and their modes of regulation may be quite different.
By yeast 2-hybrid analysis of a testis cDNA library, Andreeva et al.
(2005) identified alpha-SNAP as an interacting partner of G-alpha-12
(GNA12; 604394). Protein pull-down assays confirmed that G-alpha-12
interacted directly with alpha-SNAP in COS-7 and human umbilical vein
endothelial cells (HUVECs). Domain-swapping experiments and mutation
analysis showed that the first 37 N-terminal amino acids of G-alpha-12
and the convex surface of alpha-SNAP were necessary for the interaction.
Cotransfection of HUVECs with G-alpha-12 and alpha-SNAP stabilized
VE-cadherin (CDH5; 601120) at the plasma membrane, whereas
downregulation of alpha-SNAP with small interfering RNA resulted in loss
of VE-cadherin from the cell surface. Downregulation of alpha-SNAP in
conjunction with G-alpha-12 overexpression decreased HUVEC endothelial
barrier function.
MAPPING
Chae et al. (2002) noted that homology maps between human chromosome 19
and mouse chromosome 7, where the hyh gene (see later) maps, show gene
content and order within the hyh candidate interval to be preserved
between mouse and human. They placed the human homolog, SNAPA, on
chromosome 19q13.3.
ANIMAL MODEL
The 'hyh' (hydrocephalus with hop gait) mouse shows a markedly small
cerebral cortex at birth and dies postnatally from progressive
enlargement of the ventricular system (Bronson and Lane, 1990). Chae et
al. (2002) mapped the hyh phenotype to a region on mouse chromosome 7
containing 5 genes. Mutation was found only in the gene encoding
alpha-Snap (Napa); sequence analysis showed a G-to-A transition in exon
4 that resulted in the amino acid substitution M105I.
Chae et al. (2004) showed that the small hyh cortex reflects altered
cell fate. Neural progenitor cells withdraw prematurely from the cell
cycle, producing more early-born, deep-layer cerebral cortical neurons
but depleting the cortical progenitor pool, such that late-born,
upper-layer cortical neurons are underproduced, creating a small cortex.
Met105 is conserved in all known mammalian alpha-Snap proteins, and Chae
et al. (2004) showed that the M105I change is a hypomorphic mutation in
many cellular contexts. A targeted null Napa mutation is embryonically
lethal. Altered neural cell fate is accompanied by abnormal localization
of many apical proteins implicated in regulation of neural cell fate.
Chae et al. (2004) presented evidence that alpha-Snap is essential for
apical protein localization and cell fate determination in
neuroepithelial cells.
In hyh mice homozygous for the Napa M105I mutation, Hong et al. (2004)
demonstrated that the mutant is not a null allele and is expressed;
however, the mutant protein was 40% less abundant in hyh mice.
*FIELD* RF
1. Andreeva, A. V.; Kutuzov, M. A.; Vaiskunaite, R.; Profirovic, J.;
Meigs, T. E.; Predescu, S.; Malik, A. B.; Voyno-Yasenetskaya, T.:
G-alpha-12 interaction with alpha-SNAP induces VE-cadherin localization
at endothelial junctions and regulates barrier function. J. Biol.
Chem. 280: 30376-30383, 2005.
2. Bronson, R. T.; Lane, P. W.: Hydrocephalus with hop gait (hyh):
a new mutation on chromosome 7 in the mouse. Dev. Brain Res. 54:
131-136, 1990.
3. Chae, T. H.; Allen, K. M.; Davisson, M. T.; Sweet, H. O.; Walsh,
C. A.: Mapping of the mouse hyh gene to a YAC/BAC contig on proximal
chromosome 7. Mammalian Genome 13: 239-244, 2002.
4. Chae, T. H.; Kim, S.; Marz, K. E.; Hanson, P. I.; Walsh, C. A.
: The hyh mutation uncovers roles for alpha-Snap in apical protein
localization and control of neural cell fate. Nature Genet. 36:
264-270, 2004. Note: Erratum: Nature Genet. 36: 427 only, 2004.
5. Hong, H.-K.; Chakravarti, A.; Takahashi, J. S.: The gene for soluble
N-ethylmaleimide sensitive factor attachment protein alpha is mutated
in hydrocephaly with hop gait (hyh) mice. Proc. Nat. Acad. Sci. 101:
1748-1753, 2004.
6. Lemons, P. P.; Chen, D.; Bernstein, A. M.; Bennett, M. K.; Whiteheart,
S. W.: Regulated secretion in platelets: identification of elements
of the platelet exocytosis machinery. Blood 90: 1490-1500, 1997.
7. Whiteheart, S. W.; Griff, I. C.; Brunner, M.; Clary, D. O.; Mayer,
T.; Buhrow, S. A.; Rothman, J. E.: SNAP family of NSF attachment
proteins includes a brain-specific isoform. Nature 362: 353-355,
1993.
*FIELD* CN
Patricia A. Hartz - updated: 3/6/2008
Victor A. McKusick - updated: 5/12/2004
Victor A. McKusick - updated: 2/13/2004
*FIELD* CD
Rebekah S. Rasooly: 10/27/1998
*FIELD* ED
terry: 06/20/2012
mgross: 3/6/2008
terry: 11/4/2004
tkritzer: 5/18/2004
terry: 5/12/2004
alopez: 4/5/2004
alopez: 3/1/2004
alopez: 2/20/2004
alopez: 2/16/2004
terry: 2/13/2004
alopez: 7/19/1999
carol: 3/22/1999
alopez: 12/21/1998
alopez: 12/7/1998
psherman: 10/27/1998