Full text data of SLC14A1
SLC14A1
(HUT11, JK, RACH1, UT1, UTE)
[Confidence: high (a blood group or CD marker)]
Urea transporter 1 (Solute carrier family 14 member 1; Urea transporter, erythrocyte)
Urea transporter 1 (Solute carrier family 14 member 1; Urea transporter, erythrocyte)
hRBCD
IPI00298337
IPI00298337 Urea transporter, erythrocyte Urea transporter, erythrocyte membrane n/a 2 3 2 4 n/a 3 3 n/a n/a 5 3 n/a 3 3 6 7 3 2 2 integral membrane protein n/a found at its expected molecular weight found at molecular weight
IPI00298337 Urea transporter, erythrocyte Urea transporter, erythrocyte membrane n/a 2 3 2 4 n/a 3 3 n/a n/a 5 3 n/a 3 3 6 7 3 2 2 integral membrane protein n/a found at its expected molecular weight found at molecular weight
Comments
Isoform Q13336-2 was detected.
Isoform Q13336-2 was detected.
UniProt
Q13336
ID UT1_HUMAN Reviewed; 389 AA.
AC Q13336; A8K0P3; B3KR62; B3KVX3; C9EHF2; Q86VM5;
DT 01-NOV-1997, integrated into UniProtKB/Swiss-Prot.
read moreDT 15-DEC-1998, sequence version 2.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=Urea transporter 1;
DE AltName: Full=Solute carrier family 14 member 1;
DE AltName: Full=Urea transporter, erythrocyte;
GN Name=SLC14A1; Synonyms=HUT11, JK, RACH1, UT1, UTE;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT LYS-44.
RC TISSUE=Bone marrow;
RX PubMed=7989337;
RA Olives B., Neau P., Bailly P., Hediger M.A., Rousselet G.,
RA Cartron J.-P., Ripoche P.;
RT "Cloning and functional expression of a urea transporter from human
RT bone marrow cells.";
RL J. Biol. Chem. 269:31649-31652(1994).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RX PubMed=8573795; DOI=10.1091/mbc.6.10.1411;
RA Davey S., Beach D.;
RT "RACH2, a novel human gene that complements a fission yeast cell cycle
RT checkpoint mutation.";
RL Mol. Biol. Cell 6:1411-1421(1995).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), POLYMORPHISM, AND VARIANT
RP JK(B) ASN-280.
RX PubMed=9215669; DOI=10.1093/hmg/6.7.1017;
RA Olives B., Merriman M., Bailly P., Bain S., Barnett A., Todd T.,
RA Cartron J.-P., Merriman T.;
RT "The molecular basis of the Kidd blood group polymorphism and its lack
RT of association with type 1 diabetes susceptibility.";
RL Hum. Mol. Genet. 6:1017-1020(1997).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Blood;
RX PubMed=10514515; DOI=10.1074/jbc.274.42.30228;
RA Sidoux-Walter F., Lucien N., Olives B., Gobin R., Rousselet G.,
RA Kamsteeg E.J., Ripoche P., Deen P.M.T., Cartron J.-P., Bailly P.;
RT "At physiological expression levels, the Kidd blood group/urea
RT transporter protein is not a water channel.";
RL J. Biol. Chem. 274:30228-30235(1999).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND VARIANT
RP LYS-44.
RC TISSUE=Artery smooth muscle, Brain cortex, and Caudate nucleus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS LYS-44 AND ASN-280.
RG SeattleSNPs variation discovery resource;
RL Submitted (FEB-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANTS
RP VAL-167 AND ASN-280.
RC TISSUE=Colon;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-381, AND VARIANT ASN-280.
RA Posadas J.B., Shnyreva M., Gaur P., Nakaya S., Devanaboina M.,
RA Teramura G., Haile A., Gaur L.K.;
RT "Missense mutations that result in serological JKnull phenotypes.";
RL Submitted (AUG-2009) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 52-113; 222-257 AND 317-332, AND
RP VARIANT JK(NULL) MET-319.
RX PubMed=18028269; DOI=10.1111/j.1537-2995.2007.01532.x;
RA Wester E.S., Johnson S.T., Copeland T., Malde R., Lee E., Storry J.R.,
RA Olsson M.L.;
RT "Erythroid urea transporter deficiency due to novel JKnull alleles.";
RL Transfusion 48:365-372(2008).
RN [10]
RP VARIANT JK(NULL) PRO-291.
RX PubMed=10942407;
RA Sidoux-Walter F., Lucien N., Nissinen R., Sistonen P., Henry S.,
RA Moulds J., Cartron J.-P., Bailly P.;
RT "Molecular heterogeneity of the Jk(null) phenotype: expression
RT analysis of the Jk(S291P) mutation found in Finns.";
RL Blood 96:1566-1573(2000).
RN [11]
RP VARIANT JK(NULL) PRO-291.
RX PubMed=10644814; DOI=10.1046/j.1537-2995.2000.40010069.x;
RA Irshaid N.M., Henry S.M., Olsson M.L.;
RT "Genomic characterization of the Kidd blood group gene: different
RT molecular basis of the Jk(a-b-) phenotype in Polynesians and Finns.";
RL Transfusion 40:69-74(2000).
RN [12]
RP VARIANTS JK(NULL) LYS-74; VAL-167 AND GLU-299.
RX PubMed=18980618; DOI=10.1111/j.1537-2995.2008.01958.x;
RA Liu H.M., Lin J.S., Chen P.S., Lyou J.Y., Chen Y.J., Tzeng C.H.;
RT "Two novel Jk(null) alleles derived from 222C>A in Exon 5 and 896G>A
RT in Exon 9 of the JK gene.";
RL Transfusion 49:259-264(2009).
CC -!- FUNCTION: Mediates urea transport in erythrocytes (By similarity).
CC Low-affinity facilitative urea transporter that allow rapid
CC equilibration between the urinary space and the hyperosmotic
CC interstitium. the rate of urea conduction is increased by
CC hypoosmotic stress.
CC -!- SUBUNIT: Homotrimer (By similarity).
CC -!- SUBCELLULAR LOCATION: Cell membrane; Multi-pass membrane protein
CC (By similarity). Basolateral cell membrane (By similarity).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q13336-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q13336-2; Sequence=VSP_041573;
CC -!- TISSUE SPECIFICITY: Erythrocytes.
CC -!- POLYMORPHISM: SLC14A1 is responsible for the Kidd blood group
CC system (JK) [MIM:111000]. JK is defined by 2 alleles, JK*01 and
CC JK*02 that give rise to Jk(a) and Jk(b) antigens respectively. The
CC molecular basis of the Jk(a)/Jk(b) antigens is a single variation
CC in position 280; Asp-280 corresponds to Jk(a) and Asn-280 to
CC Jk(b). Some individuals carry silenced JK*01 and JK*02 alleles,
CC designated JK*01N or JK*02N. They results in a Jk(null) phenotype
CC associated with reduced urea permeability of red blood cells.
CC Jk(null) is not associated with any obvious clinical syndrome
CC except for a urine concentration defect.
CC -!- WEB RESOURCE: Name=dbRBC/BGMUT; Note=Blood group antigen gene
CC mutation database;
CC URL="http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/systems_info&system;=kidd";
CC -!- WEB RESOURCE: Name=GeneReviews;
CC URL="http://www.ncbi.nlm.nih.gov/sites/GeneTests/lab/gene/SLC14A1";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/slc14a1/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; L36121; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; U35735; AAB00181.1; -; mRNA.
DR EMBL; Y19039; CAB60834.1; -; mRNA.
DR EMBL; AK091064; BAG52274.1; -; mRNA.
DR EMBL; AK123681; BAG53935.1; -; mRNA.
DR EMBL; AK289608; BAF82297.1; -; mRNA.
DR EMBL; AY942197; AAX20112.1; -; Genomic_DNA.
DR EMBL; BC050539; AAH50539.1; -; mRNA.
DR EMBL; GQ502682; ACV91713.1; -; mRNA.
DR EMBL; EF571316; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; EF571317; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; EF571318; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR PIR; A55662; A55662.
DR RefSeq; NP_001122060.3; NM_001128588.3.
DR RefSeq; NP_001139508.2; NM_001146036.2.
DR RefSeq; NP_001139509.1; NM_001146037.1.
DR RefSeq; NP_056949.4; NM_015865.6.
DR UniGene; Hs.101307; -.
DR ProteinModelPortal; Q13336; -.
DR SMR; Q13336; 36-381.
DR DIP; DIP-60049N; -.
DR STRING; 9606.ENSP00000412309; -.
DR TCDB; 1.A.28.1.5; the urea transporter (ut) family.
DR DMDM; 4033779; -.
DR PaxDb; Q13336; -.
DR PRIDE; Q13336; -.
DR Ensembl; ENST00000321925; ENSP00000318546; ENSG00000141469.
DR Ensembl; ENST00000415427; ENSP00000412309; ENSG00000141469.
DR Ensembl; ENST00000436407; ENSP00000390637; ENSG00000141469.
DR Ensembl; ENST00000586142; ENSP00000470476; ENSG00000141469.
DR GeneID; 6563; -.
DR KEGG; hsa:6563; -.
DR UCSC; uc002lbf.4; human.
DR CTD; 6563; -.
DR GeneCards; GC18P043304; -.
DR HGNC; HGNC:10918; SLC14A1.
DR MIM; 111000; phenotype.
DR MIM; 613868; gene.
DR neXtProt; NX_Q13336; -.
DR PharmGKB; PA35810; -.
DR eggNOG; COG4413; -.
DR HOGENOM; HOG000065705; -.
DR HOVERGEN; HBG000540; -.
DR InParanoid; Q13336; -.
DR KO; K08716; -.
DR OMA; VGVGQIY; -.
DR OrthoDB; EOG7GBFX8; -.
DR PhylomeDB; Q13336; -.
DR Reactome; REACT_15518; Transmembrane transport of small molecules.
DR Reactome; REACT_20679; Amine compound SLC transporters.
DR GeneWiki; SLC14A1; -.
DR GenomeRNAi; 6563; -.
DR NextBio; 25535; -.
DR PRO; PR:Q13336; -.
DR ArrayExpress; Q13336; -.
DR Bgee; Q13336; -.
DR CleanEx; HS_SLC14A1; -.
DR Genevestigator; Q13336; -.
DR GO; GO:0016323; C:basolateral plasma membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0015204; F:urea transmembrane transporter activity; TAS:ProtInc.
DR GO; GO:0005372; F:water transmembrane transporter activity; IEA:Ensembl.
DR InterPro; IPR004937; Urea_transporter.
DR PANTHER; PTHR10464; PTHR10464; 1.
DR Pfam; PF03253; UT; 1.
DR PIRSF; PIRSF016502; Urea_transporter; 1.
PE 2: Evidence at transcript level;
KW Alternative splicing; Blood group antigen; Cell membrane;
KW Complete proteome; Glycoprotein; Membrane; Polymorphism;
KW Reference proteome; Transmembrane; Transmembrane helix; Transport.
FT CHAIN 1 389 Urea transporter 1.
FT /FTId=PRO_0000065737.
FT TRANSMEM 53 73 Helical; (Potential).
FT TRANSMEM 78 98 Helical; (Potential).
FT TRANSMEM 116 136 Helical; (Potential).
FT TRANSMEM 143 163 Helical; (Potential).
FT TRANSMEM 173 193 Helical; (Potential).
FT TRANSMEM 243 263 Helical; (Potential).
FT TRANSMEM 281 301 Helical; (Potential).
FT TRANSMEM 310 330 Helical; (Potential).
FT TRANSMEM 333 353 Helical; (Potential).
FT CARBOHYD 211 211 N-linked (GlcNAc...) (Potential).
FT VAR_SEQ 1 1 M -> MNGRSLIGGAGDARHGPVWKDPFGTKAGDAARRGIA
FT RLSLALADGSQEQEPEEEIAM (in isoform 2).
FT /FTId=VSP_041573.
FT VARIANT 44 44 E -> K (in dbSNP:rs2298720).
FT /FTId=VAR_022319.
FT VARIANT 74 74 N -> K (in Jk(null)).
FT /FTId=VAR_065466.
FT VARIANT 167 167 M -> V (in Jk(null); dbSNP:rs2298719).
FT /FTId=VAR_051483.
FT VARIANT 171 171 W -> R (in dbSNP:rs9948825).
FT /FTId=VAR_051484.
FT VARIANT 280 280 D -> N (in Jk(b); dbSNP:rs1058396).
FT /FTId=VAR_005669.
FT VARIANT 291 291 S -> P (in Jk(null); dbSNP:rs78242949).
FT /FTId=VAR_013752.
FT VARIANT 299 299 G -> E (in Jk(null)).
FT /FTId=VAR_065467.
FT VARIANT 319 319 T -> M (in Jk(null)).
FT /FTId=VAR_065468.
FT CONFLICT 49 49 L -> M (in Ref. 5; BAF82297).
FT CONFLICT 64 64 R -> Q (in Ref. 8; ACV91713).
FT CONFLICT 231 231 G -> GVG (in Ref. 1).
SQ SEQUENCE 389 AA; 42528 MW; 08625B8B66C310F2 CRC64;
MEDSPTMVRV DSPTMVRGEN QVSPCQGRRC FPKALGYVTG DMKELANQLK DKPVVLQFID
WILRGISQVV FVNNPVSGIL ILVGLLVQNP WWALTGWLGT VVSTLMALLL SQDRSLIASG
LYGYNATLVG VLMAVFSDKG DYFWWLLLPV CAMSMTCPIF SSALNSMLSK WDLPVFTLPF
NMALSMYLSA TGHYNPFFPA KLVIPITTAP NISWSDLSAL ELLKSIPVGV GQIYGCDNPW
TGGIFLGAIL LSSPLMCLHA AIGSLLGIAA GLSLSAPFED IYFGLWGFNS SLACIAMGGM
FMALTWQTHL LALGCALFTA YLGVGMANFM AEVGLPACTW PFCLATLLFL IMTTKNSNIY
KMPLSKVTYP EENRIFYLQA KKRMVESPL
//
ID UT1_HUMAN Reviewed; 389 AA.
AC Q13336; A8K0P3; B3KR62; B3KVX3; C9EHF2; Q86VM5;
DT 01-NOV-1997, integrated into UniProtKB/Swiss-Prot.
read moreDT 15-DEC-1998, sequence version 2.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=Urea transporter 1;
DE AltName: Full=Solute carrier family 14 member 1;
DE AltName: Full=Urea transporter, erythrocyte;
GN Name=SLC14A1; Synonyms=HUT11, JK, RACH1, UT1, UTE;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT LYS-44.
RC TISSUE=Bone marrow;
RX PubMed=7989337;
RA Olives B., Neau P., Bailly P., Hediger M.A., Rousselet G.,
RA Cartron J.-P., Ripoche P.;
RT "Cloning and functional expression of a urea transporter from human
RT bone marrow cells.";
RL J. Biol. Chem. 269:31649-31652(1994).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RX PubMed=8573795; DOI=10.1091/mbc.6.10.1411;
RA Davey S., Beach D.;
RT "RACH2, a novel human gene that complements a fission yeast cell cycle
RT checkpoint mutation.";
RL Mol. Biol. Cell 6:1411-1421(1995).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), POLYMORPHISM, AND VARIANT
RP JK(B) ASN-280.
RX PubMed=9215669; DOI=10.1093/hmg/6.7.1017;
RA Olives B., Merriman M., Bailly P., Bain S., Barnett A., Todd T.,
RA Cartron J.-P., Merriman T.;
RT "The molecular basis of the Kidd blood group polymorphism and its lack
RT of association with type 1 diabetes susceptibility.";
RL Hum. Mol. Genet. 6:1017-1020(1997).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Blood;
RX PubMed=10514515; DOI=10.1074/jbc.274.42.30228;
RA Sidoux-Walter F., Lucien N., Olives B., Gobin R., Rousselet G.,
RA Kamsteeg E.J., Ripoche P., Deen P.M.T., Cartron J.-P., Bailly P.;
RT "At physiological expression levels, the Kidd blood group/urea
RT transporter protein is not a water channel.";
RL J. Biol. Chem. 274:30228-30235(1999).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND VARIANT
RP LYS-44.
RC TISSUE=Artery smooth muscle, Brain cortex, and Caudate nucleus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANTS LYS-44 AND ASN-280.
RG SeattleSNPs variation discovery resource;
RL Submitted (FEB-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANTS
RP VAL-167 AND ASN-280.
RC TISSUE=Colon;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-381, AND VARIANT ASN-280.
RA Posadas J.B., Shnyreva M., Gaur P., Nakaya S., Devanaboina M.,
RA Teramura G., Haile A., Gaur L.K.;
RT "Missense mutations that result in serological JKnull phenotypes.";
RL Submitted (AUG-2009) to the EMBL/GenBank/DDBJ databases.
RN [9]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 52-113; 222-257 AND 317-332, AND
RP VARIANT JK(NULL) MET-319.
RX PubMed=18028269; DOI=10.1111/j.1537-2995.2007.01532.x;
RA Wester E.S., Johnson S.T., Copeland T., Malde R., Lee E., Storry J.R.,
RA Olsson M.L.;
RT "Erythroid urea transporter deficiency due to novel JKnull alleles.";
RL Transfusion 48:365-372(2008).
RN [10]
RP VARIANT JK(NULL) PRO-291.
RX PubMed=10942407;
RA Sidoux-Walter F., Lucien N., Nissinen R., Sistonen P., Henry S.,
RA Moulds J., Cartron J.-P., Bailly P.;
RT "Molecular heterogeneity of the Jk(null) phenotype: expression
RT analysis of the Jk(S291P) mutation found in Finns.";
RL Blood 96:1566-1573(2000).
RN [11]
RP VARIANT JK(NULL) PRO-291.
RX PubMed=10644814; DOI=10.1046/j.1537-2995.2000.40010069.x;
RA Irshaid N.M., Henry S.M., Olsson M.L.;
RT "Genomic characterization of the Kidd blood group gene: different
RT molecular basis of the Jk(a-b-) phenotype in Polynesians and Finns.";
RL Transfusion 40:69-74(2000).
RN [12]
RP VARIANTS JK(NULL) LYS-74; VAL-167 AND GLU-299.
RX PubMed=18980618; DOI=10.1111/j.1537-2995.2008.01958.x;
RA Liu H.M., Lin J.S., Chen P.S., Lyou J.Y., Chen Y.J., Tzeng C.H.;
RT "Two novel Jk(null) alleles derived from 222C>A in Exon 5 and 896G>A
RT in Exon 9 of the JK gene.";
RL Transfusion 49:259-264(2009).
CC -!- FUNCTION: Mediates urea transport in erythrocytes (By similarity).
CC Low-affinity facilitative urea transporter that allow rapid
CC equilibration between the urinary space and the hyperosmotic
CC interstitium. the rate of urea conduction is increased by
CC hypoosmotic stress.
CC -!- SUBUNIT: Homotrimer (By similarity).
CC -!- SUBCELLULAR LOCATION: Cell membrane; Multi-pass membrane protein
CC (By similarity). Basolateral cell membrane (By similarity).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q13336-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q13336-2; Sequence=VSP_041573;
CC -!- TISSUE SPECIFICITY: Erythrocytes.
CC -!- POLYMORPHISM: SLC14A1 is responsible for the Kidd blood group
CC system (JK) [MIM:111000]. JK is defined by 2 alleles, JK*01 and
CC JK*02 that give rise to Jk(a) and Jk(b) antigens respectively. The
CC molecular basis of the Jk(a)/Jk(b) antigens is a single variation
CC in position 280; Asp-280 corresponds to Jk(a) and Asn-280 to
CC Jk(b). Some individuals carry silenced JK*01 and JK*02 alleles,
CC designated JK*01N or JK*02N. They results in a Jk(null) phenotype
CC associated with reduced urea permeability of red blood cells.
CC Jk(null) is not associated with any obvious clinical syndrome
CC except for a urine concentration defect.
CC -!- WEB RESOURCE: Name=dbRBC/BGMUT; Note=Blood group antigen gene
CC mutation database;
CC URL="http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/systems_info&system;=kidd";
CC -!- WEB RESOURCE: Name=GeneReviews;
CC URL="http://www.ncbi.nlm.nih.gov/sites/GeneTests/lab/gene/SLC14A1";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/slc14a1/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; L36121; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; U35735; AAB00181.1; -; mRNA.
DR EMBL; Y19039; CAB60834.1; -; mRNA.
DR EMBL; AK091064; BAG52274.1; -; mRNA.
DR EMBL; AK123681; BAG53935.1; -; mRNA.
DR EMBL; AK289608; BAF82297.1; -; mRNA.
DR EMBL; AY942197; AAX20112.1; -; Genomic_DNA.
DR EMBL; BC050539; AAH50539.1; -; mRNA.
DR EMBL; GQ502682; ACV91713.1; -; mRNA.
DR EMBL; EF571316; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; EF571317; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; EF571318; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR PIR; A55662; A55662.
DR RefSeq; NP_001122060.3; NM_001128588.3.
DR RefSeq; NP_001139508.2; NM_001146036.2.
DR RefSeq; NP_001139509.1; NM_001146037.1.
DR RefSeq; NP_056949.4; NM_015865.6.
DR UniGene; Hs.101307; -.
DR ProteinModelPortal; Q13336; -.
DR SMR; Q13336; 36-381.
DR DIP; DIP-60049N; -.
DR STRING; 9606.ENSP00000412309; -.
DR TCDB; 1.A.28.1.5; the urea transporter (ut) family.
DR DMDM; 4033779; -.
DR PaxDb; Q13336; -.
DR PRIDE; Q13336; -.
DR Ensembl; ENST00000321925; ENSP00000318546; ENSG00000141469.
DR Ensembl; ENST00000415427; ENSP00000412309; ENSG00000141469.
DR Ensembl; ENST00000436407; ENSP00000390637; ENSG00000141469.
DR Ensembl; ENST00000586142; ENSP00000470476; ENSG00000141469.
DR GeneID; 6563; -.
DR KEGG; hsa:6563; -.
DR UCSC; uc002lbf.4; human.
DR CTD; 6563; -.
DR GeneCards; GC18P043304; -.
DR HGNC; HGNC:10918; SLC14A1.
DR MIM; 111000; phenotype.
DR MIM; 613868; gene.
DR neXtProt; NX_Q13336; -.
DR PharmGKB; PA35810; -.
DR eggNOG; COG4413; -.
DR HOGENOM; HOG000065705; -.
DR HOVERGEN; HBG000540; -.
DR InParanoid; Q13336; -.
DR KO; K08716; -.
DR OMA; VGVGQIY; -.
DR OrthoDB; EOG7GBFX8; -.
DR PhylomeDB; Q13336; -.
DR Reactome; REACT_15518; Transmembrane transport of small molecules.
DR Reactome; REACT_20679; Amine compound SLC transporters.
DR GeneWiki; SLC14A1; -.
DR GenomeRNAi; 6563; -.
DR NextBio; 25535; -.
DR PRO; PR:Q13336; -.
DR ArrayExpress; Q13336; -.
DR Bgee; Q13336; -.
DR CleanEx; HS_SLC14A1; -.
DR Genevestigator; Q13336; -.
DR GO; GO:0016323; C:basolateral plasma membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0015204; F:urea transmembrane transporter activity; TAS:ProtInc.
DR GO; GO:0005372; F:water transmembrane transporter activity; IEA:Ensembl.
DR InterPro; IPR004937; Urea_transporter.
DR PANTHER; PTHR10464; PTHR10464; 1.
DR Pfam; PF03253; UT; 1.
DR PIRSF; PIRSF016502; Urea_transporter; 1.
PE 2: Evidence at transcript level;
KW Alternative splicing; Blood group antigen; Cell membrane;
KW Complete proteome; Glycoprotein; Membrane; Polymorphism;
KW Reference proteome; Transmembrane; Transmembrane helix; Transport.
FT CHAIN 1 389 Urea transporter 1.
FT /FTId=PRO_0000065737.
FT TRANSMEM 53 73 Helical; (Potential).
FT TRANSMEM 78 98 Helical; (Potential).
FT TRANSMEM 116 136 Helical; (Potential).
FT TRANSMEM 143 163 Helical; (Potential).
FT TRANSMEM 173 193 Helical; (Potential).
FT TRANSMEM 243 263 Helical; (Potential).
FT TRANSMEM 281 301 Helical; (Potential).
FT TRANSMEM 310 330 Helical; (Potential).
FT TRANSMEM 333 353 Helical; (Potential).
FT CARBOHYD 211 211 N-linked (GlcNAc...) (Potential).
FT VAR_SEQ 1 1 M -> MNGRSLIGGAGDARHGPVWKDPFGTKAGDAARRGIA
FT RLSLALADGSQEQEPEEEIAM (in isoform 2).
FT /FTId=VSP_041573.
FT VARIANT 44 44 E -> K (in dbSNP:rs2298720).
FT /FTId=VAR_022319.
FT VARIANT 74 74 N -> K (in Jk(null)).
FT /FTId=VAR_065466.
FT VARIANT 167 167 M -> V (in Jk(null); dbSNP:rs2298719).
FT /FTId=VAR_051483.
FT VARIANT 171 171 W -> R (in dbSNP:rs9948825).
FT /FTId=VAR_051484.
FT VARIANT 280 280 D -> N (in Jk(b); dbSNP:rs1058396).
FT /FTId=VAR_005669.
FT VARIANT 291 291 S -> P (in Jk(null); dbSNP:rs78242949).
FT /FTId=VAR_013752.
FT VARIANT 299 299 G -> E (in Jk(null)).
FT /FTId=VAR_065467.
FT VARIANT 319 319 T -> M (in Jk(null)).
FT /FTId=VAR_065468.
FT CONFLICT 49 49 L -> M (in Ref. 5; BAF82297).
FT CONFLICT 64 64 R -> Q (in Ref. 8; ACV91713).
FT CONFLICT 231 231 G -> GVG (in Ref. 1).
SQ SEQUENCE 389 AA; 42528 MW; 08625B8B66C310F2 CRC64;
MEDSPTMVRV DSPTMVRGEN QVSPCQGRRC FPKALGYVTG DMKELANQLK DKPVVLQFID
WILRGISQVV FVNNPVSGIL ILVGLLVQNP WWALTGWLGT VVSTLMALLL SQDRSLIASG
LYGYNATLVG VLMAVFSDKG DYFWWLLLPV CAMSMTCPIF SSALNSMLSK WDLPVFTLPF
NMALSMYLSA TGHYNPFFPA KLVIPITTAP NISWSDLSAL ELLKSIPVGV GQIYGCDNPW
TGGIFLGAIL LSSPLMCLHA AIGSLLGIAA GLSLSAPFED IYFGLWGFNS SLACIAMGGM
FMALTWQTHL LALGCALFTA YLGVGMANFM AEVGLPACTW PFCLATLLFL IMTTKNSNIY
KMPLSKVTYP EENRIFYLQA KKRMVESPL
//
MIM
111000
*RECORD*
*FIELD* NO
111000
*FIELD* TI
#111000 BLOOD GROUP--KIDD SYSTEM; JK
*FIELD* TX
A number sign (#) is used with this entry because the antigens of the
read moreKidd blood group system are encoded by the SLC14A1 gene (613868).
DESCRIPTION
The Kidd blood group locus encodes a urea transporter (SLC14A1) that is
expressed on human red cells and in the kidney. The Kidd blood group
system (Jk) is defined by 2 alleles, Jk(a) and Jk(b), whose products
were first identified with alloantibodies responsible for haemolytic
disease of the newborn or transfusion reactions (summary by Olives et
al., 1997).
CLINICAL FEATURES
Although Jk-null red blood cells have reduced urea permeability, the Jk
deficiency is not associated with any obvious clinical syndrome except
for a urine concentration defect (Sands et al., 1992) that probably
results from the absence of the Jk protein expressed on endothelial
cells of the vasa recta of kidney (Xu et al., 1997; Promeneur et al.,
1996). Persons with the Jk-null phenotype are detected because antibody
against Jk3 can develop after immunization by transfusion or pregnancy,
and this antibody may cause immediate and delayed hemolytic transfusion
reactions (Lucien et al. (2002)).
MAPPING
HGM9 concluded provisionally that the Jk locus is at 18q11-q12 (Geitvik
et al., 1987). The L2.7 probe used in the assignment to chromosome 18
was thought to lie on the short arm, close to the centromere. The
maximum lod score was 8.53 at recombination fraction of 0.03 (upper
probability limit 0.11). In these data also, linkage of Jk to IGK
(147200) was found (total lods = 4.12 at theta = 0.30) (see also
HISTORY). No obvious explanation for the conflicting gene mapping data
could be found. Geitvik et al. (1987) quoted deletion data excluding Jk
from a considerable part of chromosome 18 and contributing to the
assignment of 18q11-q12.
The Kidd blood group had been assigned to 18p by linkage to a
polymorphic anonymous DNA probe, L2.7 (Gedde-Dahl, 1986). Leppert et al.
(1987) also found linkage of blood group Kidd to 2 DNA markers on
chromosome 18; the maximum lod scores were 3.61 at theta = 0.168 and
4.18 at theta = 0.218.
MOLECULAR GENETICS
Olives et al. (1997) determined the genetic basis for the Kidd blood
group polymorphism by sequencing reverse-transcribed reticulocyte RNAs
from Jk(a+b-) and Jk(a-b+) donors. They found that the difference
between Jk(a) and Jk(b) was a G-to-A transition at nucleotide 838,
resulting in an asp280-to-asn amino acid substitution (613868.0001) and
an MnlI RFLP.
HISTORY
On the basis of studies of a patient with deletion of part of the long
arm of chromosome 7, Shokeir et al. (1973) proposed that the Kidd blood
group is on the deleted segment. The parents were homozygous Jk(a) and
Jk(b) and all 9 sibs of the proband were heterozygous as one would
expect. The proband herself was Jk(a). Hulten et al. (1968) previously
suggested that the Kidd locus is on either chromosome 2 or a C group
chromosome, but banding techniques were not then available.
Mace and Robson (1974) found a hint of linkage between 'red-cell' acid
phosphatase (171500), which is coded by chromosome 2, and Kidd blood
group. Mohr and Eiberg (1977) found a lod score of plus 2.57 for the
linkage of Kidd and Colton. Each had been tentatively assigned to
chromosome 7.
Under 3 different genetic models for IDDM, Hodge et al. (1981) found
evidence for linkage with 2 different sets of marker loci: HLA (see
142800), properdin factor B (138470), and glyoxalase-1 (138750) on
chromosome 6, and Kidd blood group on chromosome 2. The 71 families
studied apparently did not fall into 2 groups, one exhibiting linkage to
HLA and the other to Kidd. Thus, they concluded that at least 2 distinct
disease-susceptibility loci may be involved in IDDM, a situation also
postulated for Graves disease (275000). (The Jk blood group is encoded
by a solute carrier gene on chromosome 18q11-q12; an IDDM locus, IDDM6
(601941), maps to 18q21.)
Field et al. (1985) and Sherman and Simpson (1985) provided evidence for
linkage of IGK (147200) and Jk and, therefore, assignment to chromosome
2. This suggested that the Colton blood group locus (110450) may also be
on chromosome 2. Sherman and Simpson (1985) published a collated maximum
lod score of 3.14 at theta 0.31 for Jk:IGK.
Pausch and Mayr (1987) presented additional data supporting linkage of
Jk and IGK. Together with the data of Field et al. (1985), the maximum
lod score reached 3.0 for theta = 0.32.
*FIELD* SA
Barbosa et al. (1982)
*FIELD* RF
1. Barbosa, J.; Rich, S.; Dunsworth, T.; Swanson, J.: Linkage disequilibrium
between insulin-dependent diabetes and the Kidd blood group Jk(b)
allele. J. Clin. Endocr. Metab. 55: 193-195, 1982.
2. Field, L. L.; Marazita, M. L.; Spence, M. A.; Crandall, B. F.;
Sparkes, R. S.: Is JK linked to IGK on chromosome 2? (Abstract) Cytogenet.
Cell Genet. 40: 628-629, 1985.
3. Gedde-Dahl, T.: Personal Communication. Oslo, Norway 9/26/1986.
4. Geitvik, G. A.; Hoyheim, B.; Gedde-Dahl, T.; Grzeschik, K. H.;
Lothe, R.; Tomter, H.; Olaisen, B.: The Kidd (JK) blood group locus
assigned to chromosome 18 by close linkage to a DNA-RFLP. Hum. Genet. 77:
205-209, 1987.
5. Hodge, S. E.; Anderson, C. E.; Neiswanger, K.; Field, L. L.; Spence,
M. A.; Sparkes, R. S.; Sparkes, M. C.; Crist, M.; Terasaki, P. I.;
Rimoin, D. L.; Rotter, J. I.: Close genetic linkage between diabetes
mellitus and Kidd blood group. Lancet 318: 893-895, 1981. Note:
Originally Volume II.
6. Hulten, M.; Lindsten, J.; Pen-Ming, L. M.; Fraccaro, M.; Mannini,
A.; Trepolo, L.; Robson, E. B.; Heiken, A.; Tellingen, K. G.: Possible
localization of the genes for the Kidd blood group on an autosome
involved in a reciprocal translocation. Nature 211: 1067-1068, 1968.
7. Leppert, M.; Ferrell, R.; Kamboh, M. I.; Beasley, J.; O'Connell,
P.; Lathrop, M.; Lalouel, J.-M.; White, R.: Linkage of the polymorphic
protein markers F13B, C1S, C1R, and blood group antigen Kidd in CEPH
reference families. (Abstract) Cytogenet. Cell Genet. 46: 647, 1987.
8. Lucien, N.; Chiaroni, J.; Cartron, J.-P.; Bailly, P.: Partial
deletion in the JK locus causing a Jk(null) phenotype. Blood 99:
1079-1081, 2002.
9. Mace, M. A.; Robson, E. B.: Linkage data on ACP-1 and MNSS. Cytogenet.
Cell Genet. 13: 123-125, 1974.
10. Mohr, J.; Eiberg, H.: Colton blood groups: indication of linkage
with the Kidd (Jk) system as support for assignment to chromosome
7. Clin. Genet. 11: 372-374, 1977.
11. Olives, B.; Merriman, M.; Bailly, P.; Bain, S.; Barnett, A.; Todd,
J.; Cartron, J.-P.; Merriman, T.: The molecular basis of the Kidd
blood group polymorphism and its lack of association with type 1 diabetes
susceptibility. Hum. Molec. Genet. 6: 1017-1020, 1997.
12. Pausch, V.; Mayr, W. R.: Analysis of the linkage JK-IGK, MNS-GC
and of two other possible linkage groups. Hum. Hered. 37: 260-262,
1987.
13. Promeneur, D.; Rousselet, G.; Bankir, L.; Bailly, P.; Cartron,
J.-P.; Ripoche, P.; Trinh-Trang-Tan, M.-M.: Evidence for distinct
vascular and tubular urea transporters in the rat kidney. J. Am.
Soc. Nephrol. 7: 852-860, 1996.
14. Sands, J. M.; Gargus, J. J.; Frohlich, O.; Gunn, R. B.; Kokko,
J. P.: Urinary concentrating ability in patients with Jk(a-/b-) blood
type who lack carrier-mediated urea transport. J. Am. Soc. Nephrol. 2:
1689-1696, 1992.
15. Sherman, S. L.; Simpson, S. P.: Evidence for the location of
JK and CO on chromosome 2 based on family studies. (Abstract) Cytogenet.
Cell Genet. 40: 743, 1985.
16. Shokeir, M. H. K.; Ying, K. L.; Pabello, P.: Deletion of the
long arm of chromosome no. 7: tentative assignment of the Kidd (Jk)
locus. Clin. Genet. 4: 360-368, 1973.
17. Xu, Y.; Olives, B.; Bailly, P.; Fischer, E.; Ripoche, P.; Ronco,
P.; Cartron, J.-P.; Rondeau, E.: Endothelial cells of the kidney
vasa recta express the urea transporter HUT11. Kidney Int. 51: 138-146,
1997.
*FIELD* CN
Patricia A. Hartz - updated: 12/11/2003
Victor A. McKusick - updated: 3/19/2002
Victor A. McKusick - updated: 1/10/2001
Paul J. Converse - updated: 8/14/2000
Victor A. McKusick - updated: 8/15/1997
Victor A. McKusick - updated: 5/27/1997
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 04/05/2011
terry: 1/8/2009
mgross: 12/11/2003
terry: 1/2/2003
cwells: 4/5/2002
terry: 3/28/2002
cwells: 3/21/2002
terry: 3/19/2002
cwells: 1/17/2001
terry: 1/10/2001
carol: 8/14/2000
terry: 4/30/1999
terry: 7/24/1998
mark: 8/19/1997
terry: 8/15/1997
jenny: 5/30/1997
terry: 5/27/1997
mark: 1/6/1997
terry: 12/16/1996
terry: 5/16/1996
terry: 10/31/1995
mark: 9/10/1995
warfield: 4/7/1994
mimadm: 2/11/1994
supermim: 3/16/1992
supermim: 3/20/1990
*RECORD*
*FIELD* NO
111000
*FIELD* TI
#111000 BLOOD GROUP--KIDD SYSTEM; JK
*FIELD* TX
A number sign (#) is used with this entry because the antigens of the
read moreKidd blood group system are encoded by the SLC14A1 gene (613868).
DESCRIPTION
The Kidd blood group locus encodes a urea transporter (SLC14A1) that is
expressed on human red cells and in the kidney. The Kidd blood group
system (Jk) is defined by 2 alleles, Jk(a) and Jk(b), whose products
were first identified with alloantibodies responsible for haemolytic
disease of the newborn or transfusion reactions (summary by Olives et
al., 1997).
CLINICAL FEATURES
Although Jk-null red blood cells have reduced urea permeability, the Jk
deficiency is not associated with any obvious clinical syndrome except
for a urine concentration defect (Sands et al., 1992) that probably
results from the absence of the Jk protein expressed on endothelial
cells of the vasa recta of kidney (Xu et al., 1997; Promeneur et al.,
1996). Persons with the Jk-null phenotype are detected because antibody
against Jk3 can develop after immunization by transfusion or pregnancy,
and this antibody may cause immediate and delayed hemolytic transfusion
reactions (Lucien et al. (2002)).
MAPPING
HGM9 concluded provisionally that the Jk locus is at 18q11-q12 (Geitvik
et al., 1987). The L2.7 probe used in the assignment to chromosome 18
was thought to lie on the short arm, close to the centromere. The
maximum lod score was 8.53 at recombination fraction of 0.03 (upper
probability limit 0.11). In these data also, linkage of Jk to IGK
(147200) was found (total lods = 4.12 at theta = 0.30) (see also
HISTORY). No obvious explanation for the conflicting gene mapping data
could be found. Geitvik et al. (1987) quoted deletion data excluding Jk
from a considerable part of chromosome 18 and contributing to the
assignment of 18q11-q12.
The Kidd blood group had been assigned to 18p by linkage to a
polymorphic anonymous DNA probe, L2.7 (Gedde-Dahl, 1986). Leppert et al.
(1987) also found linkage of blood group Kidd to 2 DNA markers on
chromosome 18; the maximum lod scores were 3.61 at theta = 0.168 and
4.18 at theta = 0.218.
MOLECULAR GENETICS
Olives et al. (1997) determined the genetic basis for the Kidd blood
group polymorphism by sequencing reverse-transcribed reticulocyte RNAs
from Jk(a+b-) and Jk(a-b+) donors. They found that the difference
between Jk(a) and Jk(b) was a G-to-A transition at nucleotide 838,
resulting in an asp280-to-asn amino acid substitution (613868.0001) and
an MnlI RFLP.
HISTORY
On the basis of studies of a patient with deletion of part of the long
arm of chromosome 7, Shokeir et al. (1973) proposed that the Kidd blood
group is on the deleted segment. The parents were homozygous Jk(a) and
Jk(b) and all 9 sibs of the proband were heterozygous as one would
expect. The proband herself was Jk(a). Hulten et al. (1968) previously
suggested that the Kidd locus is on either chromosome 2 or a C group
chromosome, but banding techniques were not then available.
Mace and Robson (1974) found a hint of linkage between 'red-cell' acid
phosphatase (171500), which is coded by chromosome 2, and Kidd blood
group. Mohr and Eiberg (1977) found a lod score of plus 2.57 for the
linkage of Kidd and Colton. Each had been tentatively assigned to
chromosome 7.
Under 3 different genetic models for IDDM, Hodge et al. (1981) found
evidence for linkage with 2 different sets of marker loci: HLA (see
142800), properdin factor B (138470), and glyoxalase-1 (138750) on
chromosome 6, and Kidd blood group on chromosome 2. The 71 families
studied apparently did not fall into 2 groups, one exhibiting linkage to
HLA and the other to Kidd. Thus, they concluded that at least 2 distinct
disease-susceptibility loci may be involved in IDDM, a situation also
postulated for Graves disease (275000). (The Jk blood group is encoded
by a solute carrier gene on chromosome 18q11-q12; an IDDM locus, IDDM6
(601941), maps to 18q21.)
Field et al. (1985) and Sherman and Simpson (1985) provided evidence for
linkage of IGK (147200) and Jk and, therefore, assignment to chromosome
2. This suggested that the Colton blood group locus (110450) may also be
on chromosome 2. Sherman and Simpson (1985) published a collated maximum
lod score of 3.14 at theta 0.31 for Jk:IGK.
Pausch and Mayr (1987) presented additional data supporting linkage of
Jk and IGK. Together with the data of Field et al. (1985), the maximum
lod score reached 3.0 for theta = 0.32.
*FIELD* SA
Barbosa et al. (1982)
*FIELD* RF
1. Barbosa, J.; Rich, S.; Dunsworth, T.; Swanson, J.: Linkage disequilibrium
between insulin-dependent diabetes and the Kidd blood group Jk(b)
allele. J. Clin. Endocr. Metab. 55: 193-195, 1982.
2. Field, L. L.; Marazita, M. L.; Spence, M. A.; Crandall, B. F.;
Sparkes, R. S.: Is JK linked to IGK on chromosome 2? (Abstract) Cytogenet.
Cell Genet. 40: 628-629, 1985.
3. Gedde-Dahl, T.: Personal Communication. Oslo, Norway 9/26/1986.
4. Geitvik, G. A.; Hoyheim, B.; Gedde-Dahl, T.; Grzeschik, K. H.;
Lothe, R.; Tomter, H.; Olaisen, B.: The Kidd (JK) blood group locus
assigned to chromosome 18 by close linkage to a DNA-RFLP. Hum. Genet. 77:
205-209, 1987.
5. Hodge, S. E.; Anderson, C. E.; Neiswanger, K.; Field, L. L.; Spence,
M. A.; Sparkes, R. S.; Sparkes, M. C.; Crist, M.; Terasaki, P. I.;
Rimoin, D. L.; Rotter, J. I.: Close genetic linkage between diabetes
mellitus and Kidd blood group. Lancet 318: 893-895, 1981. Note:
Originally Volume II.
6. Hulten, M.; Lindsten, J.; Pen-Ming, L. M.; Fraccaro, M.; Mannini,
A.; Trepolo, L.; Robson, E. B.; Heiken, A.; Tellingen, K. G.: Possible
localization of the genes for the Kidd blood group on an autosome
involved in a reciprocal translocation. Nature 211: 1067-1068, 1968.
7. Leppert, M.; Ferrell, R.; Kamboh, M. I.; Beasley, J.; O'Connell,
P.; Lathrop, M.; Lalouel, J.-M.; White, R.: Linkage of the polymorphic
protein markers F13B, C1S, C1R, and blood group antigen Kidd in CEPH
reference families. (Abstract) Cytogenet. Cell Genet. 46: 647, 1987.
8. Lucien, N.; Chiaroni, J.; Cartron, J.-P.; Bailly, P.: Partial
deletion in the JK locus causing a Jk(null) phenotype. Blood 99:
1079-1081, 2002.
9. Mace, M. A.; Robson, E. B.: Linkage data on ACP-1 and MNSS. Cytogenet.
Cell Genet. 13: 123-125, 1974.
10. Mohr, J.; Eiberg, H.: Colton blood groups: indication of linkage
with the Kidd (Jk) system as support for assignment to chromosome
7. Clin. Genet. 11: 372-374, 1977.
11. Olives, B.; Merriman, M.; Bailly, P.; Bain, S.; Barnett, A.; Todd,
J.; Cartron, J.-P.; Merriman, T.: The molecular basis of the Kidd
blood group polymorphism and its lack of association with type 1 diabetes
susceptibility. Hum. Molec. Genet. 6: 1017-1020, 1997.
12. Pausch, V.; Mayr, W. R.: Analysis of the linkage JK-IGK, MNS-GC
and of two other possible linkage groups. Hum. Hered. 37: 260-262,
1987.
13. Promeneur, D.; Rousselet, G.; Bankir, L.; Bailly, P.; Cartron,
J.-P.; Ripoche, P.; Trinh-Trang-Tan, M.-M.: Evidence for distinct
vascular and tubular urea transporters in the rat kidney. J. Am.
Soc. Nephrol. 7: 852-860, 1996.
14. Sands, J. M.; Gargus, J. J.; Frohlich, O.; Gunn, R. B.; Kokko,
J. P.: Urinary concentrating ability in patients with Jk(a-/b-) blood
type who lack carrier-mediated urea transport. J. Am. Soc. Nephrol. 2:
1689-1696, 1992.
15. Sherman, S. L.; Simpson, S. P.: Evidence for the location of
JK and CO on chromosome 2 based on family studies. (Abstract) Cytogenet.
Cell Genet. 40: 743, 1985.
16. Shokeir, M. H. K.; Ying, K. L.; Pabello, P.: Deletion of the
long arm of chromosome no. 7: tentative assignment of the Kidd (Jk)
locus. Clin. Genet. 4: 360-368, 1973.
17. Xu, Y.; Olives, B.; Bailly, P.; Fischer, E.; Ripoche, P.; Ronco,
P.; Cartron, J.-P.; Rondeau, E.: Endothelial cells of the kidney
vasa recta express the urea transporter HUT11. Kidney Int. 51: 138-146,
1997.
*FIELD* CN
Patricia A. Hartz - updated: 12/11/2003
Victor A. McKusick - updated: 3/19/2002
Victor A. McKusick - updated: 1/10/2001
Paul J. Converse - updated: 8/14/2000
Victor A. McKusick - updated: 8/15/1997
Victor A. McKusick - updated: 5/27/1997
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
alopez: 04/05/2011
terry: 1/8/2009
mgross: 12/11/2003
terry: 1/2/2003
cwells: 4/5/2002
terry: 3/28/2002
cwells: 3/21/2002
terry: 3/19/2002
cwells: 1/17/2001
terry: 1/10/2001
carol: 8/14/2000
terry: 4/30/1999
terry: 7/24/1998
mark: 8/19/1997
terry: 8/15/1997
jenny: 5/30/1997
terry: 5/27/1997
mark: 1/6/1997
terry: 12/16/1996
terry: 5/16/1996
terry: 10/31/1995
mark: 9/10/1995
warfield: 4/7/1994
mimadm: 2/11/1994
supermim: 3/16/1992
supermim: 3/20/1990
MIM
613868
*RECORD*
*FIELD* NO
613868
*FIELD* TI
*613868 SOLUTE CARRIER FAMILY 14 (UREA TRANSPORTER), MEMBER 1; SLC14A1
;;UREA TRANSPORTER, ERYTHROCYTE; UTE;;
read moreUT11;;
UTB, MOUSE, HOMOLOG OF; UTB
*FIELD* TX
DESCRIPTION
The SLC14A1 gene encodes a membrane glycoprotein that functions as a
urea transporter expressed in erythrocytes and kidney. The Kidd blood
group antigens (JK; see 111000) are the product of the SLC14A1 gene
(summary by Sidoux-Walter et al., 2000).
CLONING
Olives et al. (1994) cloned the gene encoding the urea transporter of
human erythrocytes. Olives et al. (1995) assigned the gene, which they
symbolized UTE, to 18q12-q21 by isotopic in situ hybridization. (The
gene has also been symbolized HUT11 or UT11.) The JK locus is situated
in the same region. The possibility that the urea transporter of human
erythrocytes may be related to Kidd blood group antigens was raised by
the observation that red cells from Jk(a-b-) individuals which lack Kidd
antigens exhibited an increased resistance to lysis in aqueous 2 M urea.
These cells exhibited a defect in urea transport, whereas chloride,
water, and ethylene glycol permeabilities, as well as
aquaporin-associated Colton blood group antigens (107776), were the same
as in control cells. Olives et al. (1995) demonstrated that, indeed, the
urea transporter of human erythrocytes is encoded by the Kidd locus. In
coupled transcription-translation assays, the UTE cDNA directed the
synthesis of a 36-kD protein that was immunoprecipitated by human
anti-Jk(3) antibody produced by immunized Jk(a-b-) donors whose red
cells lack Kidd antigens.
GENE STRUCTURE
Lucien et al. (1998) used genomic sequence analysis to determine that
the JK gene contains 11 exons, ranging from 50 to 551 bp, distributed
over 30 kb. The mature protein is encoded by exons 4 through 11 and the
translation start point is in exon 4. The 5-prime flanking sequence
contains TATA and inverted CAAT boxes as well as GATA1/SP1
erythroid-specific cis acting regulatory elements.
GENE FUNCTION
Tsukaguchi et al. (1997) undertook a characterization of the tissue
distribution and physiologic role of the erythrocyte urea transporter,
UT11, by studying its rat homolog and testing whether there are
additional urea transporter isoforms expressed in rat kidney. Using a
PCR-based homology cloning approach with degenerate primers
corresponding to conserved regions of the UT family of genes, they
isolated a kidney urea transporter that appeared to be the rat homolog
of human UT11. The rat gene, symbolized UT3 by them, was strongly
expressed in the kidney. Furthermore, UT3 was expressed in testis,
brain, bone marrow, and spleen. Its expression in the rat testis
suggested a potential role for urea transporters in spermatogenesis. On
in situ hybridization of testis, UT3 was detected in Sertoli cells
associated with the early stages of spermatocyte development. The
distribution in the kidneys suggested that UT3 is involved in
counter-current exchange between ascending and descending vasa recta, to
enhance the cortico-papillary osmolality gradient.
MOLECULAR GENETICS
Olives et al. (1997) determined the genetic basis for the Kidd blood
group polymorphism by sequencing reverse-transcribed reticulocyte RNAs
from Jk(a+b-) and Jk(a-b+) donors. They found that the difference
between Jk(a) and Jk(b) was a G-to-A transition at nucleotide 838,
resulting in an asp280-to-asn amino acid substitution (613868.0001) and
an MnlI RFLP.
Data on gene frequencies of allelic variants of Kidd blood group were
tabulated by Roychoudhury and Nei (1988).
ANIMAL MODEL
Yang et al. (2002) found that Slc14a1-knockout mice and their wildtype
littermates showed no differences in survival and growth. Urea
permeability was 45-fold lower in erythrocytes from knockout mice than
in those from wildtype mice. Daily urine output was 1.5-fold greater in
Slc14a1-deficient mice, and the capacity to concentrate urea in the
urine was more severely impaired than the capacity to concentrate other
solutes.
*FIELD* AV
.0001
KIDD BLOOD POLYMORPHISM Jk(a)/Jk(b)
SLC14A1, ASP280ASN
Olives et al. (1997) determined that the Jk(a) and Jk(b) alleles that
define the Kidd blood group system (111000) correspond to either asp or
asn, respectively, at codon 280 in the fourth predicted extracellular
loop of the human urea transporter. The polymorphism results from a
G-to-A transition at nucleotide 838.
.0002
JK-NULL VARIANT
SLC14A1, IVS5AS, G-A, -1
Lucien et al. (1998) studied 2 unrelated individuals, 1 European and 1
Chinese, who lacked JK antigens (111000) and protein expression on red
cells. By genomic DNA analysis they determined that the European subject
did not express exon 7 of the urea transporter gene and the Chinese
subject did not express exon 6 due to splice site mutations. When
expressed in Xenopus oocytes, wildtype, but not mutant, JK proteins
mediated urea transport. Although the JK-null individuals have a urea
transport deficiency, they do not suffer any clinical syndrome,
suggesting the existence of compensatory mechanisms.
.0003
JK-NULL VARIANT
SLC14A1, IVS7DS, G-T, +1
See 613868.0002 and Lucien et al. (1998).
.0004
JK-NULL VARIANT, FINNISH TYPE
SLC14A1, SER291PRO
Sidoux-Walter et al. (2000) found that 15 Jk-null (111000) blood donors
from Finland were homozygous for an 871T-C transition in the JK gene
resulting in a ser291-to-pro (S291P) amino acid substitution at a
consensus N-glycosylation site of the Jk polypeptide. Because the mutant
polypeptide was not present in human red cells from Finnish Jk-null
individuals, expression data in the erythroid context indicated that the
mutation was the molecular basis for the phenotype.
.0005
JK-NULL VARIANT
SLC14A1, EX4-5 DEL
Lucien et al. (2002) described a new mechanism for Jk-null (111000) in a
patient from Tunisia identified by the presence of an allo-anti-Jk3 in
her serum. The JK gene showed an internal deletion encompassing exons 4
and 5. Sequence analysis of the Jk transcript showed that exons 4 and 5
were missing but were replaced by a 136-bp intron 3 sequence located 315
bp and 179 bp upstream of exon 4. This sequence is flanked by typical
donor-acceptor cryptic splice sites used in the mutant but not in the
normal JK gene. Because the translation initiation codon of JK is
located in exon 4, the Jk protein was not produced.
*FIELD* RF
1. Lucien, N.; Chiaroni, J.; Cartron, J.-P.; Bailly, P.: Partial
deletion in the JK locus causing a Jk(null) phenotype. Blood 99:
1079-1081, 2002.
2. Lucien, N.; Sidoux-Walter, F.; Olives, B.; Moulds, J.; Le Pennec,
P.-Y.; Cartron, J.-P.; Bailly, P.: Characterization of the gene encoding
the human Kidd blood group/urea transporter protein: evidence for
splice site mutations in Jk-null individuals. J. Biol. Chem. 273:
12973-12980, 1998.
3. Olives, B.; Mattei, M.-G.; Huet, M.; Neau, P.; Martial, S.; Cartron,
J.-P.; Bailly, P.: Kidd blood group and urea transport function of
human erythrocytes are carried by the same protein. J. Biol. Chem. 270:
15607-15610, 1995.
4. Olives, B.; Merriman, M.; Bailly, P.; Bain, S.; Barnett, A.; Todd,
J.; Cartron, J.-P.; Merriman, T.: The molecular basis of the Kidd
blood group polymorphism and its lack of association with type 1 diabetes
susceptibility. Hum. Molec. Genet. 6: 1017-1020, 1997.
5. Olives, B.; Neau, P.; Bailly, P.; Hediger, M. A.; Rousselet, G.;
Cartron, J.-P.; Ripoche, P.: Cloning and functional expression of
a urea transporter from human bone marrow cells. J. Biol. Chem. 269:
31649-31652, 1994.
6. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World Distribution.
New York: Oxford Univ. Press (pub.) 1988.
7. Sidoux-Walter, F.; Lucien, N.; Nissinen, R.; Sistonen, P.; Henry,
S.; Moulds, J.; Cartron, J.-P.; Bailly, P.: Molecular heterogeneity
of the Jk-null phenotype: expression analysis of the Jk(S291P) mutation
found in Finns. Blood 96: 1566-1573, 2000.
8. Tsukaguchi, H.; Shayakul, C.; Berger, U. V.; Tokui, T.; Brown,
D.; Hediger, M. A.: Cloning and characterization of the urea transportation
UT3: localization in rat kidney and testis. J. Clin. Invest. 99:
1506-1515, 1997.
9. Yang, B.; Bankir, L.; Gillespie, A.; Epstein, C. J.; Verkman, A.
S.: Urea-selective concentrating defect in transgenic mice lacking
urea transporter UT-B. J. Biol. Chem. 277: 10633-10637, 2002.
*FIELD* CD
Anne M. Stumpf: 4/5/2011
*FIELD* ED
terry: 04/18/2011
alopez: 4/5/2011
*RECORD*
*FIELD* NO
613868
*FIELD* TI
*613868 SOLUTE CARRIER FAMILY 14 (UREA TRANSPORTER), MEMBER 1; SLC14A1
;;UREA TRANSPORTER, ERYTHROCYTE; UTE;;
read moreUT11;;
UTB, MOUSE, HOMOLOG OF; UTB
*FIELD* TX
DESCRIPTION
The SLC14A1 gene encodes a membrane glycoprotein that functions as a
urea transporter expressed in erythrocytes and kidney. The Kidd blood
group antigens (JK; see 111000) are the product of the SLC14A1 gene
(summary by Sidoux-Walter et al., 2000).
CLONING
Olives et al. (1994) cloned the gene encoding the urea transporter of
human erythrocytes. Olives et al. (1995) assigned the gene, which they
symbolized UTE, to 18q12-q21 by isotopic in situ hybridization. (The
gene has also been symbolized HUT11 or UT11.) The JK locus is situated
in the same region. The possibility that the urea transporter of human
erythrocytes may be related to Kidd blood group antigens was raised by
the observation that red cells from Jk(a-b-) individuals which lack Kidd
antigens exhibited an increased resistance to lysis in aqueous 2 M urea.
These cells exhibited a defect in urea transport, whereas chloride,
water, and ethylene glycol permeabilities, as well as
aquaporin-associated Colton blood group antigens (107776), were the same
as in control cells. Olives et al. (1995) demonstrated that, indeed, the
urea transporter of human erythrocytes is encoded by the Kidd locus. In
coupled transcription-translation assays, the UTE cDNA directed the
synthesis of a 36-kD protein that was immunoprecipitated by human
anti-Jk(3) antibody produced by immunized Jk(a-b-) donors whose red
cells lack Kidd antigens.
GENE STRUCTURE
Lucien et al. (1998) used genomic sequence analysis to determine that
the JK gene contains 11 exons, ranging from 50 to 551 bp, distributed
over 30 kb. The mature protein is encoded by exons 4 through 11 and the
translation start point is in exon 4. The 5-prime flanking sequence
contains TATA and inverted CAAT boxes as well as GATA1/SP1
erythroid-specific cis acting regulatory elements.
GENE FUNCTION
Tsukaguchi et al. (1997) undertook a characterization of the tissue
distribution and physiologic role of the erythrocyte urea transporter,
UT11, by studying its rat homolog and testing whether there are
additional urea transporter isoforms expressed in rat kidney. Using a
PCR-based homology cloning approach with degenerate primers
corresponding to conserved regions of the UT family of genes, they
isolated a kidney urea transporter that appeared to be the rat homolog
of human UT11. The rat gene, symbolized UT3 by them, was strongly
expressed in the kidney. Furthermore, UT3 was expressed in testis,
brain, bone marrow, and spleen. Its expression in the rat testis
suggested a potential role for urea transporters in spermatogenesis. On
in situ hybridization of testis, UT3 was detected in Sertoli cells
associated with the early stages of spermatocyte development. The
distribution in the kidneys suggested that UT3 is involved in
counter-current exchange between ascending and descending vasa recta, to
enhance the cortico-papillary osmolality gradient.
MOLECULAR GENETICS
Olives et al. (1997) determined the genetic basis for the Kidd blood
group polymorphism by sequencing reverse-transcribed reticulocyte RNAs
from Jk(a+b-) and Jk(a-b+) donors. They found that the difference
between Jk(a) and Jk(b) was a G-to-A transition at nucleotide 838,
resulting in an asp280-to-asn amino acid substitution (613868.0001) and
an MnlI RFLP.
Data on gene frequencies of allelic variants of Kidd blood group were
tabulated by Roychoudhury and Nei (1988).
ANIMAL MODEL
Yang et al. (2002) found that Slc14a1-knockout mice and their wildtype
littermates showed no differences in survival and growth. Urea
permeability was 45-fold lower in erythrocytes from knockout mice than
in those from wildtype mice. Daily urine output was 1.5-fold greater in
Slc14a1-deficient mice, and the capacity to concentrate urea in the
urine was more severely impaired than the capacity to concentrate other
solutes.
*FIELD* AV
.0001
KIDD BLOOD POLYMORPHISM Jk(a)/Jk(b)
SLC14A1, ASP280ASN
Olives et al. (1997) determined that the Jk(a) and Jk(b) alleles that
define the Kidd blood group system (111000) correspond to either asp or
asn, respectively, at codon 280 in the fourth predicted extracellular
loop of the human urea transporter. The polymorphism results from a
G-to-A transition at nucleotide 838.
.0002
JK-NULL VARIANT
SLC14A1, IVS5AS, G-A, -1
Lucien et al. (1998) studied 2 unrelated individuals, 1 European and 1
Chinese, who lacked JK antigens (111000) and protein expression on red
cells. By genomic DNA analysis they determined that the European subject
did not express exon 7 of the urea transporter gene and the Chinese
subject did not express exon 6 due to splice site mutations. When
expressed in Xenopus oocytes, wildtype, but not mutant, JK proteins
mediated urea transport. Although the JK-null individuals have a urea
transport deficiency, they do not suffer any clinical syndrome,
suggesting the existence of compensatory mechanisms.
.0003
JK-NULL VARIANT
SLC14A1, IVS7DS, G-T, +1
See 613868.0002 and Lucien et al. (1998).
.0004
JK-NULL VARIANT, FINNISH TYPE
SLC14A1, SER291PRO
Sidoux-Walter et al. (2000) found that 15 Jk-null (111000) blood donors
from Finland were homozygous for an 871T-C transition in the JK gene
resulting in a ser291-to-pro (S291P) amino acid substitution at a
consensus N-glycosylation site of the Jk polypeptide. Because the mutant
polypeptide was not present in human red cells from Finnish Jk-null
individuals, expression data in the erythroid context indicated that the
mutation was the molecular basis for the phenotype.
.0005
JK-NULL VARIANT
SLC14A1, EX4-5 DEL
Lucien et al. (2002) described a new mechanism for Jk-null (111000) in a
patient from Tunisia identified by the presence of an allo-anti-Jk3 in
her serum. The JK gene showed an internal deletion encompassing exons 4
and 5. Sequence analysis of the Jk transcript showed that exons 4 and 5
were missing but were replaced by a 136-bp intron 3 sequence located 315
bp and 179 bp upstream of exon 4. This sequence is flanked by typical
donor-acceptor cryptic splice sites used in the mutant but not in the
normal JK gene. Because the translation initiation codon of JK is
located in exon 4, the Jk protein was not produced.
*FIELD* RF
1. Lucien, N.; Chiaroni, J.; Cartron, J.-P.; Bailly, P.: Partial
deletion in the JK locus causing a Jk(null) phenotype. Blood 99:
1079-1081, 2002.
2. Lucien, N.; Sidoux-Walter, F.; Olives, B.; Moulds, J.; Le Pennec,
P.-Y.; Cartron, J.-P.; Bailly, P.: Characterization of the gene encoding
the human Kidd blood group/urea transporter protein: evidence for
splice site mutations in Jk-null individuals. J. Biol. Chem. 273:
12973-12980, 1998.
3. Olives, B.; Mattei, M.-G.; Huet, M.; Neau, P.; Martial, S.; Cartron,
J.-P.; Bailly, P.: Kidd blood group and urea transport function of
human erythrocytes are carried by the same protein. J. Biol. Chem. 270:
15607-15610, 1995.
4. Olives, B.; Merriman, M.; Bailly, P.; Bain, S.; Barnett, A.; Todd,
J.; Cartron, J.-P.; Merriman, T.: The molecular basis of the Kidd
blood group polymorphism and its lack of association with type 1 diabetes
susceptibility. Hum. Molec. Genet. 6: 1017-1020, 1997.
5. Olives, B.; Neau, P.; Bailly, P.; Hediger, M. A.; Rousselet, G.;
Cartron, J.-P.; Ripoche, P.: Cloning and functional expression of
a urea transporter from human bone marrow cells. J. Biol. Chem. 269:
31649-31652, 1994.
6. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World Distribution.
New York: Oxford Univ. Press (pub.) 1988.
7. Sidoux-Walter, F.; Lucien, N.; Nissinen, R.; Sistonen, P.; Henry,
S.; Moulds, J.; Cartron, J.-P.; Bailly, P.: Molecular heterogeneity
of the Jk-null phenotype: expression analysis of the Jk(S291P) mutation
found in Finns. Blood 96: 1566-1573, 2000.
8. Tsukaguchi, H.; Shayakul, C.; Berger, U. V.; Tokui, T.; Brown,
D.; Hediger, M. A.: Cloning and characterization of the urea transportation
UT3: localization in rat kidney and testis. J. Clin. Invest. 99:
1506-1515, 1997.
9. Yang, B.; Bankir, L.; Gillespie, A.; Epstein, C. J.; Verkman, A.
S.: Urea-selective concentrating defect in transgenic mice lacking
urea transporter UT-B. J. Biol. Chem. 277: 10633-10637, 2002.
*FIELD* CD
Anne M. Stumpf: 4/5/2011
*FIELD* ED
terry: 04/18/2011
alopez: 4/5/2011