Full text data of VAMP2
VAMP2
(SYB2)
[Confidence: low (only semi-automatic identification from reviews)]
Vesicle-associated membrane protein 2; VAMP-2 (Synaptobrevin-2)
Vesicle-associated membrane protein 2; VAMP-2 (Synaptobrevin-2)
UniProt
P63027
ID VAMP2_HUMAN Reviewed; 116 AA.
AC P63027; P19065; Q9BUC2;
DT 31-AUG-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 09-FEB-2010, sequence version 3.
DT 22-JAN-2014, entry version 99.
DE RecName: Full=Vesicle-associated membrane protein 2;
DE Short=VAMP-2;
DE AltName: Full=Synaptobrevin-2;
GN Name=VAMP2; Synonyms=SYB2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=1976629;
RA Archer B.T. III, Oezcelik T., Jahn R., Francke U., Suedhof T.C.;
RT "Structures and chromosomal localizations of two human genes encoding
RT synaptobrevins 1 and 2.";
RL J. Biol. Chem. 265:17267-17273(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Peripheral blood;
RA Nabokina S.M., Lazo P.A., Mollinedo F.;
RT "Expression of VAMP genes in human neutrophils.";
RL Submitted (MAR-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC TISSUE=Blood;
RA Taruscio D., Zoraqi K.G., Falbo V.;
RT "Genomic structure of human SYB2 gene.";
RL Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Cerebellum;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Neuroblastoma, and Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP TISSUE SPECIFICITY.
RX PubMed=8760387;
RA Jagadish M.N., Fernandez C.S., Hewish D.R., Macaulay S.L., Gough K.H.,
RA Grusovin J., Verkuylen A., Cosgrove L., Alafaci A., Frenkel M.J.,
RA Ward C.W.;
RT "Insulin-responsive tissues contain the core complex protein SNAP-25
RT (synaptosomal-associated protein 25) A and B isoforms in addition to
RT syntaxin 4 and synaptobrevins 1 and 2.";
RL Biochem. J. 317:945-954(1996).
RN [8]
RP TOPOLOGY.
RX PubMed=7835332;
RA Kutay U., Ahnert-Hilger G., Hartmann E., Wiedenmann B., Rapoport T.A.;
RT "Transport route for synaptobrevin via a novel pathway of insertion
RT into the endoplasmic reticulum membrane.";
RL EMBO J. 14:217-223(1995).
RN [9]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 34-89 IN COMPLEX WITH BOTB.
RX PubMed=10932255; DOI=10.1038/77997;
RA Hanson M.A., Stevens R.C.;
RT "Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin
RT type B at 2.0 A resolution.";
RL Nat. Struct. Biol. 7:687-692(2000).
CC -!- FUNCTION: Involved in the targeting and/or fusion of transport
CC vesicles to their target membrane.
CC -!- SUBUNIT: Part of the SNARE core complex containing SNAP25, VAMP2
CC and STX1A. This complex binds to CPLX1. Interacts with BVES and
CC STX4 (By similarity). Interacts with VAPA and VAPB.
CC -!- INTERACTION:
CC D2KHQ9:- (xeno); NbExp=2; IntAct=EBI-520113, EBI-7604762;
CC A7GBG3:F (xeno); NbExp=2; IntAct=EBI-520113, EBI-7604673;
CC O55012:Picalm (xeno); NbExp=2; IntAct=EBI-520113, EBI-915601;
CC O94806:PRKD3; NbExp=7; IntAct=EBI-520113, EBI-1255366;
CC -!- SUBCELLULAR LOCATION: Cytoplasmic vesicle, secretory vesicle,
CC synaptic vesicle membrane; Single-pass type IV membrane protein.
CC Cell junction, synapse, synaptosome. Note=Neuronal synaptic
CC vesicles.
CC -!- TISSUE SPECIFICITY: Nervous system and skeletal muscle.
CC -!- SIMILARITY: Belongs to the synaptobrevin family.
CC -!- SIMILARITY: Contains 1 v-SNARE coiled-coil homology domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M36205; AAA60604.1; -; Genomic_DNA.
DR EMBL; M36201; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36202; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36203; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36204; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; AJ225044; CAA12385.1; -; mRNA.
DR EMBL; AF135372; AAF15551.1; -; Genomic_DNA.
DR EMBL; AK289555; BAF82244.1; -; mRNA.
DR EMBL; CH471108; EAW90087.1; -; Genomic_DNA.
DR EMBL; BC002737; AAH02737.3; -; mRNA.
DR EMBL; BC019608; AAH19608.1; -; mRNA.
DR EMBL; BC033870; AAH33870.1; -; mRNA.
DR PIR; B38315; B38315.
DR RefSeq; NP_055047.2; NM_014232.2.
DR UniGene; Hs.25348; -.
DR PDB; 3FIE; X-ray; 2.10 A; C/D=22-57.
DR PDB; 3FII; X-ray; 2.17 A; B=27-57.
DR PDB; 3RK2; X-ray; 2.20 A; A/E=28-60.
DR PDB; 3RK3; X-ray; 3.50 A; A=28-60.
DR PDB; 3RL0; X-ray; 3.80 A; A/E/I/M/Q/U/Y/c=28-60.
DR PDBsum; 3FIE; -.
DR PDBsum; 3FII; -.
DR PDBsum; 3RK2; -.
DR PDBsum; 3RK3; -.
DR PDBsum; 3RL0; -.
DR DisProt; DP00069; -.
DR ProteinModelPortal; P63027; -.
DR SMR; P63027; 30-116.
DR DIP; DIP-39072N; -.
DR IntAct; P63027; 7.
DR MINT; MINT-4824900; -.
DR STRING; 9606.ENSP00000314214; -.
DR ChEMBL; CHEMBL2364160; -.
DR DrugBank; DB00042; Botulinum Toxin Type B.
DR TCDB; 1.F.1.1.1; the synaptosomal vesicle fusion pore (svf-pore) family.
DR PhosphoSite; P63027; -.
DR DMDM; 288558837; -.
DR PRIDE; P63027; -.
DR DNASU; 6844; -.
DR Ensembl; ENST00000316509; ENSP00000314214; ENSG00000220205.
DR GeneID; 6844; -.
DR KEGG; hsa:6844; -.
DR UCSC; uc010cnt.1; human.
DR CTD; 6844; -.
DR GeneCards; GC17M008062; -.
DR HGNC; HGNC:12643; VAMP2.
DR MIM; 185881; gene.
DR neXtProt; NX_P63027; -.
DR PharmGKB; PA37267; -.
DR HOGENOM; HOG000042711; -.
DR HOVERGEN; HBG006675; -.
DR KO; K13504; -.
DR OrthoDB; EOG7MSMRJ; -.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_13685; Neuronal System.
DR Reactome; REACT_17015; Metabolism of proteins.
DR ChiTaRS; VAMP2; human.
DR EvolutionaryTrace; P63027; -.
DR GeneWiki; VAMP2; -.
DR GenomeRNAi; 6844; -.
DR NextBio; 26719; -.
DR PRO; PR:P63027; -.
DR ArrayExpress; P63027; -.
DR Bgee; P63027; -.
DR CleanEx; HS_VAMP2; -.
DR Genevestigator; P63027; -.
DR GO; GO:0030054; C:cell junction; IEA:UniProtKB-KW.
DR GO; GO:0061202; C:clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane; TAS:Reactome.
DR GO; GO:0060203; C:clathrin-sculpted glutamate transport vesicle membrane; TAS:Reactome.
DR GO; GO:0070083; C:clathrin-sculpted monoamine transport vesicle membrane; TAS:Reactome.
DR GO; GO:0030666; C:endocytic vesicle membrane; TAS:Reactome.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0043005; C:neuron projection; IEA:UniProtKB-SubCell.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IEA:Ensembl.
DR GO; GO:0030667; C:secretory granule membrane; TAS:Reactome.
DR GO; GO:0031201; C:SNARE complex; IDA:UniProtKB.
DR GO; GO:0030672; C:synaptic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0070044; C:synaptobrevin 2-SNAP-25-syntaxin-1a complex; IEA:Ensembl.
DR GO; GO:0070032; C:synaptobrevin 2-SNAP-25-syntaxin-1a-complexin I complex; IEA:Ensembl.
DR GO; GO:0005802; C:trans-Golgi network; IEA:Ensembl.
DR GO; GO:0042589; C:zymogen granule membrane; IEA:Ensembl.
DR GO; GO:0005543; F:phospholipid binding; IEA:Ensembl.
DR GO; GO:0017156; P:calcium ion-dependent exocytosis; IEA:Ensembl.
DR GO; GO:0044267; P:cellular protein metabolic process; TAS:Reactome.
DR GO; GO:0032869; P:cellular response to insulin stimulus; IEA:Ensembl.
DR GO; GO:0006112; P:energy reserve metabolic process; TAS:Reactome.
DR GO; GO:0014047; P:glutamate secretion; TAS:Reactome.
DR GO; GO:0043001; P:Golgi to plasma membrane protein transport; IEA:Ensembl.
DR GO; GO:0007269; P:neurotransmitter secretion; TAS:Reactome.
DR GO; GO:0090316; P:positive regulation of intracellular protein transport; IEA:Ensembl.
DR GO; GO:0006892; P:post-Golgi vesicle-mediated transport; TAS:Reactome.
DR GO; GO:0006461; P:protein complex assembly; IEA:Ensembl.
DR GO; GO:0017157; P:regulation of exocytosis; IEA:Ensembl.
DR GO; GO:0050796; P:regulation of insulin secretion; TAS:Reactome.
DR GO; GO:0009749; P:response to glucose stimulus; IEA:Ensembl.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR GO; GO:0016079; P:synaptic vesicle exocytosis; IEA:Ensembl.
DR InterPro; IPR001388; Synaptobrevin.
DR InterPro; IPR016444; Synaptobrevin_met/fun.
DR Pfam; PF00957; Synaptobrevin; 1.
DR PIRSF; PIRSF005409; Synaptobrevin_euk; 1.
DR PRINTS; PR00219; SYNAPTOBREVN.
DR PROSITE; PS00417; SYNAPTOBREVIN; 1.
DR PROSITE; PS50892; V_SNARE; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Cell junction; Coiled coil;
KW Complete proteome; Cytoplasmic vesicle; Membrane; Reference proteome;
KW Synapse; Synaptosome; Transmembrane; Transmembrane helix.
FT INIT_MET 1 1 Removed (By similarity).
FT CHAIN 2 116 Vesicle-associated membrane protein 2.
FT /FTId=PRO_0000206723.
FT TOPO_DOM 2 94 Cytoplasmic (Potential).
FT TRANSMEM 95 114 Helical; Anchor for type IV membrane
FT protein; (Potential).
FT TOPO_DOM 115 116 Vesicular (Potential).
FT DOMAIN 31 91 v-SNARE coiled-coil homology.
FT MOD_RES 2 2 N-acetylserine (By similarity).
FT CONFLICT 116 116 T -> S (in Ref. 1; AAA60604, 2; CAA12385
FT and 3; AAF15551).
FT STRAND 34 36
FT TURN 47 49
FT HELIX 50 53
SQ SEQUENCE 116 AA; 12663 MW; 9CD679C4F6F1B5A8 CRC64;
MSATAATAPP AAPAGEGGPP APPPNLTSNR RLQQTQAQVD EVVDIMRVNV DKVLERDQKL
SELDDRADAL QAGASQFETS AAKLKRKYWW KNLKMMIILG VICAIILIII IVYFST
//
ID VAMP2_HUMAN Reviewed; 116 AA.
AC P63027; P19065; Q9BUC2;
DT 31-AUG-2004, integrated into UniProtKB/Swiss-Prot.
read moreDT 09-FEB-2010, sequence version 3.
DT 22-JAN-2014, entry version 99.
DE RecName: Full=Vesicle-associated membrane protein 2;
DE Short=VAMP-2;
DE AltName: Full=Synaptobrevin-2;
GN Name=VAMP2; Synonyms=SYB2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=1976629;
RA Archer B.T. III, Oezcelik T., Jahn R., Francke U., Suedhof T.C.;
RT "Structures and chromosomal localizations of two human genes encoding
RT synaptobrevins 1 and 2.";
RL J. Biol. Chem. 265:17267-17273(1990).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Peripheral blood;
RA Nabokina S.M., Lazo P.A., Mollinedo F.;
RT "Expression of VAMP genes in human neutrophils.";
RL Submitted (MAR-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RC TISSUE=Blood;
RA Taruscio D., Zoraqi K.G., Falbo V.;
RT "Genomic structure of human SYB2 gene.";
RL Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Cerebellum;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Neuroblastoma, and Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP TISSUE SPECIFICITY.
RX PubMed=8760387;
RA Jagadish M.N., Fernandez C.S., Hewish D.R., Macaulay S.L., Gough K.H.,
RA Grusovin J., Verkuylen A., Cosgrove L., Alafaci A., Frenkel M.J.,
RA Ward C.W.;
RT "Insulin-responsive tissues contain the core complex protein SNAP-25
RT (synaptosomal-associated protein 25) A and B isoforms in addition to
RT syntaxin 4 and synaptobrevins 1 and 2.";
RL Biochem. J. 317:945-954(1996).
RN [8]
RP TOPOLOGY.
RX PubMed=7835332;
RA Kutay U., Ahnert-Hilger G., Hartmann E., Wiedenmann B., Rapoport T.A.;
RT "Transport route for synaptobrevin via a novel pathway of insertion
RT into the endoplasmic reticulum membrane.";
RL EMBO J. 14:217-223(1995).
RN [9]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 34-89 IN COMPLEX WITH BOTB.
RX PubMed=10932255; DOI=10.1038/77997;
RA Hanson M.A., Stevens R.C.;
RT "Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin
RT type B at 2.0 A resolution.";
RL Nat. Struct. Biol. 7:687-692(2000).
CC -!- FUNCTION: Involved in the targeting and/or fusion of transport
CC vesicles to their target membrane.
CC -!- SUBUNIT: Part of the SNARE core complex containing SNAP25, VAMP2
CC and STX1A. This complex binds to CPLX1. Interacts with BVES and
CC STX4 (By similarity). Interacts with VAPA and VAPB.
CC -!- INTERACTION:
CC D2KHQ9:- (xeno); NbExp=2; IntAct=EBI-520113, EBI-7604762;
CC A7GBG3:F (xeno); NbExp=2; IntAct=EBI-520113, EBI-7604673;
CC O55012:Picalm (xeno); NbExp=2; IntAct=EBI-520113, EBI-915601;
CC O94806:PRKD3; NbExp=7; IntAct=EBI-520113, EBI-1255366;
CC -!- SUBCELLULAR LOCATION: Cytoplasmic vesicle, secretory vesicle,
CC synaptic vesicle membrane; Single-pass type IV membrane protein.
CC Cell junction, synapse, synaptosome. Note=Neuronal synaptic
CC vesicles.
CC -!- TISSUE SPECIFICITY: Nervous system and skeletal muscle.
CC -!- SIMILARITY: Belongs to the synaptobrevin family.
CC -!- SIMILARITY: Contains 1 v-SNARE coiled-coil homology domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M36205; AAA60604.1; -; Genomic_DNA.
DR EMBL; M36201; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36202; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36203; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; M36204; AAA60604.1; JOINED; Genomic_DNA.
DR EMBL; AJ225044; CAA12385.1; -; mRNA.
DR EMBL; AF135372; AAF15551.1; -; Genomic_DNA.
DR EMBL; AK289555; BAF82244.1; -; mRNA.
DR EMBL; CH471108; EAW90087.1; -; Genomic_DNA.
DR EMBL; BC002737; AAH02737.3; -; mRNA.
DR EMBL; BC019608; AAH19608.1; -; mRNA.
DR EMBL; BC033870; AAH33870.1; -; mRNA.
DR PIR; B38315; B38315.
DR RefSeq; NP_055047.2; NM_014232.2.
DR UniGene; Hs.25348; -.
DR PDB; 3FIE; X-ray; 2.10 A; C/D=22-57.
DR PDB; 3FII; X-ray; 2.17 A; B=27-57.
DR PDB; 3RK2; X-ray; 2.20 A; A/E=28-60.
DR PDB; 3RK3; X-ray; 3.50 A; A=28-60.
DR PDB; 3RL0; X-ray; 3.80 A; A/E/I/M/Q/U/Y/c=28-60.
DR PDBsum; 3FIE; -.
DR PDBsum; 3FII; -.
DR PDBsum; 3RK2; -.
DR PDBsum; 3RK3; -.
DR PDBsum; 3RL0; -.
DR DisProt; DP00069; -.
DR ProteinModelPortal; P63027; -.
DR SMR; P63027; 30-116.
DR DIP; DIP-39072N; -.
DR IntAct; P63027; 7.
DR MINT; MINT-4824900; -.
DR STRING; 9606.ENSP00000314214; -.
DR ChEMBL; CHEMBL2364160; -.
DR DrugBank; DB00042; Botulinum Toxin Type B.
DR TCDB; 1.F.1.1.1; the synaptosomal vesicle fusion pore (svf-pore) family.
DR PhosphoSite; P63027; -.
DR DMDM; 288558837; -.
DR PRIDE; P63027; -.
DR DNASU; 6844; -.
DR Ensembl; ENST00000316509; ENSP00000314214; ENSG00000220205.
DR GeneID; 6844; -.
DR KEGG; hsa:6844; -.
DR UCSC; uc010cnt.1; human.
DR CTD; 6844; -.
DR GeneCards; GC17M008062; -.
DR HGNC; HGNC:12643; VAMP2.
DR MIM; 185881; gene.
DR neXtProt; NX_P63027; -.
DR PharmGKB; PA37267; -.
DR HOGENOM; HOG000042711; -.
DR HOVERGEN; HBG006675; -.
DR KO; K13504; -.
DR OrthoDB; EOG7MSMRJ; -.
DR Reactome; REACT_111217; Metabolism.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_13685; Neuronal System.
DR Reactome; REACT_17015; Metabolism of proteins.
DR ChiTaRS; VAMP2; human.
DR EvolutionaryTrace; P63027; -.
DR GeneWiki; VAMP2; -.
DR GenomeRNAi; 6844; -.
DR NextBio; 26719; -.
DR PRO; PR:P63027; -.
DR ArrayExpress; P63027; -.
DR Bgee; P63027; -.
DR CleanEx; HS_VAMP2; -.
DR Genevestigator; P63027; -.
DR GO; GO:0030054; C:cell junction; IEA:UniProtKB-KW.
DR GO; GO:0061202; C:clathrin-sculpted gamma-aminobutyric acid transport vesicle membrane; TAS:Reactome.
DR GO; GO:0060203; C:clathrin-sculpted glutamate transport vesicle membrane; TAS:Reactome.
DR GO; GO:0070083; C:clathrin-sculpted monoamine transport vesicle membrane; TAS:Reactome.
DR GO; GO:0030666; C:endocytic vesicle membrane; TAS:Reactome.
DR GO; GO:0005887; C:integral to plasma membrane; TAS:ProtInc.
DR GO; GO:0043005; C:neuron projection; IEA:UniProtKB-SubCell.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IEA:Ensembl.
DR GO; GO:0030667; C:secretory granule membrane; TAS:Reactome.
DR GO; GO:0031201; C:SNARE complex; IDA:UniProtKB.
DR GO; GO:0030672; C:synaptic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0070044; C:synaptobrevin 2-SNAP-25-syntaxin-1a complex; IEA:Ensembl.
DR GO; GO:0070032; C:synaptobrevin 2-SNAP-25-syntaxin-1a-complexin I complex; IEA:Ensembl.
DR GO; GO:0005802; C:trans-Golgi network; IEA:Ensembl.
DR GO; GO:0042589; C:zymogen granule membrane; IEA:Ensembl.
DR GO; GO:0005543; F:phospholipid binding; IEA:Ensembl.
DR GO; GO:0017156; P:calcium ion-dependent exocytosis; IEA:Ensembl.
DR GO; GO:0044267; P:cellular protein metabolic process; TAS:Reactome.
DR GO; GO:0032869; P:cellular response to insulin stimulus; IEA:Ensembl.
DR GO; GO:0006112; P:energy reserve metabolic process; TAS:Reactome.
DR GO; GO:0014047; P:glutamate secretion; TAS:Reactome.
DR GO; GO:0043001; P:Golgi to plasma membrane protein transport; IEA:Ensembl.
DR GO; GO:0007269; P:neurotransmitter secretion; TAS:Reactome.
DR GO; GO:0090316; P:positive regulation of intracellular protein transport; IEA:Ensembl.
DR GO; GO:0006892; P:post-Golgi vesicle-mediated transport; TAS:Reactome.
DR GO; GO:0006461; P:protein complex assembly; IEA:Ensembl.
DR GO; GO:0017157; P:regulation of exocytosis; IEA:Ensembl.
DR GO; GO:0050796; P:regulation of insulin secretion; TAS:Reactome.
DR GO; GO:0009749; P:response to glucose stimulus; IEA:Ensembl.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR GO; GO:0016079; P:synaptic vesicle exocytosis; IEA:Ensembl.
DR InterPro; IPR001388; Synaptobrevin.
DR InterPro; IPR016444; Synaptobrevin_met/fun.
DR Pfam; PF00957; Synaptobrevin; 1.
DR PIRSF; PIRSF005409; Synaptobrevin_euk; 1.
DR PRINTS; PR00219; SYNAPTOBREVN.
DR PROSITE; PS00417; SYNAPTOBREVIN; 1.
DR PROSITE; PS50892; V_SNARE; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Cell junction; Coiled coil;
KW Complete proteome; Cytoplasmic vesicle; Membrane; Reference proteome;
KW Synapse; Synaptosome; Transmembrane; Transmembrane helix.
FT INIT_MET 1 1 Removed (By similarity).
FT CHAIN 2 116 Vesicle-associated membrane protein 2.
FT /FTId=PRO_0000206723.
FT TOPO_DOM 2 94 Cytoplasmic (Potential).
FT TRANSMEM 95 114 Helical; Anchor for type IV membrane
FT protein; (Potential).
FT TOPO_DOM 115 116 Vesicular (Potential).
FT DOMAIN 31 91 v-SNARE coiled-coil homology.
FT MOD_RES 2 2 N-acetylserine (By similarity).
FT CONFLICT 116 116 T -> S (in Ref. 1; AAA60604, 2; CAA12385
FT and 3; AAF15551).
FT STRAND 34 36
FT TURN 47 49
FT HELIX 50 53
SQ SEQUENCE 116 AA; 12663 MW; 9CD679C4F6F1B5A8 CRC64;
MSATAATAPP AAPAGEGGPP APPPNLTSNR RLQQTQAQVD EVVDIMRVNV DKVLERDQKL
SELDDRADAL QAGASQFETS AAKLKRKYWW KNLKMMIILG VICAIILIII IVYFST
//
MIM
185881
*RECORD*
*FIELD* NO
185881
*FIELD* TI
*185881 VESICLE-ASSOCIATED MEMBRANE PROTEIN 2; VAMP2
;;SYNAPTOBREVIN 2; SYB2
*FIELD* TX
read more
DESCRIPTION
Intracellular vesicles travel among cellular compartments and deliver
their specific cargo to target membranes by membrane fusion. The
specificity of cargo delivery and membrane fusion is controlled, in
part, by the pairing of vesicle v-SNAREs (soluble
N-ethylmaleimide-sensitive factor attachment protein receptors), such as
VAMP2, with target membrane t-SNAREs (summary by McNew et al., 2000).
CLONING
Archer et al. (1990) isolated and characterized cosmid clones containing
the human genes encoding synaptobrevins 1 and 2. Their coding regions
are highly homologous, being interrupted at identical positions by
introns of different size and sequence. The deduced synaptobrevin-2
protein contains 116 amino acids.
GENE FUNCTION
Christodoulou et al. (1997) mapped a gene for familial infantile
myasthenia (605809) to the telomeric region of 17p and pointed to SYB2
as a likely candidate gene because of its map location and because it
encodes a synaptic vesicle protein of the sort that has been implicated
in the pathogenesis of familial infantile myasthenia. Synaptobrevin
probably participates in neurotransmitter release at a step between
docking and fusion (Hunt et al., 1994). The protein forms a stable
complex with syntaxin (see syntaxin 1A, 186590), synaptosomal-associated
protein, 25-kD (SNAP25; 600322), and synaptotagmin (185605). It also
forms a distinct complex with synaptophysin (313475).
McNew et al. (2000) tested all of the potential v-SNAREs encoded in the
yeast genome for their capacity to trigger fusion by partnering with
t-SNAREs that mark the Golgi, the vacuole, and the plasma membrane.
McNew et al. (2000) found that, to a marked degree, the pattern of
membrane flow in the cell is encoded and recapitulated by its isolated
SNARE proteins, as predicted by the SNARE hypothesis. The heterodimer of
syntaxin Sso1, which is homologous to syntaxin-1A, and Sec9, which is
homologous to SNAP25, is a t-SNARE of the yeast plasma membrane, with
Snc2, which is homologous to VAMP2, as its cognate v-SNARE. Thus, the
yeast plasma membrane t-SNARE complex closely resembles its neuronal
counterpart (Weber et al., 1998).
SNARE proteins normally face the cytoplasm, within which their helical
domains can pair to link membranes for fusion. To ascertain whether
SNAREs can fuse cells, Hu et al. (2003) flipped their orientation and
engineered cognate cells to express either the v- or t-SNAREs. Hu et al.
(2003) found that cells expressing the interacting domains of v- (VAMP2)
and t-SNAREs (syntaxin 1A and SNAP25) on the cell surface fused
spontaneously, demonstrating that SNAREs are sufficient to fuse
biological membranes.
To investigate the role of astrocytes in regulating synaptic
transmission, Pascual et al. (2005) generated inducible transgenic mice
that expressed a dominant-negative SNARE domain selectively in
astrocytes to block the release of transmitters from these glial cells.
By releasing ATP, which accumulates as adenosine, astrocytes tonically
suppressed synaptic transmission, thereby enhancing the dynamic range
for long-term potentiation and mediated activity-dependent,
heterosynaptic depression. Pascual et al. (2005) concluded that their
results indicated that astrocytes are intricately linked in the
regulation of synaptic strength and plasticity and provide a pathway for
synaptic crosstalk.
Burre et al. (2010) showed that maintenance of continuous presynaptic
SNARE complex assembly requires a nonclassical chaperone activity
mediated by synucleins. Specifically, alpha-synuclein (163890) directly
bound to the SNARE protein SYB2/VAMP2 and promoted SNARE complex
assembly. Moreover, triple-knockout mice lacking synucleins developed
age-dependent neurologic impairments, exhibited decreased SNARE complex
assembly, and died prematurely. Thus, Burre et al. (2010) concluded that
synucleins may function to sustain normal SNARE complex assembly in a
presynaptic terminal during aging.
Shi et al. (2012) used in vitro membrane fusion and exocytosis assays
that paired liposomes containing a t-SNARE complex of rat syntaxin-1A
and mouse Snap25 with flat nanodisc proteolipid particles containing the
mouse v-SNARE Vamp2. They found that a single Vamp2 protein could
mediate efficient SNARE complex formation, vesicle fusion, and lipid
mixing between the liposome and nanodisc, but not pore formation or
release of liposome cargo. Cargo release was highly sensitive to the
number of SNARE complexes formed between the liposome and nanodisc, and
maximum efflux required 3 or 4 Vamp2 proteins per nanodisc. Use of
chimeric proteins revealed that the membrane-spanning transmembrane
domain of VAMP2 mediated efficient release of vesicle contents by
stabilizing the nascent fusion pore formed between VAMP2 and the
t-SNAREs. Shi et al. (2012) concluded that membrane fusion requires only
a single SNARE complex between membranes, but pore formation, widening,
and stabilization, as well as efficient cargo efflux, requires several
SNARE complexes.
BIOCHEMICAL FEATURES
- Crystal Structure
Stein et al. (2009) reported the x-ray structure of the neuronal SNARE
complex, consisting of the SNARE motifs of rat syntaxin-1A, Snap25, and
synaptobrevin-2 (VAMP2), with the C-terminal linkers and transmembrane
regions of both syntaxin-1A and synaptobrevin-2 at 3.4-angstrom
resolution. The structure showed that assembly proceeds beyond the known
core SNARE complex, resulting in a continuous helical bundle that is
further stabilized by side-chain interactions in the linker region. The
results suggested that the final phase of SNARE assembly is directly
coupled to membrane merger.
- Physical Chemistry
Gao et al. (2012) used optical tweezers to observe in a cell-free
reconstitution experiment in real time a long-sought SNARE assembly
intermediate in which only the membrane-distal amino-terminal half of
the bundle is assembled. Their findings supported the zippering
hypothesis, but suggested that zippering proceeds through 3 sequential
binary switches, not continuously, in the amino- and carboxyl-terminal
halves of the bundle and the linker domain. The half-zippered
intermediate was stabilized by externally applied force that mimicked
the repulsion between apposed membranes being forced to fuse. This
intermediate then rapidly and forcefully zippered, delivering free
energy of 36 k(B)T (where k(B) is the Boltzmann constant and T is
temperature) to mediate fusion.
GENE STRUCTURE
Archer et al. (1990) determined that the SYB2 gene contains 5 exons
spanning approximately 3 kb.
MAPPING
By Southern analysis of rodent-human somatic cell hybrids, Archer et al.
(1990) mapped the SYB2 gene to human chromosome 17. By study of various
deleted chromosomes 17 in somatic cell hybrids, they showed that the
gene is located in region 17pter-p12. Archer et al. (1990) identified a
PstI RFLP at the SYB2 locus. By fluorescence in situ hybridization,
Zoraqi et al. (2000) localized the SYB2 gene to 17p12. By analysis of
somatic cell hybrids between mouse cells and those of Chinese hamster or
rat, Archer et al. (1990) assigned the Syb2 gene in the mouse to
chromosome 11.
ANIMAL MODEL
Schoch et al. (2001) generated mice deficient in Vamp2 and used
electrophysiologic methods to measure fusion. In the absence of
synaptobrevin-2, spontaneous synaptic vesicle fusion and fusion induced
by hypertonic sucrose were decreased approximately 10-fold, but fast
calcium-triggered fusion was decreased more than 100-fold. Thus, Schoch
et al. (2001) concluded that synaptobrevin-2 may function in catalyzing
fusion reactions and stabilizing fusion intermediates but is not
absolutely required for synaptic fusion.
Deak et al. (2004) found a defect in the endocytosis of synaptic
vesicles in Vamp2 -/- mouse neurons. They concluded that Vamp2 is
essential for 2 fast synapse-specific membrane trafficking reactions:
fast exocytosis for neurotransmitter release, and fast endocytosis for
the rapid reuse of synaptic vesicles.
*FIELD* RF
1. Archer, B. T., III; Ozcelik, T.; Jahn, R.; Francke, U.; Sudhof,
T. C.: Structures and chromosomal localizations of two human genes
encoding synaptobrevins 1 and 2. J. Biol. Chem. 265: 17267-17273,
1990.
2. Burre, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.
R.; Sudhof, T. C.: Alpha-synuclein promotes SNARE-complex assembly
in vivo and in vitro. Science 329: 1663-1667, 2010.
3. Christodoulou, K.; Tsingis, M.; Deymeer, F.; Serdaroglu, P.; Ozdemir,
C.; Al-Shehab, A.; Bairactaris, C.; Mavromatis, I.; Mylonas, I.; Evoli,
A.; Kyriallis, K.; Middleton, L. T.: Mapping of the familial infantile
myasthenia (congenital myasthenic syndrome type Ia) gene to chromosome
17p with evidence of genetic homogeneity. Hum. Molec. Genet. 6:
635-640, 1997.
4. Deak, F.; Schoch, S.; Liu, X.; Sudhof, T. C.; Kavalali, E. T.:
Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nature
Cell Biol. 6: 1102-1108, 2004.
5. Gao, Y.; Zorman, S.; Gundersen, G.; Xi, Z.; Ma, L.; Sirinakis,
G.; Rothman, J. E.; Zhang, Y.: Single reconstituted neuronal SNARE
complexes zipper in three distinct stages. Science 337: 1340-1343,
2012.
6. Hu, C.; Ahmed, M.; Melia, T. J.; Sollner, T. H.; Mayer, T.; Rothman,
J. E.: Fusion of cells by flipped SNAREs. Science 300: 1745-1749,
2003.
7. Hunt, J. M.; Bommert, K.; Charlton, M. P.; Kistner, A.; Habermann,
E.; Augustine, G. J.; Betz, H.: A post-docking role for synaptobrevin
in synaptic vesicle fusion. Neuron 12: 1269-1279, 1994.
8. McNew, J. A.; Parlati, F.; Fukuda, R.; Johnston, R. J.; Paz, K.;
Paumet, F.; Sollner, T. H.; Rothman, J. E.: Compartmental specificity
of cellular membrane fusion encoded in SNARE proteins. Nature 407:
153-159, 2000.
9. Pascual, O.; Casper, K. B.; Kubera, C.; Zhang, J.; Revilla-Sanchez,
R.; Sul, J.-Y.; Takano, H.; Moss, S. J.; McCarthy, K.; Haydon, P.
G.: Astrocytic purinergic signaling coordinates synaptic networks. Science 310:
113-116, 2005.
10. Schoch, S.; Deak, F.; Konigstorfer, A.; Mozhayeva, M.; Sara, Y.;
Sudhof, T. C.; Kavalali, E. T.: SNARE function analyzed in synaptobrevin/VAMP
knockout mice. Science 294: 1117-1122, 2001.
11. Shi, L.; Shen, Q.-T.; Kiel, A.; Wang, J.; Wang, H.-W.; Melia,
T. J.; Rothman, J. E.; Pincet, F.: SNARE proteins: one to fuse and
three to keep the nascent fusion pore open. Science 335: 1355-1359,
2012.
12. Stein, A.; Weber, G.; Wahl, M. C.; Jahn, R.: Helical extension
of the neuronal SNARE complex into the membrane. Nature 460: 525-528,
2009.
13. Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachi,
M.; Parlati, F.; Sollner, T. H.; Rothman, J. E.: SNAREpins: minimal
machinery for membrane fusion. Cell 92: 759-772, 1998.
14. Zoraqi, G. K.; Paradisi, S.; Falbo, V.; Taruscio, D.: Genomic
organization and assignment of VAMP2 to 17p12 by FISH. Cytogenet.
Cell Genet. 89: 199-203, 2000.
*FIELD* CN
Ada Hamosh - updated: 10/31/2012
Patricia A. Hartz - updated: 4/2/2012
Ada Hamosh - updated: 11/10/2010
Ada Hamosh - updated: 8/10/2009
Ada Hamosh - updated: 11/21/2005
Patricia A. Hartz - updated: 10/11/2004
Ada Hamosh - updated: 6/17/2003
Ada Hamosh - updated: 11/14/2001
Carol A. Bocchini - updated: 1/16/2001
Ada Hamosh - updated: 9/13/2000
*FIELD* CD
Victor A. McKusick: 11/7/1990
*FIELD* ED
alopez: 11/02/2012
terry: 10/31/2012
mgross: 4/4/2012
terry: 4/2/2012
alopez: 11/15/2010
terry: 11/10/2010
mgross: 8/11/2009
terry: 8/10/2009
alopez: 11/22/2005
terry: 11/21/2005
alopez: 11/5/2004
mgross: 10/11/2004
carol: 10/4/2004
alopez: 6/17/2003
terry: 6/17/2003
alopez: 11/15/2001
terry: 11/14/2001
terry: 1/16/2001
carol: 1/16/2001
terry: 10/6/2000
alopez: 9/13/2000
psherman: 11/30/1998
psherman: 10/22/1998
alopez: 5/13/1997
alopez: 4/30/1997
alopez: 4/28/1997
alopez: 4/25/1997
terry: 4/24/1997
supermim: 3/16/1992
carol: 11/7/1990
*RECORD*
*FIELD* NO
185881
*FIELD* TI
*185881 VESICLE-ASSOCIATED MEMBRANE PROTEIN 2; VAMP2
;;SYNAPTOBREVIN 2; SYB2
*FIELD* TX
read more
DESCRIPTION
Intracellular vesicles travel among cellular compartments and deliver
their specific cargo to target membranes by membrane fusion. The
specificity of cargo delivery and membrane fusion is controlled, in
part, by the pairing of vesicle v-SNAREs (soluble
N-ethylmaleimide-sensitive factor attachment protein receptors), such as
VAMP2, with target membrane t-SNAREs (summary by McNew et al., 2000).
CLONING
Archer et al. (1990) isolated and characterized cosmid clones containing
the human genes encoding synaptobrevins 1 and 2. Their coding regions
are highly homologous, being interrupted at identical positions by
introns of different size and sequence. The deduced synaptobrevin-2
protein contains 116 amino acids.
GENE FUNCTION
Christodoulou et al. (1997) mapped a gene for familial infantile
myasthenia (605809) to the telomeric region of 17p and pointed to SYB2
as a likely candidate gene because of its map location and because it
encodes a synaptic vesicle protein of the sort that has been implicated
in the pathogenesis of familial infantile myasthenia. Synaptobrevin
probably participates in neurotransmitter release at a step between
docking and fusion (Hunt et al., 1994). The protein forms a stable
complex with syntaxin (see syntaxin 1A, 186590), synaptosomal-associated
protein, 25-kD (SNAP25; 600322), and synaptotagmin (185605). It also
forms a distinct complex with synaptophysin (313475).
McNew et al. (2000) tested all of the potential v-SNAREs encoded in the
yeast genome for their capacity to trigger fusion by partnering with
t-SNAREs that mark the Golgi, the vacuole, and the plasma membrane.
McNew et al. (2000) found that, to a marked degree, the pattern of
membrane flow in the cell is encoded and recapitulated by its isolated
SNARE proteins, as predicted by the SNARE hypothesis. The heterodimer of
syntaxin Sso1, which is homologous to syntaxin-1A, and Sec9, which is
homologous to SNAP25, is a t-SNARE of the yeast plasma membrane, with
Snc2, which is homologous to VAMP2, as its cognate v-SNARE. Thus, the
yeast plasma membrane t-SNARE complex closely resembles its neuronal
counterpart (Weber et al., 1998).
SNARE proteins normally face the cytoplasm, within which their helical
domains can pair to link membranes for fusion. To ascertain whether
SNAREs can fuse cells, Hu et al. (2003) flipped their orientation and
engineered cognate cells to express either the v- or t-SNAREs. Hu et al.
(2003) found that cells expressing the interacting domains of v- (VAMP2)
and t-SNAREs (syntaxin 1A and SNAP25) on the cell surface fused
spontaneously, demonstrating that SNAREs are sufficient to fuse
biological membranes.
To investigate the role of astrocytes in regulating synaptic
transmission, Pascual et al. (2005) generated inducible transgenic mice
that expressed a dominant-negative SNARE domain selectively in
astrocytes to block the release of transmitters from these glial cells.
By releasing ATP, which accumulates as adenosine, astrocytes tonically
suppressed synaptic transmission, thereby enhancing the dynamic range
for long-term potentiation and mediated activity-dependent,
heterosynaptic depression. Pascual et al. (2005) concluded that their
results indicated that astrocytes are intricately linked in the
regulation of synaptic strength and plasticity and provide a pathway for
synaptic crosstalk.
Burre et al. (2010) showed that maintenance of continuous presynaptic
SNARE complex assembly requires a nonclassical chaperone activity
mediated by synucleins. Specifically, alpha-synuclein (163890) directly
bound to the SNARE protein SYB2/VAMP2 and promoted SNARE complex
assembly. Moreover, triple-knockout mice lacking synucleins developed
age-dependent neurologic impairments, exhibited decreased SNARE complex
assembly, and died prematurely. Thus, Burre et al. (2010) concluded that
synucleins may function to sustain normal SNARE complex assembly in a
presynaptic terminal during aging.
Shi et al. (2012) used in vitro membrane fusion and exocytosis assays
that paired liposomes containing a t-SNARE complex of rat syntaxin-1A
and mouse Snap25 with flat nanodisc proteolipid particles containing the
mouse v-SNARE Vamp2. They found that a single Vamp2 protein could
mediate efficient SNARE complex formation, vesicle fusion, and lipid
mixing between the liposome and nanodisc, but not pore formation or
release of liposome cargo. Cargo release was highly sensitive to the
number of SNARE complexes formed between the liposome and nanodisc, and
maximum efflux required 3 or 4 Vamp2 proteins per nanodisc. Use of
chimeric proteins revealed that the membrane-spanning transmembrane
domain of VAMP2 mediated efficient release of vesicle contents by
stabilizing the nascent fusion pore formed between VAMP2 and the
t-SNAREs. Shi et al. (2012) concluded that membrane fusion requires only
a single SNARE complex between membranes, but pore formation, widening,
and stabilization, as well as efficient cargo efflux, requires several
SNARE complexes.
BIOCHEMICAL FEATURES
- Crystal Structure
Stein et al. (2009) reported the x-ray structure of the neuronal SNARE
complex, consisting of the SNARE motifs of rat syntaxin-1A, Snap25, and
synaptobrevin-2 (VAMP2), with the C-terminal linkers and transmembrane
regions of both syntaxin-1A and synaptobrevin-2 at 3.4-angstrom
resolution. The structure showed that assembly proceeds beyond the known
core SNARE complex, resulting in a continuous helical bundle that is
further stabilized by side-chain interactions in the linker region. The
results suggested that the final phase of SNARE assembly is directly
coupled to membrane merger.
- Physical Chemistry
Gao et al. (2012) used optical tweezers to observe in a cell-free
reconstitution experiment in real time a long-sought SNARE assembly
intermediate in which only the membrane-distal amino-terminal half of
the bundle is assembled. Their findings supported the zippering
hypothesis, but suggested that zippering proceeds through 3 sequential
binary switches, not continuously, in the amino- and carboxyl-terminal
halves of the bundle and the linker domain. The half-zippered
intermediate was stabilized by externally applied force that mimicked
the repulsion between apposed membranes being forced to fuse. This
intermediate then rapidly and forcefully zippered, delivering free
energy of 36 k(B)T (where k(B) is the Boltzmann constant and T is
temperature) to mediate fusion.
GENE STRUCTURE
Archer et al. (1990) determined that the SYB2 gene contains 5 exons
spanning approximately 3 kb.
MAPPING
By Southern analysis of rodent-human somatic cell hybrids, Archer et al.
(1990) mapped the SYB2 gene to human chromosome 17. By study of various
deleted chromosomes 17 in somatic cell hybrids, they showed that the
gene is located in region 17pter-p12. Archer et al. (1990) identified a
PstI RFLP at the SYB2 locus. By fluorescence in situ hybridization,
Zoraqi et al. (2000) localized the SYB2 gene to 17p12. By analysis of
somatic cell hybrids between mouse cells and those of Chinese hamster or
rat, Archer et al. (1990) assigned the Syb2 gene in the mouse to
chromosome 11.
ANIMAL MODEL
Schoch et al. (2001) generated mice deficient in Vamp2 and used
electrophysiologic methods to measure fusion. In the absence of
synaptobrevin-2, spontaneous synaptic vesicle fusion and fusion induced
by hypertonic sucrose were decreased approximately 10-fold, but fast
calcium-triggered fusion was decreased more than 100-fold. Thus, Schoch
et al. (2001) concluded that synaptobrevin-2 may function in catalyzing
fusion reactions and stabilizing fusion intermediates but is not
absolutely required for synaptic fusion.
Deak et al. (2004) found a defect in the endocytosis of synaptic
vesicles in Vamp2 -/- mouse neurons. They concluded that Vamp2 is
essential for 2 fast synapse-specific membrane trafficking reactions:
fast exocytosis for neurotransmitter release, and fast endocytosis for
the rapid reuse of synaptic vesicles.
*FIELD* RF
1. Archer, B. T., III; Ozcelik, T.; Jahn, R.; Francke, U.; Sudhof,
T. C.: Structures and chromosomal localizations of two human genes
encoding synaptobrevins 1 and 2. J. Biol. Chem. 265: 17267-17273,
1990.
2. Burre, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.
R.; Sudhof, T. C.: Alpha-synuclein promotes SNARE-complex assembly
in vivo and in vitro. Science 329: 1663-1667, 2010.
3. Christodoulou, K.; Tsingis, M.; Deymeer, F.; Serdaroglu, P.; Ozdemir,
C.; Al-Shehab, A.; Bairactaris, C.; Mavromatis, I.; Mylonas, I.; Evoli,
A.; Kyriallis, K.; Middleton, L. T.: Mapping of the familial infantile
myasthenia (congenital myasthenic syndrome type Ia) gene to chromosome
17p with evidence of genetic homogeneity. Hum. Molec. Genet. 6:
635-640, 1997.
4. Deak, F.; Schoch, S.; Liu, X.; Sudhof, T. C.; Kavalali, E. T.:
Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nature
Cell Biol. 6: 1102-1108, 2004.
5. Gao, Y.; Zorman, S.; Gundersen, G.; Xi, Z.; Ma, L.; Sirinakis,
G.; Rothman, J. E.; Zhang, Y.: Single reconstituted neuronal SNARE
complexes zipper in three distinct stages. Science 337: 1340-1343,
2012.
6. Hu, C.; Ahmed, M.; Melia, T. J.; Sollner, T. H.; Mayer, T.; Rothman,
J. E.: Fusion of cells by flipped SNAREs. Science 300: 1745-1749,
2003.
7. Hunt, J. M.; Bommert, K.; Charlton, M. P.; Kistner, A.; Habermann,
E.; Augustine, G. J.; Betz, H.: A post-docking role for synaptobrevin
in synaptic vesicle fusion. Neuron 12: 1269-1279, 1994.
8. McNew, J. A.; Parlati, F.; Fukuda, R.; Johnston, R. J.; Paz, K.;
Paumet, F.; Sollner, T. H.; Rothman, J. E.: Compartmental specificity
of cellular membrane fusion encoded in SNARE proteins. Nature 407:
153-159, 2000.
9. Pascual, O.; Casper, K. B.; Kubera, C.; Zhang, J.; Revilla-Sanchez,
R.; Sul, J.-Y.; Takano, H.; Moss, S. J.; McCarthy, K.; Haydon, P.
G.: Astrocytic purinergic signaling coordinates synaptic networks. Science 310:
113-116, 2005.
10. Schoch, S.; Deak, F.; Konigstorfer, A.; Mozhayeva, M.; Sara, Y.;
Sudhof, T. C.; Kavalali, E. T.: SNARE function analyzed in synaptobrevin/VAMP
knockout mice. Science 294: 1117-1122, 2001.
11. Shi, L.; Shen, Q.-T.; Kiel, A.; Wang, J.; Wang, H.-W.; Melia,
T. J.; Rothman, J. E.; Pincet, F.: SNARE proteins: one to fuse and
three to keep the nascent fusion pore open. Science 335: 1355-1359,
2012.
12. Stein, A.; Weber, G.; Wahl, M. C.; Jahn, R.: Helical extension
of the neuronal SNARE complex into the membrane. Nature 460: 525-528,
2009.
13. Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.; Gmachi,
M.; Parlati, F.; Sollner, T. H.; Rothman, J. E.: SNAREpins: minimal
machinery for membrane fusion. Cell 92: 759-772, 1998.
14. Zoraqi, G. K.; Paradisi, S.; Falbo, V.; Taruscio, D.: Genomic
organization and assignment of VAMP2 to 17p12 by FISH. Cytogenet.
Cell Genet. 89: 199-203, 2000.
*FIELD* CN
Ada Hamosh - updated: 10/31/2012
Patricia A. Hartz - updated: 4/2/2012
Ada Hamosh - updated: 11/10/2010
Ada Hamosh - updated: 8/10/2009
Ada Hamosh - updated: 11/21/2005
Patricia A. Hartz - updated: 10/11/2004
Ada Hamosh - updated: 6/17/2003
Ada Hamosh - updated: 11/14/2001
Carol A. Bocchini - updated: 1/16/2001
Ada Hamosh - updated: 9/13/2000
*FIELD* CD
Victor A. McKusick: 11/7/1990
*FIELD* ED
alopez: 11/02/2012
terry: 10/31/2012
mgross: 4/4/2012
terry: 4/2/2012
alopez: 11/15/2010
terry: 11/10/2010
mgross: 8/11/2009
terry: 8/10/2009
alopez: 11/22/2005
terry: 11/21/2005
alopez: 11/5/2004
mgross: 10/11/2004
carol: 10/4/2004
alopez: 6/17/2003
terry: 6/17/2003
alopez: 11/15/2001
terry: 11/14/2001
terry: 1/16/2001
carol: 1/16/2001
terry: 10/6/2000
alopez: 9/13/2000
psherman: 11/30/1998
psherman: 10/22/1998
alopez: 5/13/1997
alopez: 4/30/1997
alopez: 4/28/1997
alopez: 4/25/1997
terry: 4/24/1997
supermim: 3/16/1992
carol: 11/7/1990