Full text data of XRCC5
XRCC5
(G22P2)
[Confidence: low (only semi-automatic identification from reviews)]
X-ray repair cross-complementing protein 5; 3.6.4.- (86 kDa subunit of Ku antigen; ATP-dependent DNA helicase 2 subunit 2; ATP-dependent DNA helicase II 80 kDa subunit; CTC box-binding factor 85 kDa subunit; CTC85; CTCBF; DNA repair protein XRCC5; Ku80; Ku86; Lupus Ku autoantigen protein p86; Nuclear factor IV; Thyroid-lupus autoantigen; TLAA; X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining))
Note: presumably soluble (membrane word is not in UniProt keywords or features)
X-ray repair cross-complementing protein 5; 3.6.4.- (86 kDa subunit of Ku antigen; ATP-dependent DNA helicase 2 subunit 2; ATP-dependent DNA helicase II 80 kDa subunit; CTC box-binding factor 85 kDa subunit; CTC85; CTCBF; DNA repair protein XRCC5; Ku80; Ku86; Lupus Ku autoantigen protein p86; Nuclear factor IV; Thyroid-lupus autoantigen; TLAA; X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining))
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
P13010
ID XRCC5_HUMAN Reviewed; 732 AA.
AC P13010; A8K3X5; Q0Z7V0; Q4VBQ5; Q53HH7; Q7M4N0; Q9UCQ0; Q9UCQ1;
read moreDT 01-JAN-1990, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 161.
DE RecName: Full=X-ray repair cross-complementing protein 5;
DE EC=3.6.4.-;
DE AltName: Full=86 kDa subunit of Ku antigen;
DE AltName: Full=ATP-dependent DNA helicase 2 subunit 2;
DE AltName: Full=ATP-dependent DNA helicase II 80 kDa subunit;
DE AltName: Full=CTC box-binding factor 85 kDa subunit;
DE Short=CTC85;
DE Short=CTCBF;
DE AltName: Full=DNA repair protein XRCC5;
DE AltName: Full=Ku80;
DE AltName: Full=Ku86;
DE AltName: Full=Lupus Ku autoantigen protein p86;
DE AltName: Full=Nuclear factor IV;
DE AltName: Full=Thyroid-lupus autoantigen;
DE Short=TLAA;
DE AltName: Full=X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining);
GN Name=XRCC5; Synonyms=G22P2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PROTEIN SEQUENCE OF 4-22.
RX PubMed=2760028;
RA Yaneva M., Wen J., Ayala A., Cook R.;
RT "cDNA-derived amino acid sequence of the 86-kDa subunit of the Ku
RT antigen.";
RL J. Biol. Chem. 264:13407-13411(1989).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2308937; DOI=10.1073/pnas.87.5.1777;
RA Mimori T., Ohosone Y., Hama N., Suwa A., Akizuki M., Homma M.,
RA Griffith A.J., Hardin J.A.;
RT "Isolation and characterization of cDNA encoding the 80-kDa subunit
RT protein of the human autoantigen Ku (p70/p80) recognized by
RT autoantibodies from patients with scleroderma-polymyositis overlap
RT syndrome.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:1777-1781(1990).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Neuroblastoma;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Coronary artery;
RA Suzuki Y., Sugano S., Totoki Y., Toyoda A., Takeda T., Sakaki Y.,
RA Tanaka A., Yokoyama S.;
RL Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG NIEHS SNPs program;
RL Submitted (JUN-2006) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thyroid, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-22.
RX PubMed=2211668;
RA Knuth M.W., Gunderson S.I., Thompson N.E., Strasheim L.A.,
RA Burgess R.R.;
RT "Purification and characterization of proximal sequence element-
RT binding protein 1, a transcription activating protein related to Ku
RT and TREF that binds the proximal sequence element of the human U1
RT promoter.";
RL J. Biol. Chem. 265:17911-17920(1990).
RN [9]
RP PROTEIN SEQUENCE OF 2-20, FUNCTION, AND INVOLVEMENT IN LUPUS
RP ERYTHEMATOSUS.
RX PubMed=7957065;
RA Tuteja N., Tuteja R., Ochem A., Taneja P., Huang N.W., Simoncsits A.,
RA Susic S., Rahman K., Marusic L., Chen J., Zhang J., Wang S.,
RA Pongor S., Falaschi A.;
RT "Human DNA helicase II: a novel DNA unwinding enzyme identified as the
RT Ku autoantigen.";
RL EMBO J. 13:4991-5001(1994).
RN [10]
RP PROTEIN SEQUENCE OF 2-16; 98-113; 443-461 AND 473-479, AND
RP DEVELOPMENTAL STAGE.
RC TISSUE=Cervix carcinoma;
RX PubMed=8605992; DOI=10.1016/0014-5793(96)00189-5;
RA Oderwald H., Hughes M.J., Jost J.-P.;
RT "Non-histone protein 1 (NHP1) is a member of the Ku protein family
RT which is upregulated in differentiating mouse myoblasts and human
RT promyelocytes.";
RL FEBS Lett. 382:313-318(1996).
RN [11]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 105-732, AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=2212941; DOI=10.1084/jem.172.4.1049;
RA Stuiver M.H., Coenjaerts F.E.J., van der Vlied P.C.;
RT "The autoantigen Ku is indistinguishable from NF IV, a protein forming
RT multimeric protein-DNA complexes.";
RL J. Exp. Med. 172:1049-1054(1990).
RN [12]
RP PROTEIN SEQUENCE OF 186-193; 317-326; 545-559 AND 656-661.
RX PubMed=8031790; DOI=10.1021/bi00194a021;
RA Cao Q.P., Pitt S., Leszyk J., Baril E.F.;
RT "DNA-dependent ATPase from HeLa cells is related to human Ku
RT autoantigen.";
RL Biochemistry 33:8548-8557(1994).
RN [13]
RP PROTEIN SEQUENCE OF 526-531; 535-542 AND 704-708, FUNCTION, AND
RP INTERACTION WITH APEX1.
RX PubMed=8621488; DOI=10.1074/jbc.271.15.8593;
RA Chung U., Igarashi T., Nishishita T., Iwanari H., Iwamatsu A.,
RA Suwa A., Mimori T., Hata K., Ebisu S., Ogata E., Fujita T.,
RA Okazaki T.;
RT "The interaction between Ku antigen and REF1 protein mediates negative
RT gene regulation by extracellular calcium.";
RL J. Biol. Chem. 271:8593-8598(1996).
RN [14]
RP PROTEIN SEQUENCE OF 526-565 AND 709-732.
RX PubMed=1537839;
RA Wedrychowski A., Henzel W., Huston L., Paslidis N., Ellerson D.,
RA McRae M., Seong D., Howard O.M.Z., Deisseroth A.;
RT "Identification of proteins binding to interferon-inducible
RT transcriptional enhancers in hematopoietic cells.";
RL J. Biol. Chem. 267:4533-4540(1992).
RN [15]
RP PROTEIN SEQUENCE OF 534-542.
RX PubMed=7882982;
RA Genersch E., Eckerskorn C., Lottspeich F., Herzog C., Kuehn K.,
RA Poeschl E.;
RT "Purification of the sequence-specific transcription factor CTCBF,
RT involved in the control of human collagen IV genes: subunits with
RT homology to Ku antigen.";
RL EMBO J. 14:791-800(1995).
RN [16]
RP PHOSPHORYLATION AT SER-577; SER-579; SER-580 AND THR-715.
RX PubMed=10026262; DOI=10.1021/bi982584b;
RA Chan D.W., Ye R., Veillette C.J., Lees-Miller S.P.;
RT "DNA-dependent protein kinase phosphorylation sites in Ku 70/80
RT heterodimer.";
RL Biochemistry 38:1819-1828(1999).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH
RP NAA15; MSX2 AND RUNX2.
RC TISSUE=Heart, and Osteoblast;
RX PubMed=12145306; DOI=10.1074/jbc.M206482200;
RA Willis D.M., Loewy A.P., Charlton-Kachigian N., Shao J.-S.,
RA Ornitz D.M., Towler D.A.;
RT "Regulation of osteocalcin gene expression by a novel Ku antigen
RT transcription factor complex.";
RL J. Biol. Chem. 277:37280-37291(2002).
RN [18]
RP INTERACTION WITH ELF3.
RX PubMed=15075319; DOI=10.1074/jbc.M401356200;
RA Wang H., Fang R., Cho J.-Y., Libermann T.A., Oettgen P.;
RT "Positive and negative modulation of the transcriptional activity of
RT the ETS factor ESE-1 through interaction with p300, CREB-binding
RT protein, and Ku 70/86.";
RL J. Biol. Chem. 279:25241-25250(2004).
RN [19]
RP SUMOYLATION.
RX PubMed=15561718; DOI=10.1074/jbc.M411718200;
RA Gocke C.B., Yu H., Kang J.;
RT "Systematic identification and analysis of mammalian small ubiquitin-
RT like modifier substrates.";
RL J. Biol. Chem. 280:5004-5012(2005).
RN [20]
RP DOMAIN, AND MUTAGENESIS OF 720-GLU-GLU-721 AND 726-ASP-ASP-727.
RX PubMed=15758953; DOI=10.1038/nature03442;
RA Falck J., Coates J., Jackson S.P.;
RT "Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of
RT DNA damage.";
RL Nature 434:605-611(2005).
RN [21]
RP INTERACTION WITH APLF.
RX PubMed=17396150; DOI=10.1038/sj.emboj.7601663;
RA Kanno S., Kuzuoka H., Sasao S., Hong Z., Lan L., Nakajima S.,
RA Yasui A.;
RT "A novel human AP endonuclease with conserved zinc-finger-like motifs
RT involved in DNA strand break responses.";
RL EMBO J. 26:2094-2103(2007).
RN [22]
RP INTERACTION WITH APLF.
RX PubMed=17353262; DOI=10.1128/MCB.02269-06;
RA Iles N., Rulten S., El-Khamisy S.F., Caldecott K.W.;
RT "APLF (C2orf13) is a novel human protein involved in the cellular
RT response to chromosomal DNA strand breaks.";
RL Mol. Cell. Biol. 27:3793-3803(2007).
RN [23]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-144; LYS-265; LYS-332;
RP LYS-660 AND LYS-665, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [25]
RP FUNCTION.
RX PubMed=20383123; DOI=10.1038/nature08926;
RA Roberts S.A., Strande N., Burkhalter M.D., Strom C., Havener J.M.,
RA Hasty P., Ramsden D.A.;
RT "Ku is a 5'-dRP/AP lyase that excises nucleotide damage near broken
RT ends.";
RL Nature 464:1214-1217(2010).
RN [26]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [27]
RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
RX PubMed=22002106; DOI=10.1074/mcp.M111.013680;
RA Ahmad Y., Boisvert F.M., Lundberg E., Uhlen M., Lamond A.I.;
RT "Systematic analysis of protein pools, isoforms, and modifications
RT affecting turnover and subcellular localization.";
RL Mol. Cell. Proteomics 11:M111.013680.01-M111.013680.15(2012).
RN [28]
RP MASS SPECTROMETRY, DNA-BINDING, IDENTIFICATION IN A COMPLEX WITH XRCC6
RP AND DEAF1, AND SUBCELLULAR LOCATION.
RX PubMed=22442688; DOI=10.1371/journal.pone.0033404;
RA Jensik P.J., Huggenvik J.I., Collard M.W.;
RT "Deformed epidermal autoregulatory factor-1 (DEAF1) interacts with the
RT Ku70 subunit of the DNA-dependent protein kinase complex.";
RL PLoS ONE 7:E33404-E33404(2012).
RN [29]
RP UBIQUITINATION BY RNF8.
RX PubMed=22266820; DOI=10.1038/nsmb.2211;
RA Feng L., Chen J.;
RT "The E3 ligase RNF8 regulates KU80 removal and NHEJ repair.";
RL Nat. Struct. Mol. Biol. 19:201-206(2012).
RN [30]
RP X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 7-565 IN COMPLEX WITH XRCC6.
RX PubMed=11493912; DOI=10.1038/35088000;
RA Walker J.R., Corpina R.A., Goldberg J.;
RT "Structure of the Ku heterodimer bound to DNA and its implications for
RT double-strand break repair.";
RL Nature 412:607-614(2001).
CC -!- FUNCTION: Single-stranded DNA-dependent ATP-dependent helicase.
CC Has a role in chromosome translocation. The DNA helicase II
CC complex binds preferentially to fork-like ends of double-stranded
CC DNA in a cell cycle-dependent manner. It works in the 3'-5'
CC direction. Binding to DNA may be mediated by XRCC6. Involved in
CC DNA non-homologous end joining (NHEJ) required for double-strand
CC break repair and V(D)J recombination. The XRCC5/6 dimer acts as
CC regulatory subunit of the DNA-dependent protein kinase complex
CC DNA-PK by increasing the affinity of the catalytic subunit PRKDC
CC to DNA by 100-fold. The XRCC5/6 dimer is probably involved in
CC stabilizing broken DNA ends and bringing them together. The
CC assembly of the DNA-PK complex to DNA ends is required for the
CC NHEJ ligation step. In association with NAA15, the XRCC5/6 dimer
CC binds to the osteocalcin promoter and activates osteocalcin
CC expression. The XRCC5/6 dimer probably also acts as a 5'-
CC deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the
CC beta-elimination of the 5' deoxyribose-5-phosphate at an abasic
CC site near double-strand breaks. XRCC5 probably acts as the
CC catalytic subunit of 5'-dRP activity, and allows to 'clean' the
CC termini of abasic sites, a class of nucleotide damage commonly
CC associated with strand breaks, before such broken ends can be
CC joined. The XRCC5/6 dimer together with APEX1 acts as a negative
CC regulator of transcription.
CC -!- SUBUNIT: Heterodimer of a 70 kDa and a 80 kDa subunit. The dimer
CC associates in a DNA-dependent manner with PRKDC to form the DNA-
CC dependent protein kinase complex DNA-PK, and with the LIG4-XRCC4
CC complex. The dimer also associates with NAA15, and this complex
CC displays DNA binding activity towards the osteocalcin FGF response
CC element (OCFRE). In addition, the 80 kDa subunit binds to the
CC osteoblast-specific transcription factors MSX2 and RUNX2.
CC Interacts with ELF3. May interact with APLF. The XRCC5/6 dimer
CC associates in a DNA-dependent manner with APEX1. Identified in a
CC complex with DEAF1 and XRCC6.
CC -!- INTERACTION:
CC Q8IW19:APLF; NbExp=12; IntAct=EBI-357997, EBI-1256044;
CC P38432:COIL; NbExp=6; IntAct=EBI-357997, EBI-945751;
CC P09629:HOXB7; NbExp=9; IntAct=EBI-357997, EBI-1248457;
CC P78527:PRKDC; NbExp=6; IntAct=EBI-357997, EBI-352053;
CC P12956:XRCC6; NbExp=9; IntAct=EBI-357997, EBI-353208;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus, nucleolus. Chromosome.
CC -!- DEVELOPMENTAL STAGE: Expression increases during promyelocyte
CC differentiation.
CC -!- INDUCTION: In osteoblasts, by FGF2.
CC -!- DOMAIN: The EEXXXDDL motif is required for the interaction with
CC catalytic subunit PRKDC and its recruitment to sites of DNA
CC damage.
CC -!- PTM: Phosphorylated on serine residues. Phosphorylation by PRKDC
CC may enhance helicase activity.
CC -!- PTM: Sumoylated.
CC -!- PTM: Ubiquitinated by RNF8 via 'Lys-48'-linked ubiquitination
CC following DNA damage, leading to its degradation and removal from
CC DNA damage sites.
CC -!- MISCELLANEOUS: Individuals with systemic lupus erythematosus (SLE)
CC and related disorders produce extremely large amounts of
CC autoantibodies to XRCC6 and XRCC5.
CC -!- SIMILARITY: Belongs to the ku80 family.
CC -!- SIMILARITY: Contains 1 Ku domain.
CC -!- WEB RESOURCE: Name=NIEHS SNPs;
CC URL="http://egp.gs.washington.edu/data/xrcc5/";
CC -!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
CC and Haematology;
CC URL="http://atlasgeneticsoncology.org/Genes/XRCC5ID337ch2q35.html";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J04977; AAA59475.1; -; mRNA.
DR EMBL; M30938; AAA36154.1; -; mRNA.
DR EMBL; AK290740; BAF83429.1; -; mRNA.
DR EMBL; AK222603; BAD96323.1; -; mRNA.
DR EMBL; DQ787434; ABG46942.1; -; Genomic_DNA.
DR EMBL; CH471063; EAW70562.1; -; Genomic_DNA.
DR EMBL; BC019027; AAH19027.1; -; mRNA.
DR EMBL; BC095442; AAH95442.1; -; mRNA.
DR EMBL; X57500; CAA40736.1; -; mRNA.
DR PIR; A35051; A32626.
DR PIR; D42397; D42397.
DR PIR; S62889; S62889.
DR RefSeq; NP_066964.1; NM_021141.3.
DR UniGene; Hs.388739; -.
DR PDB; 1JEQ; X-ray; 2.70 A; B=1-565.
DR PDB; 1JEY; X-ray; 2.50 A; B=1-565.
DR PDB; 1Q2Z; NMR; -; A=592-708.
DR PDB; 1RW2; NMR; -; A=566-709.
DR PDB; 3RZ9; X-ray; 2.29 A; B=559-571.
DR PDBsum; 1JEQ; -.
DR PDBsum; 1JEY; -.
DR PDBsum; 1Q2Z; -.
DR PDBsum; 1RW2; -.
DR PDBsum; 3RZ9; -.
DR ProteinModelPortal; P13010; -.
DR SMR; P13010; 6-545, 566-710.
DR DIP; DIP-31379N; -.
DR IntAct; P13010; 48.
DR MINT; MINT-131739; -.
DR STRING; 9606.ENSP00000329528; -.
DR PhosphoSite; P13010; -.
DR DMDM; 125731; -.
DR SWISS-2DPAGE; P13010; -.
DR PaxDb; P13010; -.
DR PRIDE; P13010; -.
DR DNASU; 7520; -.
DR Ensembl; ENST00000392132; ENSP00000375977; ENSG00000079246.
DR Ensembl; ENST00000392133; ENSP00000375978; ENSG00000079246.
DR GeneID; 7520; -.
DR KEGG; hsa:7520; -.
DR UCSC; uc002vfy.3; human.
DR CTD; 7520; -.
DR GeneCards; GC02P216972; -.
DR HGNC; HGNC:12833; XRCC5.
DR HPA; CAB004468; -.
DR HPA; HPA025813; -.
DR MIM; 194364; gene.
DR neXtProt; NX_P13010; -.
DR PharmGKB; PA37425; -.
DR eggNOG; NOG299744; -.
DR HOVERGEN; HBG006237; -.
DR InParanoid; P13010; -.
DR KO; K10885; -.
DR OMA; FLPFPIG; -.
DR OrthoDB; EOG7DVD9X; -.
DR PhylomeDB; P13010; -.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_216; DNA Repair.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; XRCC5; human.
DR EvolutionaryTrace; P13010; -.
DR GeneWiki; Ku80; -.
DR GenomeRNAi; 7520; -.
DR NextBio; 29431; -.
DR PMAP-CutDB; P13010; -.
DR PRO; PR:P13010; -.
DR ArrayExpress; P13010; -.
DR Bgee; P13010; -.
DR CleanEx; HS_XRCC5; -.
DR Genevestigator; P13010; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0043564; C:Ku70:Ku80 complex; IDA:UniProtKB.
DR GO; GO:0070419; C:nonhomologous end joining complex; IDA:UniProtKB.
DR GO; GO:0000783; C:nuclear telomere cap complex; TAS:BHF-UCL.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0004003; F:ATP-dependent DNA helicase activity; TAS:ProtInc.
DR GO; GO:0003684; F:damaged DNA binding; IEA:InterPro.
DR GO; GO:0003690; F:double-stranded DNA binding; TAS:ProtInc.
DR GO; GO:0042162; F:telomeric DNA binding; IDA:BHF-UCL.
DR GO; GO:0044212; F:transcription regulatory region DNA binding; IDA:BHF-UCL.
DR GO; GO:0008283; P:cell proliferation; IEA:Ensembl.
DR GO; GO:0006310; P:DNA recombination; TAS:ProtInc.
DR GO; GO:0006303; P:double-strand break repair via nonhomologous end joining; IMP:UniProtKB.
DR GO; GO:0075713; P:establishment of integrated proviral latency; TAS:Reactome.
DR GO; GO:0060218; P:hematopoietic stem cell differentiation; IEA:Ensembl.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IEA:Ensembl.
DR GO; GO:0045892; P:negative regulation of transcription, DNA-dependent; IMP:UniProtKB.
DR GO; GO:0050769; P:positive regulation of neurogenesis; IEA:Ensembl.
DR GO; GO:0032481; P:positive regulation of type I interferon production; TAS:Reactome.
DR GO; GO:0000723; P:telomere maintenance; TAS:BHF-UCL.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR Gene3D; 1.10.1600.10; -; 1.
DR Gene3D; 1.25.40.240; -; 1.
DR Gene3D; 2.40.290.10; -; 1.
DR Gene3D; 3.40.50.410; -; 1.
DR InterPro; IPR006164; Ku70/Ku80_beta-barrel_dom.
DR InterPro; IPR024193; Ku80.
DR InterPro; IPR005160; Ku_C.
DR InterPro; IPR005161; Ku_N.
DR InterPro; IPR014893; Ku_PK_bind.
DR InterPro; IPR016194; SPOC_like_C_dom.
DR InterPro; IPR002035; VWF_A.
DR PANTHER; PTHR12604:SF3; PTHR12604:SF3; 1.
DR Pfam; PF02735; Ku; 1.
DR Pfam; PF03730; Ku_C; 1.
DR Pfam; PF03731; Ku_N; 1.
DR Pfam; PF08785; Ku_PK_bind; 1.
DR PIRSF; PIRSF016570; Ku80; 1.
DR SMART; SM00559; Ku78; 1.
DR SMART; SM00327; VWA; 1.
DR SUPFAM; SSF100939; SSF100939; 1.
DR SUPFAM; SSF101420; SSF101420; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Activator; ATP-binding; Chromosome;
KW Complete proteome; Direct protein sequencing; DNA damage;
KW DNA recombination; DNA repair; DNA-binding; Helicase; Hydrolase;
KW Nucleotide-binding; Nucleus; Phosphoprotein; Polymorphism;
KW Reference proteome; Systemic lupus erythematosus; Transcription;
KW Transcription regulation; Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 732 X-ray repair cross-complementing protein
FT 5.
FT /FTId=PRO_0000084340.
FT DOMAIN 251 460 Ku.
FT REGION 138 165 Leucine-zipper.
FT MOTIF 720 728 EEXXXDL motif.
FT COMPBIAS 478 519 Pro-rich.
FT MOD_RES 144 144 N6-acetyllysine.
FT MOD_RES 265 265 N6-acetyllysine.
FT MOD_RES 332 332 N6-acetyllysine.
FT MOD_RES 577 577 Phosphoserine; by PRKDC.
FT MOD_RES 579 579 Phosphoserine; by PRKDC (Probable).
FT MOD_RES 580 580 Phosphoserine; by PRKDC.
FT MOD_RES 660 660 N6-acetyllysine.
FT MOD_RES 665 665 N6-acetyllysine.
FT MOD_RES 715 715 Phosphothreonine; by PRKDC (Probable).
FT VARIANT 463 463 L -> F (in dbSNP:rs1805380).
FT /FTId=VAR_014724.
FT VARIANT 508 508 I -> V (in dbSNP:rs2287558).
FT /FTId=VAR_053784.
FT MUTAGEN 720 721 EE->AA: Abolishes interaction with PRKDC
FT and its recruitment to sites of DNA
FT damage.
FT MUTAGEN 726 727 DD->AA: Abolishes interaction with PRKDC
FT and its recruitment to sites of DNA
FT damage.
FT CONFLICT 14 16 MDV -> YSY (in Ref. 10; AA sequence).
FT CONFLICT 117 117 V -> A (in Ref. 3; BAF83429).
FT CONFLICT 134 134 I -> V (in Ref. 4; BAD96323).
FT CONFLICT 178 178 R -> S (in Ref. 4; BAD96323).
FT CONFLICT 315 315 R -> L (in Ref. 11; CAA40736).
FT CONFLICT 461 461 M -> R (in Ref. 10; AA sequence).
FT CONFLICT 479 479 T -> G (in Ref. 10; AA sequence).
FT CONFLICT 540 540 I -> T (in Ref. 3; BAF83429).
FT STRAND 8 15
FT HELIX 18 21
FT HELIX 30 47
FT STRAND 53 60
FT TURN 70 72
FT STRAND 77 84
FT HELIX 88 95
FT HELIX 107 121
FT STRAND 122 125
FT STRAND 128 135
FT HELIX 144 146
FT HELIX 147 156
FT STRAND 159 167
FT TURN 194 196
FT HELIX 199 216
FT HELIX 218 223
FT STRAND 224 226
FT HELIX 227 230
FT TURN 235 237
FT HELIX 238 240
FT STRAND 247 253
FT TURN 254 256
FT STRAND 257 267
FT STRAND 277 280
FT TURN 281 283
FT STRAND 289 301
FT HELIX 307 309
FT STRAND 310 316
FT STRAND 319 322
FT HELIX 325 331
FT STRAND 338 347
FT HELIX 348 350
FT HELIX 353 355
FT STRAND 357 366
FT HELIX 371 386
FT STRAND 389 401
FT STRAND 404 412
FT STRAND 417 423
FT HELIX 427 429
FT STRAND 438 440
FT STRAND 442 444
FT HELIX 448 460
FT STRAND 464 467
FT TURN 468 471
FT STRAND 474 476
FT HELIX 479 481
FT HELIX 485 499
FT STRAND 501 503
FT HELIX 510 516
FT HELIX 520 536
FT STRAND 581 586
FT STRAND 588 592
FT HELIX 594 601
FT STRAND 603 605
FT TURN 608 610
FT HELIX 611 626
FT HELIX 629 649
FT HELIX 652 667
FT HELIX 673 680
FT STRAND 691 693
FT HELIX 698 701
FT TURN 702 704
SQ SEQUENCE 732 AA; 82705 MW; 2363CA84834E74A3 CRC64;
MVRSGNKAAV VLCMDVGFTM SNSIPGIESP FEQAKKVITM FVQRQVFAEN KDEIALVLFG
TDGTDNPLSG GDQYQNITVH RHLMLPDFDL LEDIESKIQP GSQQADFLDA LIVSMDVIQH
ETIGKKFEKR HIEIFTDLSS RFSKSQLDII IHSLKKCDIS LQFFLPFSLG KEDGSGDRGD
GPFRLGGHGP SFPLKGITEQ QKEGLEIVKM VMISLEGEDG LDEIYSFSES LRKLCVFKKI
ERHSIHWPCR LTIGSNLSIR IAAYKSILQE RVKKTWTVVD AKTLKKEDIQ KETVYCLNDD
DETEVLKEDI IQGFRYGSDI VPFSKVDEEQ MKYKSEGKCF SVLGFCKSSQ VQRRFFMGNQ
VLKVFAARDD EAAAVALSSL IHALDDLDMV AIVRYAYDKR ANPQVGVAFP HIKHNYECLV
YVQLPFMEDL RQYMFSSLKN SKKYAPTEAQ LNAVDALIDS MSLAKKDEKT DTLEDLFPTT
KIPNPRFQRL FQCLLHRALH PREPLPPIQQ HIWNMLNPPA EVTTKSQIPL SKIKTLFPLI
EAKKKDQVTA QEIFQDNHED GPTAKKLKTE QGGAHFSVSS LAEGSVTSVG SVNPAENFRV
LVKQKKASFE EASNQLINHI EQFLDTNETP YFMKSIDCIR AFREEAIKFS EEQRFNNFLK
ALQEKVEIKQ LNHFWEIVVQ DGITLITKEE ASGSSVTAEE AKKFLAPKDK PSGDTAAVFE
EGGDVDDLLD MI
//
ID XRCC5_HUMAN Reviewed; 732 AA.
AC P13010; A8K3X5; Q0Z7V0; Q4VBQ5; Q53HH7; Q7M4N0; Q9UCQ0; Q9UCQ1;
read moreDT 01-JAN-1990, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 161.
DE RecName: Full=X-ray repair cross-complementing protein 5;
DE EC=3.6.4.-;
DE AltName: Full=86 kDa subunit of Ku antigen;
DE AltName: Full=ATP-dependent DNA helicase 2 subunit 2;
DE AltName: Full=ATP-dependent DNA helicase II 80 kDa subunit;
DE AltName: Full=CTC box-binding factor 85 kDa subunit;
DE Short=CTC85;
DE Short=CTCBF;
DE AltName: Full=DNA repair protein XRCC5;
DE AltName: Full=Ku80;
DE AltName: Full=Ku86;
DE AltName: Full=Lupus Ku autoantigen protein p86;
DE AltName: Full=Nuclear factor IV;
DE AltName: Full=Thyroid-lupus autoantigen;
DE Short=TLAA;
DE AltName: Full=X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining);
GN Name=XRCC5; Synonyms=G22P2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], AND PROTEIN SEQUENCE OF 4-22.
RX PubMed=2760028;
RA Yaneva M., Wen J., Ayala A., Cook R.;
RT "cDNA-derived amino acid sequence of the 86-kDa subunit of the Ku
RT antigen.";
RL J. Biol. Chem. 264:13407-13411(1989).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=2308937; DOI=10.1073/pnas.87.5.1777;
RA Mimori T., Ohosone Y., Hama N., Suwa A., Akizuki M., Homma M.,
RA Griffith A.J., Hardin J.A.;
RT "Isolation and characterization of cDNA encoding the 80-kDa subunit
RT protein of the human autoantigen Ku (p70/p80) recognized by
RT autoantibodies from patients with scleroderma-polymyositis overlap
RT syndrome.";
RL Proc. Natl. Acad. Sci. U.S.A. 87:1777-1781(1990).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Neuroblastoma;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Coronary artery;
RA Suzuki Y., Sugano S., Totoki Y., Toyoda A., Takeda T., Sakaki Y.,
RA Tanaka A., Yokoyama S.;
RL Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG NIEHS SNPs program;
RL Submitted (JUN-2006) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Thyroid, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 1-22.
RX PubMed=2211668;
RA Knuth M.W., Gunderson S.I., Thompson N.E., Strasheim L.A.,
RA Burgess R.R.;
RT "Purification and characterization of proximal sequence element-
RT binding protein 1, a transcription activating protein related to Ku
RT and TREF that binds the proximal sequence element of the human U1
RT promoter.";
RL J. Biol. Chem. 265:17911-17920(1990).
RN [9]
RP PROTEIN SEQUENCE OF 2-20, FUNCTION, AND INVOLVEMENT IN LUPUS
RP ERYTHEMATOSUS.
RX PubMed=7957065;
RA Tuteja N., Tuteja R., Ochem A., Taneja P., Huang N.W., Simoncsits A.,
RA Susic S., Rahman K., Marusic L., Chen J., Zhang J., Wang S.,
RA Pongor S., Falaschi A.;
RT "Human DNA helicase II: a novel DNA unwinding enzyme identified as the
RT Ku autoantigen.";
RL EMBO J. 13:4991-5001(1994).
RN [10]
RP PROTEIN SEQUENCE OF 2-16; 98-113; 443-461 AND 473-479, AND
RP DEVELOPMENTAL STAGE.
RC TISSUE=Cervix carcinoma;
RX PubMed=8605992; DOI=10.1016/0014-5793(96)00189-5;
RA Oderwald H., Hughes M.J., Jost J.-P.;
RT "Non-histone protein 1 (NHP1) is a member of the Ku protein family
RT which is upregulated in differentiating mouse myoblasts and human
RT promyelocytes.";
RL FEBS Lett. 382:313-318(1996).
RN [11]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 105-732, AND PARTIAL PROTEIN SEQUENCE.
RX PubMed=2212941; DOI=10.1084/jem.172.4.1049;
RA Stuiver M.H., Coenjaerts F.E.J., van der Vlied P.C.;
RT "The autoantigen Ku is indistinguishable from NF IV, a protein forming
RT multimeric protein-DNA complexes.";
RL J. Exp. Med. 172:1049-1054(1990).
RN [12]
RP PROTEIN SEQUENCE OF 186-193; 317-326; 545-559 AND 656-661.
RX PubMed=8031790; DOI=10.1021/bi00194a021;
RA Cao Q.P., Pitt S., Leszyk J., Baril E.F.;
RT "DNA-dependent ATPase from HeLa cells is related to human Ku
RT autoantigen.";
RL Biochemistry 33:8548-8557(1994).
RN [13]
RP PROTEIN SEQUENCE OF 526-531; 535-542 AND 704-708, FUNCTION, AND
RP INTERACTION WITH APEX1.
RX PubMed=8621488; DOI=10.1074/jbc.271.15.8593;
RA Chung U., Igarashi T., Nishishita T., Iwanari H., Iwamatsu A.,
RA Suwa A., Mimori T., Hata K., Ebisu S., Ogata E., Fujita T.,
RA Okazaki T.;
RT "The interaction between Ku antigen and REF1 protein mediates negative
RT gene regulation by extracellular calcium.";
RL J. Biol. Chem. 271:8593-8598(1996).
RN [14]
RP PROTEIN SEQUENCE OF 526-565 AND 709-732.
RX PubMed=1537839;
RA Wedrychowski A., Henzel W., Huston L., Paslidis N., Ellerson D.,
RA McRae M., Seong D., Howard O.M.Z., Deisseroth A.;
RT "Identification of proteins binding to interferon-inducible
RT transcriptional enhancers in hematopoietic cells.";
RL J. Biol. Chem. 267:4533-4540(1992).
RN [15]
RP PROTEIN SEQUENCE OF 534-542.
RX PubMed=7882982;
RA Genersch E., Eckerskorn C., Lottspeich F., Herzog C., Kuehn K.,
RA Poeschl E.;
RT "Purification of the sequence-specific transcription factor CTCBF,
RT involved in the control of human collagen IV genes: subunits with
RT homology to Ku antigen.";
RL EMBO J. 14:791-800(1995).
RN [16]
RP PHOSPHORYLATION AT SER-577; SER-579; SER-580 AND THR-715.
RX PubMed=10026262; DOI=10.1021/bi982584b;
RA Chan D.W., Ye R., Veillette C.J., Lees-Miller S.P.;
RT "DNA-dependent protein kinase phosphorylation sites in Ku 70/80
RT heterodimer.";
RL Biochemistry 38:1819-1828(1999).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH
RP NAA15; MSX2 AND RUNX2.
RC TISSUE=Heart, and Osteoblast;
RX PubMed=12145306; DOI=10.1074/jbc.M206482200;
RA Willis D.M., Loewy A.P., Charlton-Kachigian N., Shao J.-S.,
RA Ornitz D.M., Towler D.A.;
RT "Regulation of osteocalcin gene expression by a novel Ku antigen
RT transcription factor complex.";
RL J. Biol. Chem. 277:37280-37291(2002).
RN [18]
RP INTERACTION WITH ELF3.
RX PubMed=15075319; DOI=10.1074/jbc.M401356200;
RA Wang H., Fang R., Cho J.-Y., Libermann T.A., Oettgen P.;
RT "Positive and negative modulation of the transcriptional activity of
RT the ETS factor ESE-1 through interaction with p300, CREB-binding
RT protein, and Ku 70/86.";
RL J. Biol. Chem. 279:25241-25250(2004).
RN [19]
RP SUMOYLATION.
RX PubMed=15561718; DOI=10.1074/jbc.M411718200;
RA Gocke C.B., Yu H., Kang J.;
RT "Systematic identification and analysis of mammalian small ubiquitin-
RT like modifier substrates.";
RL J. Biol. Chem. 280:5004-5012(2005).
RN [20]
RP DOMAIN, AND MUTAGENESIS OF 720-GLU-GLU-721 AND 726-ASP-ASP-727.
RX PubMed=15758953; DOI=10.1038/nature03442;
RA Falck J., Coates J., Jackson S.P.;
RT "Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of
RT DNA damage.";
RL Nature 434:605-611(2005).
RN [21]
RP INTERACTION WITH APLF.
RX PubMed=17396150; DOI=10.1038/sj.emboj.7601663;
RA Kanno S., Kuzuoka H., Sasao S., Hong Z., Lan L., Nakajima S.,
RA Yasui A.;
RT "A novel human AP endonuclease with conserved zinc-finger-like motifs
RT involved in DNA strand break responses.";
RL EMBO J. 26:2094-2103(2007).
RN [22]
RP INTERACTION WITH APLF.
RX PubMed=17353262; DOI=10.1128/MCB.02269-06;
RA Iles N., Rulten S., El-Khamisy S.F., Caldecott K.W.;
RT "APLF (C2orf13) is a novel human protein involved in the cellular
RT response to chromosomal DNA strand breaks.";
RL Mol. Cell. Biol. 27:3793-3803(2007).
RN [23]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-144; LYS-265; LYS-332;
RP LYS-660 AND LYS-665, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [25]
RP FUNCTION.
RX PubMed=20383123; DOI=10.1038/nature08926;
RA Roberts S.A., Strande N., Burkhalter M.D., Strom C., Havener J.M.,
RA Hasty P., Ramsden D.A.;
RT "Ku is a 5'-dRP/AP lyase that excises nucleotide damage near broken
RT ends.";
RL Nature 464:1214-1217(2010).
RN [26]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [27]
RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
RX PubMed=22002106; DOI=10.1074/mcp.M111.013680;
RA Ahmad Y., Boisvert F.M., Lundberg E., Uhlen M., Lamond A.I.;
RT "Systematic analysis of protein pools, isoforms, and modifications
RT affecting turnover and subcellular localization.";
RL Mol. Cell. Proteomics 11:M111.013680.01-M111.013680.15(2012).
RN [28]
RP MASS SPECTROMETRY, DNA-BINDING, IDENTIFICATION IN A COMPLEX WITH XRCC6
RP AND DEAF1, AND SUBCELLULAR LOCATION.
RX PubMed=22442688; DOI=10.1371/journal.pone.0033404;
RA Jensik P.J., Huggenvik J.I., Collard M.W.;
RT "Deformed epidermal autoregulatory factor-1 (DEAF1) interacts with the
RT Ku70 subunit of the DNA-dependent protein kinase complex.";
RL PLoS ONE 7:E33404-E33404(2012).
RN [29]
RP UBIQUITINATION BY RNF8.
RX PubMed=22266820; DOI=10.1038/nsmb.2211;
RA Feng L., Chen J.;
RT "The E3 ligase RNF8 regulates KU80 removal and NHEJ repair.";
RL Nat. Struct. Mol. Biol. 19:201-206(2012).
RN [30]
RP X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 7-565 IN COMPLEX WITH XRCC6.
RX PubMed=11493912; DOI=10.1038/35088000;
RA Walker J.R., Corpina R.A., Goldberg J.;
RT "Structure of the Ku heterodimer bound to DNA and its implications for
RT double-strand break repair.";
RL Nature 412:607-614(2001).
CC -!- FUNCTION: Single-stranded DNA-dependent ATP-dependent helicase.
CC Has a role in chromosome translocation. The DNA helicase II
CC complex binds preferentially to fork-like ends of double-stranded
CC DNA in a cell cycle-dependent manner. It works in the 3'-5'
CC direction. Binding to DNA may be mediated by XRCC6. Involved in
CC DNA non-homologous end joining (NHEJ) required for double-strand
CC break repair and V(D)J recombination. The XRCC5/6 dimer acts as
CC regulatory subunit of the DNA-dependent protein kinase complex
CC DNA-PK by increasing the affinity of the catalytic subunit PRKDC
CC to DNA by 100-fold. The XRCC5/6 dimer is probably involved in
CC stabilizing broken DNA ends and bringing them together. The
CC assembly of the DNA-PK complex to DNA ends is required for the
CC NHEJ ligation step. In association with NAA15, the XRCC5/6 dimer
CC binds to the osteocalcin promoter and activates osteocalcin
CC expression. The XRCC5/6 dimer probably also acts as a 5'-
CC deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the
CC beta-elimination of the 5' deoxyribose-5-phosphate at an abasic
CC site near double-strand breaks. XRCC5 probably acts as the
CC catalytic subunit of 5'-dRP activity, and allows to 'clean' the
CC termini of abasic sites, a class of nucleotide damage commonly
CC associated with strand breaks, before such broken ends can be
CC joined. The XRCC5/6 dimer together with APEX1 acts as a negative
CC regulator of transcription.
CC -!- SUBUNIT: Heterodimer of a 70 kDa and a 80 kDa subunit. The dimer
CC associates in a DNA-dependent manner with PRKDC to form the DNA-
CC dependent protein kinase complex DNA-PK, and with the LIG4-XRCC4
CC complex. The dimer also associates with NAA15, and this complex
CC displays DNA binding activity towards the osteocalcin FGF response
CC element (OCFRE). In addition, the 80 kDa subunit binds to the
CC osteoblast-specific transcription factors MSX2 and RUNX2.
CC Interacts with ELF3. May interact with APLF. The XRCC5/6 dimer
CC associates in a DNA-dependent manner with APEX1. Identified in a
CC complex with DEAF1 and XRCC6.
CC -!- INTERACTION:
CC Q8IW19:APLF; NbExp=12; IntAct=EBI-357997, EBI-1256044;
CC P38432:COIL; NbExp=6; IntAct=EBI-357997, EBI-945751;
CC P09629:HOXB7; NbExp=9; IntAct=EBI-357997, EBI-1248457;
CC P78527:PRKDC; NbExp=6; IntAct=EBI-357997, EBI-352053;
CC P12956:XRCC6; NbExp=9; IntAct=EBI-357997, EBI-353208;
CC -!- SUBCELLULAR LOCATION: Nucleus. Nucleus, nucleolus. Chromosome.
CC -!- DEVELOPMENTAL STAGE: Expression increases during promyelocyte
CC differentiation.
CC -!- INDUCTION: In osteoblasts, by FGF2.
CC -!- DOMAIN: The EEXXXDDL motif is required for the interaction with
CC catalytic subunit PRKDC and its recruitment to sites of DNA
CC damage.
CC -!- PTM: Phosphorylated on serine residues. Phosphorylation by PRKDC
CC may enhance helicase activity.
CC -!- PTM: Sumoylated.
CC -!- PTM: Ubiquitinated by RNF8 via 'Lys-48'-linked ubiquitination
CC following DNA damage, leading to its degradation and removal from
CC DNA damage sites.
CC -!- MISCELLANEOUS: Individuals with systemic lupus erythematosus (SLE)
CC and related disorders produce extremely large amounts of
CC autoantibodies to XRCC6 and XRCC5.
CC -!- SIMILARITY: Belongs to the ku80 family.
CC -!- SIMILARITY: Contains 1 Ku domain.
CC -!- WEB RESOURCE: Name=NIEHS SNPs;
CC URL="http://egp.gs.washington.edu/data/xrcc5/";
CC -!- WEB RESOURCE: Name=Atlas of Genetics and Cytogenetics in Oncology
CC and Haematology;
CC URL="http://atlasgeneticsoncology.org/Genes/XRCC5ID337ch2q35.html";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; J04977; AAA59475.1; -; mRNA.
DR EMBL; M30938; AAA36154.1; -; mRNA.
DR EMBL; AK290740; BAF83429.1; -; mRNA.
DR EMBL; AK222603; BAD96323.1; -; mRNA.
DR EMBL; DQ787434; ABG46942.1; -; Genomic_DNA.
DR EMBL; CH471063; EAW70562.1; -; Genomic_DNA.
DR EMBL; BC019027; AAH19027.1; -; mRNA.
DR EMBL; BC095442; AAH95442.1; -; mRNA.
DR EMBL; X57500; CAA40736.1; -; mRNA.
DR PIR; A35051; A32626.
DR PIR; D42397; D42397.
DR PIR; S62889; S62889.
DR RefSeq; NP_066964.1; NM_021141.3.
DR UniGene; Hs.388739; -.
DR PDB; 1JEQ; X-ray; 2.70 A; B=1-565.
DR PDB; 1JEY; X-ray; 2.50 A; B=1-565.
DR PDB; 1Q2Z; NMR; -; A=592-708.
DR PDB; 1RW2; NMR; -; A=566-709.
DR PDB; 3RZ9; X-ray; 2.29 A; B=559-571.
DR PDBsum; 1JEQ; -.
DR PDBsum; 1JEY; -.
DR PDBsum; 1Q2Z; -.
DR PDBsum; 1RW2; -.
DR PDBsum; 3RZ9; -.
DR ProteinModelPortal; P13010; -.
DR SMR; P13010; 6-545, 566-710.
DR DIP; DIP-31379N; -.
DR IntAct; P13010; 48.
DR MINT; MINT-131739; -.
DR STRING; 9606.ENSP00000329528; -.
DR PhosphoSite; P13010; -.
DR DMDM; 125731; -.
DR SWISS-2DPAGE; P13010; -.
DR PaxDb; P13010; -.
DR PRIDE; P13010; -.
DR DNASU; 7520; -.
DR Ensembl; ENST00000392132; ENSP00000375977; ENSG00000079246.
DR Ensembl; ENST00000392133; ENSP00000375978; ENSG00000079246.
DR GeneID; 7520; -.
DR KEGG; hsa:7520; -.
DR UCSC; uc002vfy.3; human.
DR CTD; 7520; -.
DR GeneCards; GC02P216972; -.
DR HGNC; HGNC:12833; XRCC5.
DR HPA; CAB004468; -.
DR HPA; HPA025813; -.
DR MIM; 194364; gene.
DR neXtProt; NX_P13010; -.
DR PharmGKB; PA37425; -.
DR eggNOG; NOG299744; -.
DR HOVERGEN; HBG006237; -.
DR InParanoid; P13010; -.
DR KO; K10885; -.
DR OMA; FLPFPIG; -.
DR OrthoDB; EOG7DVD9X; -.
DR PhylomeDB; P13010; -.
DR Reactome; REACT_116125; Disease.
DR Reactome; REACT_216; DNA Repair.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; XRCC5; human.
DR EvolutionaryTrace; P13010; -.
DR GeneWiki; Ku80; -.
DR GenomeRNAi; 7520; -.
DR NextBio; 29431; -.
DR PMAP-CutDB; P13010; -.
DR PRO; PR:P13010; -.
DR ArrayExpress; P13010; -.
DR Bgee; P13010; -.
DR CleanEx; HS_XRCC5; -.
DR Genevestigator; P13010; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0043564; C:Ku70:Ku80 complex; IDA:UniProtKB.
DR GO; GO:0070419; C:nonhomologous end joining complex; IDA:UniProtKB.
DR GO; GO:0000783; C:nuclear telomere cap complex; TAS:BHF-UCL.
DR GO; GO:0005654; C:nucleoplasm; TAS:Reactome.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0004003; F:ATP-dependent DNA helicase activity; TAS:ProtInc.
DR GO; GO:0003684; F:damaged DNA binding; IEA:InterPro.
DR GO; GO:0003690; F:double-stranded DNA binding; TAS:ProtInc.
DR GO; GO:0042162; F:telomeric DNA binding; IDA:BHF-UCL.
DR GO; GO:0044212; F:transcription regulatory region DNA binding; IDA:BHF-UCL.
DR GO; GO:0008283; P:cell proliferation; IEA:Ensembl.
DR GO; GO:0006310; P:DNA recombination; TAS:ProtInc.
DR GO; GO:0006303; P:double-strand break repair via nonhomologous end joining; IMP:UniProtKB.
DR GO; GO:0075713; P:establishment of integrated proviral latency; TAS:Reactome.
DR GO; GO:0060218; P:hematopoietic stem cell differentiation; IEA:Ensembl.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IEA:Ensembl.
DR GO; GO:0045892; P:negative regulation of transcription, DNA-dependent; IMP:UniProtKB.
DR GO; GO:0050769; P:positive regulation of neurogenesis; IEA:Ensembl.
DR GO; GO:0032481; P:positive regulation of type I interferon production; TAS:Reactome.
DR GO; GO:0000723; P:telomere maintenance; TAS:BHF-UCL.
DR GO; GO:0006351; P:transcription, DNA-dependent; IEA:UniProtKB-KW.
DR Gene3D; 1.10.1600.10; -; 1.
DR Gene3D; 1.25.40.240; -; 1.
DR Gene3D; 2.40.290.10; -; 1.
DR Gene3D; 3.40.50.410; -; 1.
DR InterPro; IPR006164; Ku70/Ku80_beta-barrel_dom.
DR InterPro; IPR024193; Ku80.
DR InterPro; IPR005160; Ku_C.
DR InterPro; IPR005161; Ku_N.
DR InterPro; IPR014893; Ku_PK_bind.
DR InterPro; IPR016194; SPOC_like_C_dom.
DR InterPro; IPR002035; VWF_A.
DR PANTHER; PTHR12604:SF3; PTHR12604:SF3; 1.
DR Pfam; PF02735; Ku; 1.
DR Pfam; PF03730; Ku_C; 1.
DR Pfam; PF03731; Ku_N; 1.
DR Pfam; PF08785; Ku_PK_bind; 1.
DR PIRSF; PIRSF016570; Ku80; 1.
DR SMART; SM00559; Ku78; 1.
DR SMART; SM00327; VWA; 1.
DR SUPFAM; SSF100939; SSF100939; 1.
DR SUPFAM; SSF101420; SSF101420; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Activator; ATP-binding; Chromosome;
KW Complete proteome; Direct protein sequencing; DNA damage;
KW DNA recombination; DNA repair; DNA-binding; Helicase; Hydrolase;
KW Nucleotide-binding; Nucleus; Phosphoprotein; Polymorphism;
KW Reference proteome; Systemic lupus erythematosus; Transcription;
KW Transcription regulation; Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 732 X-ray repair cross-complementing protein
FT 5.
FT /FTId=PRO_0000084340.
FT DOMAIN 251 460 Ku.
FT REGION 138 165 Leucine-zipper.
FT MOTIF 720 728 EEXXXDL motif.
FT COMPBIAS 478 519 Pro-rich.
FT MOD_RES 144 144 N6-acetyllysine.
FT MOD_RES 265 265 N6-acetyllysine.
FT MOD_RES 332 332 N6-acetyllysine.
FT MOD_RES 577 577 Phosphoserine; by PRKDC.
FT MOD_RES 579 579 Phosphoserine; by PRKDC (Probable).
FT MOD_RES 580 580 Phosphoserine; by PRKDC.
FT MOD_RES 660 660 N6-acetyllysine.
FT MOD_RES 665 665 N6-acetyllysine.
FT MOD_RES 715 715 Phosphothreonine; by PRKDC (Probable).
FT VARIANT 463 463 L -> F (in dbSNP:rs1805380).
FT /FTId=VAR_014724.
FT VARIANT 508 508 I -> V (in dbSNP:rs2287558).
FT /FTId=VAR_053784.
FT MUTAGEN 720 721 EE->AA: Abolishes interaction with PRKDC
FT and its recruitment to sites of DNA
FT damage.
FT MUTAGEN 726 727 DD->AA: Abolishes interaction with PRKDC
FT and its recruitment to sites of DNA
FT damage.
FT CONFLICT 14 16 MDV -> YSY (in Ref. 10; AA sequence).
FT CONFLICT 117 117 V -> A (in Ref. 3; BAF83429).
FT CONFLICT 134 134 I -> V (in Ref. 4; BAD96323).
FT CONFLICT 178 178 R -> S (in Ref. 4; BAD96323).
FT CONFLICT 315 315 R -> L (in Ref. 11; CAA40736).
FT CONFLICT 461 461 M -> R (in Ref. 10; AA sequence).
FT CONFLICT 479 479 T -> G (in Ref. 10; AA sequence).
FT CONFLICT 540 540 I -> T (in Ref. 3; BAF83429).
FT STRAND 8 15
FT HELIX 18 21
FT HELIX 30 47
FT STRAND 53 60
FT TURN 70 72
FT STRAND 77 84
FT HELIX 88 95
FT HELIX 107 121
FT STRAND 122 125
FT STRAND 128 135
FT HELIX 144 146
FT HELIX 147 156
FT STRAND 159 167
FT TURN 194 196
FT HELIX 199 216
FT HELIX 218 223
FT STRAND 224 226
FT HELIX 227 230
FT TURN 235 237
FT HELIX 238 240
FT STRAND 247 253
FT TURN 254 256
FT STRAND 257 267
FT STRAND 277 280
FT TURN 281 283
FT STRAND 289 301
FT HELIX 307 309
FT STRAND 310 316
FT STRAND 319 322
FT HELIX 325 331
FT STRAND 338 347
FT HELIX 348 350
FT HELIX 353 355
FT STRAND 357 366
FT HELIX 371 386
FT STRAND 389 401
FT STRAND 404 412
FT STRAND 417 423
FT HELIX 427 429
FT STRAND 438 440
FT STRAND 442 444
FT HELIX 448 460
FT STRAND 464 467
FT TURN 468 471
FT STRAND 474 476
FT HELIX 479 481
FT HELIX 485 499
FT STRAND 501 503
FT HELIX 510 516
FT HELIX 520 536
FT STRAND 581 586
FT STRAND 588 592
FT HELIX 594 601
FT STRAND 603 605
FT TURN 608 610
FT HELIX 611 626
FT HELIX 629 649
FT HELIX 652 667
FT HELIX 673 680
FT STRAND 691 693
FT HELIX 698 701
FT TURN 702 704
SQ SEQUENCE 732 AA; 82705 MW; 2363CA84834E74A3 CRC64;
MVRSGNKAAV VLCMDVGFTM SNSIPGIESP FEQAKKVITM FVQRQVFAEN KDEIALVLFG
TDGTDNPLSG GDQYQNITVH RHLMLPDFDL LEDIESKIQP GSQQADFLDA LIVSMDVIQH
ETIGKKFEKR HIEIFTDLSS RFSKSQLDII IHSLKKCDIS LQFFLPFSLG KEDGSGDRGD
GPFRLGGHGP SFPLKGITEQ QKEGLEIVKM VMISLEGEDG LDEIYSFSES LRKLCVFKKI
ERHSIHWPCR LTIGSNLSIR IAAYKSILQE RVKKTWTVVD AKTLKKEDIQ KETVYCLNDD
DETEVLKEDI IQGFRYGSDI VPFSKVDEEQ MKYKSEGKCF SVLGFCKSSQ VQRRFFMGNQ
VLKVFAARDD EAAAVALSSL IHALDDLDMV AIVRYAYDKR ANPQVGVAFP HIKHNYECLV
YVQLPFMEDL RQYMFSSLKN SKKYAPTEAQ LNAVDALIDS MSLAKKDEKT DTLEDLFPTT
KIPNPRFQRL FQCLLHRALH PREPLPPIQQ HIWNMLNPPA EVTTKSQIPL SKIKTLFPLI
EAKKKDQVTA QEIFQDNHED GPTAKKLKTE QGGAHFSVSS LAEGSVTSVG SVNPAENFRV
LVKQKKASFE EASNQLINHI EQFLDTNETP YFMKSIDCIR AFREEAIKFS EEQRFNNFLK
ALQEKVEIKQ LNHFWEIVVQ DGITLITKEE ASGSSVTAEE AKKFLAPKDK PSGDTAAVFE
EGGDVDDLLD MI
//
MIM
194364
*RECORD*
*FIELD* NO
194364
*FIELD* TI
*194364 X-RAY REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 5; XRCC5
;;Ku ANTIGEN, 80-KD SUBUNIT; Ku80;;
read moreKu86
*FIELD* TX
DESCRIPTION
The human XRCC5 DNA repair gene complements the radiosensitive mutant
xrs-6, derived from Chinese hamster ovary cells which are defective in
DNA double-strand break repair and in ability to undergo V(D)J
recombination. The XRCC5 gene encodes the 80-kD subunit of the Ku
autoantigen, a heterodimer which contributes to genomic integrity
through its ability to bind DNA double-strand breaks and facilitate
repair by the nonhomologous end joining (NHEJ) pathway.
CLONING
A DNA double-strand break is a major lesion that destroys the integrity
of the DNA molecule. Such damage is introduced by ionizing radiation. A
number of mutants defective in the repair of DNA double-strand breaks
have been identified in rodent cells and classified into distinct
complementation groups. The repair gene defective in one group of
mutants was designated XRCC5. Using the method of microcell-mediated
chromosome transfer, Jeggo et al. (1992) achieved complementation of the
repair defect in hamster xrs mutants by transfer of human chromosome 2.
The sensitivity of these cells to ionizing radiation and their impaired
ability to rejoin radiation-induced DNA double-strand breaks were
corrected by chromosome 2, although the correction of radiation
sensitivity was only partial. Complementation was observed in 1 hybrid
which contained only the long arm of chromosome 2.
Taccioli et al. (1994) showed through genetic and biochemical approaches
that the XRCC5 is the 80-kilodalton subunit of the Ku protein. Ku binds
to free double-stranded DNA ends and is the DNA-binding component of the
DNA-dependent protein kinase. Thus, the Ku protein is involved in DNA
repair and in V(D)J recombination, and the Ku-DNA-dependent protein
kinase complex may have a role in those same processes. See 152690 for
discussion of the Ku p70 subunit.
GENE FUNCTION
Tuteja et al. (1994) purified from HeLa cells an enzyme they called DNA
helicase II, an ATP-dependent DNA unwinding enzyme. They showed that it
is a heterodimer of 72 and 87 kD polypeptides. Sequencing showed that it
is identical to the Ku autoantigen. The exclusively nuclear location of
this particular DNA helicase II/Ku antigen, its highly specific affinity
for double-stranded DNA, its abundance, and its exclusive DNA-duplex
unwinding activity pointed to additional roles for this molecule in DNA
metabolism.
Li et al. (2002) constructed a human somatic cell line containing a
targeted disruption of the Ku86 locus. Human colon cancer cells
heterozygous for Ku86 were haploinsufficient with an increase in
polyploid cells, a reduction in cell proliferation, elevated p53 levels,
and a slight hypersensitivity to ionizing radiation. Functional
inactivation of the second Ku86 allele resulted in cells with a
drastically reduced doubling time. These cells were capable of
undergoing only a limited number of cell divisions, after which they
underwent apoptosis. These experiments demonstrated that the Ku86 locus
is essential in human somatic tissue culture cells.
Using human and hamster cells, Mari et al. (2006) showed that Ku
heterodimers on DNA ends were in dynamic equilibrium with Ku70/Ku80 in
solution, suggesting that formation of the NHEJ complex is reversible.
Accumulation of XRCC4 (194363) on DNA double-strand breaks depended on
the presence of Ku70/Ku80, but not PRKDC (600899). Mari et al. (2006)
found that XRCC4 interacted directly with Ku70, and they hypothesized
that XRCC4 serves as a flexible tether between Ku70/Ku80 and LIG4
(601837).
Guirouilh-Barbat et al. (2007) studied NHEJ in Xrcc4- and Ku80-null XR-1
CHO cells and showed differences in the effects of these mutations.
While significant end joining existed in Xrcc4-null cells due to the use
of microhomologies distal from the double-strand break, the efficiency
of NHEJ was reduced. In contrast, knockout of Ku80 barely affected the
efficiency of end joining. In both mutant cell lines, however, the
accuracy of end joining was reduced. Guirouilh-Barbat et al. (2007)
concluded that the KU80/XRCC4 pathway is conservative and can
accommodate non-fully complementary ends at the cost of limited
mutagenesis.
Roberts et al. (2010) demonstrated, in vitro and in cells, that accurate
and efficient repair by NHEJ of double-strand breaks with nucleotide
damage requires 5-prime-deoxyribose-5-phosphate/apurinic/apyrimidinic
(dRP/AP) lyase activity. Classically defined NHEJ is moreover uniquely
effective at coupling this end-cleaning step to joining in cells,
helping to distinguish this pathway from otherwise robust alternative
NHEJ pathways. The NHEJ factor Ku was identified as an effective
5-prime-dRP/AP lyase. In a similar manner to other lyases, Ku nicks DNA
3-prime of an abasic site by a mechanism involving a Schiff-base
covalent intermediate with the abasic site. Roberts et al. (2010)
showed, by using cell extracts, that Ku is essential for the efficient
removal of AP sites near double-strand breaks and, consistent with this
result, that joining of such breaks is specifically decreased in cells
complemented with a lyase-attenuated Ku mutant. While Ku had previously
been presumed only to recognize ends and recruit other factors that
process ends, the data of Roberts et al. (2010) supported an unexpected
direct role for Ku in end-processing steps as well.
BIOCHEMICAL FEATURES
- Crystal Structure
Walker et al. (2001) determined the crystal structure of the human Ku
heterodimer both alone and bound to a 55-nucleotide DNA element at 2.7-
and 2.5-angstrom resolution, respectively. Ku70 and Ku80 share a common
topology and form a dyad-symmetrical molecule with a preformed ring that
encircles duplex DNA. The binding site can cradle 2 full turns of DNA
while encircling only the central 3-4 base pairs. Ku makes no contacts
with DNA bases and few with the sugar-phosphate backbone, but it fits
sterically to major and minor groove contours so as to position the DNA
helix in a defined path through the protein ring. Walker et al. (2001)
concluded that these features are well designed to structurally support
broken DNA ends and to bring the DNA helix into phase across the
junction during end processing and ligation.
MAPPING
Chen et al. (1992) used analysis of somatic cell hybrids and
microcell-mediated chromosome transfer analyzed by fluorescence in situ
hybridization (FISH) to assign the XRCC5 gene to 2p. They concluded that
the location is probably between 2p21 and 2p12. For the regional mapping
of the XRCC5 gene, Chen et al. (1994) constructed a panel of x-ray
hybrids and a panel of microcell-mediated chromosome 2 hybrids in the
mutant background that contained only fragments of human chromosome 2.
By using FISH, chromosome banding, and physical mapping of these x-ray
hybrids, they localized the XRCC5 gene to 2q35. This result was further
confirmed by segregation analysis indicating that the
radiation-resistant phenotype of a repair-proficient hybrid cosegregated
with the human 2q35 chromosome fragment. Koike et al. (1996) mapped the
homologous genes to mouse chromosome 1 and rat chromosome 9.
Blunt et al. (1995) assembled a YAC contig for the region 2q33-q34
encompassing XRCC5.
ANIMAL MODEL
Difilippantonio et al. (2000) demonstrated that mouse cells deficient
for Ku80 display a marked increase in chromosomal aberrations, including
breakage, translocations, and aneuploidy. Despite the observed
chromosome instabilities, Ku80 -/- mice have only a slightly earlier
onset of cancer. Loss of p53 (191170) synergizes with Ku80 to promote
tumorigenesis such that all Ku80 -/-/p53 -/- mice succumb to
disseminated pro-B-cell lymphoma before 3 months of age. Tumors result
from a specific set of chromosomal translocations and gene
amplifications involving IgH and c-Myc, reminiscent of Burkitt lymphoma
(113970). Difilippantonio et al. (2000) concluded that Ku80 is a
caretaker gene that maintains the integrity of the genome by a mechanism
involving suppression of chromosomal rearrangements.
Couedel et al. (2004) created Rad54 (604289)/Xrcc5 double-mutant mice
and determined that homologous recombination and nonhomologous end
joining components collaborate to repair DNA damage. Tissue and cells
from double-mutant mice showed spontaneous DNA damage. The authors
concluded that even a mild repair deficiency can have profound effects
in the context of other mutations.
*FIELD* RF
1. Blunt, T.; Taccioli, G. E.; Priestley, A.; Hafezparast, M.; McMillan,
T.; Liu, J.; Cole, C. C.; White, J.; Alt, F. W.; Jackson, S. P.; Schurr,
E.; Lehmann, A. R.; Jeggo, P. A.: A YAC contig encompassing the XRCC5
(Ku80) DNA repair gene and complementation defective cells by YAC
protoplast fusion. Genomics 30: 320-328, 1995.
2. Chen, D. J.; Marrone, B. L.; Nguyen, T.; Stackhouse, M.; Zhao,
Y.; Siciliano, M. J.: Regional assignment of a human DNA repair gene
(XRCC5) to 2q35 by x-ray hybrid mapping. Genomics 21: 423-427, 1994.
3. Chen, D. J.; Park, M. S.; Campbell, E.; Oshimura, M.; Liu, P.;
Zhao, Y.; White, B. F.; Siciliano, M. J.: Assignment of a human DNA
double-strand break repair gene (XRCC5) to chromosome 2. Genomics 13:
1088-1094, 1992.
4. Couedel, C.; Mills, K. D.; Barchi, M.; Shen, L.; Olshen, A.; Johnson,
R. D.; Nussenzweig, A.; Essers, J.; Kanaar, R.; Li, G. C.; Alt, F.
W.; Jasin, M.: Collaboration of homologous recombination and nonhomologous
end-joining factors for the survival and integrity of mice and cells. Genes
Dev. 18: 1293-1304, 2004.
5. Difilippantonio, M. J.; Zhu, J.; Chen, H. T.; Meffre, E.; Nussenzweig,
M. C.; Max, E. E.; Ried, T.; Nussenzweig, A.: DNA repair protein
Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:
510-514, 2000.
6. Guirouilh-Barbat, J.; Rass, E.; Plo, I.; Bertrand, P.; Lopez, B.
S.: Defects in XRCC4 and KU80 differentially affect the joining of
distal nonhomologous ends. Proc. Nat. Acad. Sci. 104: 20902-20907,
2007.
7. Jeggo, P. A.; Hafezparast, M.; Thompson, A. F.; Broughton, B. C.;
Kaur, G. P.; Zdzienicka, M. Z.; Athwal, R. S.: Localization of a
DNA repair gene (XRCC5) involved in double-strand-break rejoining
to human chromosome 2. Proc. Nat. Acad. Sci. 89: 6423-6427, 1992.
8. Koike, M.; Matsuda, Y.; Mimori, T.; Harada, Y.-N.; Shiomi, N.;
Shiomi, T.: Chromosomal localization of the mouse and rat DNA double-strand
break repair genes Ku p70 and Ku p80/XRCC5 and their mRNA expression
in various mouse tissues. Genomics 38: 38-44, 1996.
9. Li, G.; Nelsen, C.; Hendrickson, E. A.: Ku86 is essential in human
somatic cells. Proc. Nat. Acad. Sci. 99: 832-837, 2002.
10. Mari, P.-O.; Florea, B. I.; Persengiev, S. P.; Verkaik, N. S.;
Bruggenwirth, H. T.; Modesti, M.; Giglia-Mari, G.; Bezstarosti, K.;
Demmers, J. A. A.; Luider, T. M.; Houtsmuller, A. B.; van Gent, D.
C.: Dynamic assembly of end-joining complexes requires interaction
between Ku70/80 and XRCC4. Proc. Nat. Acad. Sci. 103: 18597-18602,
2006.
11. Roberts, S. A.; Strande, N.; Burkhalter, M. D.; Strom, C.; Havener,
J. M.; Hasty, P.; Ramsden, D. A.: Ku is a 5-prime-dRP/AP lyase that
excises nucleotide damage near broken ends. Nature 464: 1214-1217,
2010.
12. Taccioli, G. E.; Gottlieb, T. M.; Blunt, T.; Priestley, A.; Demengeot,
J.; Mizuta, R.; Lehmann, A. R.; Alt, F. W.; Jackson, S. P.; Jeggo,
P. A.: Ku80: product of the XRCC5 gene and its role in DNA repair
and V(D)J recombination. Science 265: 1442-1445, 1994.
13. Tuteja, N.; Tuteja, R.; Ochem, A.; Taneja, P.; Huang, N. W.; Simoncsits,
A.; Susic, S.; Rahman, K.; Marusic, L.; Chen, J.; Zhang, J.; Wang,
S.; Pongor, S.; Falaschi, A.: Human DNA helicase II: a novel DNA
unwinding enzyme identified as the Ku autoantigen. EMBO J. 13: 4991-5001,
1994.
14. Walker, J. R.; Corpina, R. A.; Goldberg, J.: Structure of the
Ku heterodimer bound to DNA and its implications for double-strand
break repair. Nature 412: 607-614, 2001.
*FIELD* CN
Ada Hamosh - updated: 5/26/2010
Patricia A. Hartz - updated: 3/3/2008
Patricia A. Hartz - updated: 5/1/2007
Victor A. McKusick - updated: 4/13/2007
Patricia A. Hartz - updated: 7/2/2004
Ada Hamosh - updated: 8/15/2001
Ada Hamosh - updated: 3/30/2000
Alan F. Scott - updated: 2/11/1996
*FIELD* CD
Victor A. McKusick: 8/19/1992
*FIELD* ED
alopez: 06/01/2010
terry: 5/26/2010
wwang: 3/3/2008
mgross: 5/1/2007
carol: 4/13/2007
mgross: 7/14/2004
terry: 7/2/2004
alopez: 8/16/2001
terry: 8/15/2001
alopez: 3/31/2000
terry: 3/30/2000
carol: 12/16/1998
carol: 8/10/1998
mark: 12/13/1996
terry: 12/11/1996
terry: 4/17/1996
mark: 3/4/1996
mark: 2/11/1996
carol: 1/3/1995
jason: 6/8/1994
carol: 4/7/1993
carol: 8/31/1992
carol: 8/19/1992
*RECORD*
*FIELD* NO
194364
*FIELD* TI
*194364 X-RAY REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 5; XRCC5
;;Ku ANTIGEN, 80-KD SUBUNIT; Ku80;;
read moreKu86
*FIELD* TX
DESCRIPTION
The human XRCC5 DNA repair gene complements the radiosensitive mutant
xrs-6, derived from Chinese hamster ovary cells which are defective in
DNA double-strand break repair and in ability to undergo V(D)J
recombination. The XRCC5 gene encodes the 80-kD subunit of the Ku
autoantigen, a heterodimer which contributes to genomic integrity
through its ability to bind DNA double-strand breaks and facilitate
repair by the nonhomologous end joining (NHEJ) pathway.
CLONING
A DNA double-strand break is a major lesion that destroys the integrity
of the DNA molecule. Such damage is introduced by ionizing radiation. A
number of mutants defective in the repair of DNA double-strand breaks
have been identified in rodent cells and classified into distinct
complementation groups. The repair gene defective in one group of
mutants was designated XRCC5. Using the method of microcell-mediated
chromosome transfer, Jeggo et al. (1992) achieved complementation of the
repair defect in hamster xrs mutants by transfer of human chromosome 2.
The sensitivity of these cells to ionizing radiation and their impaired
ability to rejoin radiation-induced DNA double-strand breaks were
corrected by chromosome 2, although the correction of radiation
sensitivity was only partial. Complementation was observed in 1 hybrid
which contained only the long arm of chromosome 2.
Taccioli et al. (1994) showed through genetic and biochemical approaches
that the XRCC5 is the 80-kilodalton subunit of the Ku protein. Ku binds
to free double-stranded DNA ends and is the DNA-binding component of the
DNA-dependent protein kinase. Thus, the Ku protein is involved in DNA
repair and in V(D)J recombination, and the Ku-DNA-dependent protein
kinase complex may have a role in those same processes. See 152690 for
discussion of the Ku p70 subunit.
GENE FUNCTION
Tuteja et al. (1994) purified from HeLa cells an enzyme they called DNA
helicase II, an ATP-dependent DNA unwinding enzyme. They showed that it
is a heterodimer of 72 and 87 kD polypeptides. Sequencing showed that it
is identical to the Ku autoantigen. The exclusively nuclear location of
this particular DNA helicase II/Ku antigen, its highly specific affinity
for double-stranded DNA, its abundance, and its exclusive DNA-duplex
unwinding activity pointed to additional roles for this molecule in DNA
metabolism.
Li et al. (2002) constructed a human somatic cell line containing a
targeted disruption of the Ku86 locus. Human colon cancer cells
heterozygous for Ku86 were haploinsufficient with an increase in
polyploid cells, a reduction in cell proliferation, elevated p53 levels,
and a slight hypersensitivity to ionizing radiation. Functional
inactivation of the second Ku86 allele resulted in cells with a
drastically reduced doubling time. These cells were capable of
undergoing only a limited number of cell divisions, after which they
underwent apoptosis. These experiments demonstrated that the Ku86 locus
is essential in human somatic tissue culture cells.
Using human and hamster cells, Mari et al. (2006) showed that Ku
heterodimers on DNA ends were in dynamic equilibrium with Ku70/Ku80 in
solution, suggesting that formation of the NHEJ complex is reversible.
Accumulation of XRCC4 (194363) on DNA double-strand breaks depended on
the presence of Ku70/Ku80, but not PRKDC (600899). Mari et al. (2006)
found that XRCC4 interacted directly with Ku70, and they hypothesized
that XRCC4 serves as a flexible tether between Ku70/Ku80 and LIG4
(601837).
Guirouilh-Barbat et al. (2007) studied NHEJ in Xrcc4- and Ku80-null XR-1
CHO cells and showed differences in the effects of these mutations.
While significant end joining existed in Xrcc4-null cells due to the use
of microhomologies distal from the double-strand break, the efficiency
of NHEJ was reduced. In contrast, knockout of Ku80 barely affected the
efficiency of end joining. In both mutant cell lines, however, the
accuracy of end joining was reduced. Guirouilh-Barbat et al. (2007)
concluded that the KU80/XRCC4 pathway is conservative and can
accommodate non-fully complementary ends at the cost of limited
mutagenesis.
Roberts et al. (2010) demonstrated, in vitro and in cells, that accurate
and efficient repair by NHEJ of double-strand breaks with nucleotide
damage requires 5-prime-deoxyribose-5-phosphate/apurinic/apyrimidinic
(dRP/AP) lyase activity. Classically defined NHEJ is moreover uniquely
effective at coupling this end-cleaning step to joining in cells,
helping to distinguish this pathway from otherwise robust alternative
NHEJ pathways. The NHEJ factor Ku was identified as an effective
5-prime-dRP/AP lyase. In a similar manner to other lyases, Ku nicks DNA
3-prime of an abasic site by a mechanism involving a Schiff-base
covalent intermediate with the abasic site. Roberts et al. (2010)
showed, by using cell extracts, that Ku is essential for the efficient
removal of AP sites near double-strand breaks and, consistent with this
result, that joining of such breaks is specifically decreased in cells
complemented with a lyase-attenuated Ku mutant. While Ku had previously
been presumed only to recognize ends and recruit other factors that
process ends, the data of Roberts et al. (2010) supported an unexpected
direct role for Ku in end-processing steps as well.
BIOCHEMICAL FEATURES
- Crystal Structure
Walker et al. (2001) determined the crystal structure of the human Ku
heterodimer both alone and bound to a 55-nucleotide DNA element at 2.7-
and 2.5-angstrom resolution, respectively. Ku70 and Ku80 share a common
topology and form a dyad-symmetrical molecule with a preformed ring that
encircles duplex DNA. The binding site can cradle 2 full turns of DNA
while encircling only the central 3-4 base pairs. Ku makes no contacts
with DNA bases and few with the sugar-phosphate backbone, but it fits
sterically to major and minor groove contours so as to position the DNA
helix in a defined path through the protein ring. Walker et al. (2001)
concluded that these features are well designed to structurally support
broken DNA ends and to bring the DNA helix into phase across the
junction during end processing and ligation.
MAPPING
Chen et al. (1992) used analysis of somatic cell hybrids and
microcell-mediated chromosome transfer analyzed by fluorescence in situ
hybridization (FISH) to assign the XRCC5 gene to 2p. They concluded that
the location is probably between 2p21 and 2p12. For the regional mapping
of the XRCC5 gene, Chen et al. (1994) constructed a panel of x-ray
hybrids and a panel of microcell-mediated chromosome 2 hybrids in the
mutant background that contained only fragments of human chromosome 2.
By using FISH, chromosome banding, and physical mapping of these x-ray
hybrids, they localized the XRCC5 gene to 2q35. This result was further
confirmed by segregation analysis indicating that the
radiation-resistant phenotype of a repair-proficient hybrid cosegregated
with the human 2q35 chromosome fragment. Koike et al. (1996) mapped the
homologous genes to mouse chromosome 1 and rat chromosome 9.
Blunt et al. (1995) assembled a YAC contig for the region 2q33-q34
encompassing XRCC5.
ANIMAL MODEL
Difilippantonio et al. (2000) demonstrated that mouse cells deficient
for Ku80 display a marked increase in chromosomal aberrations, including
breakage, translocations, and aneuploidy. Despite the observed
chromosome instabilities, Ku80 -/- mice have only a slightly earlier
onset of cancer. Loss of p53 (191170) synergizes with Ku80 to promote
tumorigenesis such that all Ku80 -/-/p53 -/- mice succumb to
disseminated pro-B-cell lymphoma before 3 months of age. Tumors result
from a specific set of chromosomal translocations and gene
amplifications involving IgH and c-Myc, reminiscent of Burkitt lymphoma
(113970). Difilippantonio et al. (2000) concluded that Ku80 is a
caretaker gene that maintains the integrity of the genome by a mechanism
involving suppression of chromosomal rearrangements.
Couedel et al. (2004) created Rad54 (604289)/Xrcc5 double-mutant mice
and determined that homologous recombination and nonhomologous end
joining components collaborate to repair DNA damage. Tissue and cells
from double-mutant mice showed spontaneous DNA damage. The authors
concluded that even a mild repair deficiency can have profound effects
in the context of other mutations.
*FIELD* RF
1. Blunt, T.; Taccioli, G. E.; Priestley, A.; Hafezparast, M.; McMillan,
T.; Liu, J.; Cole, C. C.; White, J.; Alt, F. W.; Jackson, S. P.; Schurr,
E.; Lehmann, A. R.; Jeggo, P. A.: A YAC contig encompassing the XRCC5
(Ku80) DNA repair gene and complementation defective cells by YAC
protoplast fusion. Genomics 30: 320-328, 1995.
2. Chen, D. J.; Marrone, B. L.; Nguyen, T.; Stackhouse, M.; Zhao,
Y.; Siciliano, M. J.: Regional assignment of a human DNA repair gene
(XRCC5) to 2q35 by x-ray hybrid mapping. Genomics 21: 423-427, 1994.
3. Chen, D. J.; Park, M. S.; Campbell, E.; Oshimura, M.; Liu, P.;
Zhao, Y.; White, B. F.; Siciliano, M. J.: Assignment of a human DNA
double-strand break repair gene (XRCC5) to chromosome 2. Genomics 13:
1088-1094, 1992.
4. Couedel, C.; Mills, K. D.; Barchi, M.; Shen, L.; Olshen, A.; Johnson,
R. D.; Nussenzweig, A.; Essers, J.; Kanaar, R.; Li, G. C.; Alt, F.
W.; Jasin, M.: Collaboration of homologous recombination and nonhomologous
end-joining factors for the survival and integrity of mice and cells. Genes
Dev. 18: 1293-1304, 2004.
5. Difilippantonio, M. J.; Zhu, J.; Chen, H. T.; Meffre, E.; Nussenzweig,
M. C.; Max, E. E.; Ried, T.; Nussenzweig, A.: DNA repair protein
Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:
510-514, 2000.
6. Guirouilh-Barbat, J.; Rass, E.; Plo, I.; Bertrand, P.; Lopez, B.
S.: Defects in XRCC4 and KU80 differentially affect the joining of
distal nonhomologous ends. Proc. Nat. Acad. Sci. 104: 20902-20907,
2007.
7. Jeggo, P. A.; Hafezparast, M.; Thompson, A. F.; Broughton, B. C.;
Kaur, G. P.; Zdzienicka, M. Z.; Athwal, R. S.: Localization of a
DNA repair gene (XRCC5) involved in double-strand-break rejoining
to human chromosome 2. Proc. Nat. Acad. Sci. 89: 6423-6427, 1992.
8. Koike, M.; Matsuda, Y.; Mimori, T.; Harada, Y.-N.; Shiomi, N.;
Shiomi, T.: Chromosomal localization of the mouse and rat DNA double-strand
break repair genes Ku p70 and Ku p80/XRCC5 and their mRNA expression
in various mouse tissues. Genomics 38: 38-44, 1996.
9. Li, G.; Nelsen, C.; Hendrickson, E. A.: Ku86 is essential in human
somatic cells. Proc. Nat. Acad. Sci. 99: 832-837, 2002.
10. Mari, P.-O.; Florea, B. I.; Persengiev, S. P.; Verkaik, N. S.;
Bruggenwirth, H. T.; Modesti, M.; Giglia-Mari, G.; Bezstarosti, K.;
Demmers, J. A. A.; Luider, T. M.; Houtsmuller, A. B.; van Gent, D.
C.: Dynamic assembly of end-joining complexes requires interaction
between Ku70/80 and XRCC4. Proc. Nat. Acad. Sci. 103: 18597-18602,
2006.
11. Roberts, S. A.; Strande, N.; Burkhalter, M. D.; Strom, C.; Havener,
J. M.; Hasty, P.; Ramsden, D. A.: Ku is a 5-prime-dRP/AP lyase that
excises nucleotide damage near broken ends. Nature 464: 1214-1217,
2010.
12. Taccioli, G. E.; Gottlieb, T. M.; Blunt, T.; Priestley, A.; Demengeot,
J.; Mizuta, R.; Lehmann, A. R.; Alt, F. W.; Jackson, S. P.; Jeggo,
P. A.: Ku80: product of the XRCC5 gene and its role in DNA repair
and V(D)J recombination. Science 265: 1442-1445, 1994.
13. Tuteja, N.; Tuteja, R.; Ochem, A.; Taneja, P.; Huang, N. W.; Simoncsits,
A.; Susic, S.; Rahman, K.; Marusic, L.; Chen, J.; Zhang, J.; Wang,
S.; Pongor, S.; Falaschi, A.: Human DNA helicase II: a novel DNA
unwinding enzyme identified as the Ku autoantigen. EMBO J. 13: 4991-5001,
1994.
14. Walker, J. R.; Corpina, R. A.; Goldberg, J.: Structure of the
Ku heterodimer bound to DNA and its implications for double-strand
break repair. Nature 412: 607-614, 2001.
*FIELD* CN
Ada Hamosh - updated: 5/26/2010
Patricia A. Hartz - updated: 3/3/2008
Patricia A. Hartz - updated: 5/1/2007
Victor A. McKusick - updated: 4/13/2007
Patricia A. Hartz - updated: 7/2/2004
Ada Hamosh - updated: 8/15/2001
Ada Hamosh - updated: 3/30/2000
Alan F. Scott - updated: 2/11/1996
*FIELD* CD
Victor A. McKusick: 8/19/1992
*FIELD* ED
alopez: 06/01/2010
terry: 5/26/2010
wwang: 3/3/2008
mgross: 5/1/2007
carol: 4/13/2007
mgross: 7/14/2004
terry: 7/2/2004
alopez: 8/16/2001
terry: 8/15/2001
alopez: 3/31/2000
terry: 3/30/2000
carol: 12/16/1998
carol: 8/10/1998
mark: 12/13/1996
terry: 12/11/1996
terry: 4/17/1996
mark: 3/4/1996
mark: 2/11/1996
carol: 1/3/1995
jason: 6/8/1994
carol: 4/7/1993
carol: 8/31/1992
carol: 8/19/1992