Full text data of CAT
CAT
[Confidence: high (present in two of the MS resources)]
Catalase; 1.11.1.6
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Catalase; 1.11.1.6
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00465436
IPI00465436 Catalase serves to protect cells from the toxic effects of hydrogen peroxide, 2 H2O2 = O2 + 2 H2O. soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a cytoplasmic n/a found at its expected molecular weight found at molecular weight
IPI00465436 Catalase serves to protect cells from the toxic effects of hydrogen peroxide, 2 H2O2 = O2 + 2 H2O. soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a cytoplasmic n/a found at its expected molecular weight found at molecular weight
UniProt
P04040
ID CATA_HUMAN Reviewed; 527 AA.
AC P04040; A8K6C0; B2RCZ9; D3DR07; Q2M1U4; Q4VXX5; Q9BWT9; Q9UC85;
read moreDT 01-NOV-1986, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 162.
DE RecName: Full=Catalase;
DE EC=1.11.1.6;
GN Name=CAT;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=3755525; DOI=10.1093/nar/14.13.5321;
RA Quan F., Korneluk R.G., Tropak M.B., Gravel R.A.;
RT "Isolation and characterization of the human catalase gene.";
RL Nucleic Acids Res. 14:5321-5335(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Kidney;
RX PubMed=3755526;
RA Bell G.I., Najarian R.C., Mullenbach G.T., Hallewell R.A.;
RT "cDNA sequence coding for human kidney catalase.";
RL Nucleic Acids Res. 14:5561-5562(1986).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Liver;
RX PubMed=11728823; DOI=10.1016/S0891-5849(01)00734-1;
RA Jin L.H., Bahn J.H., Eum W.S., Kwon H.Y., Jang S.H., Han K.H.,
RA Kang T.-C., Won M.H., Kang J.H., Cho S.-W., Park J., Choi S.Y.;
RT "Transduction of human catalase mediated by an HIV-1 TAT protein basic
RT domain and arginine-rich peptides into mammalian cells.";
RL Free Radic. Biol. Med. 31:1509-1519(2001).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Placenta, and Uterus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG SeattleSNPs variation discovery resource;
RL Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16554811; DOI=10.1038/nature04632;
RA Taylor T.D., Noguchi H., Totoki Y., Toyoda A., Kuroki Y., Dewar K.,
RA Lloyd C., Itoh T., Takeda T., Kim D.-W., She X., Barlow K.F.,
RA Bloom T., Bruford E., Chang J.L., Cuomo C.A., Eichler E.,
RA FitzGerald M.G., Jaffe D.B., LaButti K., Nicol R., Park H.-S.,
RA Seaman C., Sougnez C., Yang X., Zimmer A.R., Zody M.C., Birren B.W.,
RA Nusbaum C., Fujiyama A., Hattori M., Rogers J., Lander E.S.,
RA Sakaki Y.;
RT "Human chromosome 11 DNA sequence and analysis including novel gene
RT identification.";
RL Nature 440:497-500(2006).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-22.
RX PubMed=8282800; DOI=10.1172/JCI116959;
RA Yoo J.-H., Erzurum S.C., Hay J.G., Lemarchand P., Crystal R.G.;
RT "Vulnerability of the human airway epithelium to hyperoxia.
RT Constitutive expression of the catalase gene in human bronchial
RT epithelial cells despite oxidant stress.";
RL J. Clin. Invest. 93:297-302(1994).
RN [10]
RP PROTEIN SEQUENCE OF 2-19.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [11]
RP PROTEIN SEQUENCE OF 24-38; 99-105; 307-315 AND 469-476, FUNCTION, AND
RP CATALYTIC ACTIVITY.
RC TISSUE=Erythrocyte;
RX PubMed=7882369;
RA Takeuchi A., Miyamoto T., Yamaji K., Masuho Y., Hayashi M.,
RA Hayashi H., Onozaki K.;
RT "A human erythrocyte-derived growth-promoting factor with a wide
RT target cell spectrum: identification as catalase.";
RL Cancer Res. 55:1586-1589(1995).
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 77-527.
RC TISSUE=Fibroblast;
RX PubMed=6548744;
RA Korneluk R.G., Quan F., Lewis W.H., Guise K.S., Willard H.F.,
RA Holmes M.T., Gravel R.A.;
RT "Isolation of human fibroblast catalase cDNA clones. Sequence of
RT clones derived from spliced and unspliced mRNA.";
RL J. Biol. Chem. 259:13819-13823(1984).
RN [13]
RP PROTEIN SEQUENCE OF 445-456, AND MASS SPECTROMETRY.
RC TISSUE=Brain, and Cajal-Retzius cell;
RA Lubec G., Vishwanath V.;
RL Submitted (MAR-2007) to UniProtKB.
RN [14]
RP INVOLVEMENT IN ACATLAS.
RX PubMed=2308162; DOI=10.1016/0022-2836(90)90359-T;
RA Wen J.K., Osumi T., Hashimoto T., Ogata M.;
RT "Molecular analysis of human acatalasemia. Identification of a
RT splicing mutation.";
RL J. Mol. Biol. 211:383-393(1990).
RN [15]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [18]
RP X-RAY CRYSTALLOGRAPHY (2.75 ANGSTROMS).
RX PubMed=10666617; DOI=10.1107/S0907444999015930;
RA Ko T.P., Safo M.K., Musayev F.N., Di Salvo M.L., Wang C., Wu S.H.,
RA Abraham D.J.;
RT "Structure of human erythrocyte catalase.";
RL Acta Crystallogr. D 56:241-245(2000).
RN [19]
RP X-RAY CRYSTALLOGRAPHY (1.5 ANGSTROMS).
RX PubMed=10656833; DOI=10.1006/jmbi.1999.3458;
RA Putnam C.D., Arvai A.S., Bourne Y., Tainer J.A.;
RT "Active and inhibited human catalase structures: ligand and NADPH
RT binding and catalytic mechanism.";
RL J. Mol. Biol. 296:295-309(2000).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
RX PubMed=11134921; DOI=10.1107/S0907444900013767;
RA Safo M.K., Musayev F.N., Wu S.H., Abraham D.J., Ko T.P.;
RT "Structure of tetragonal crystals of human erythrocyte catalase.";
RL Acta Crystallogr. D 57:1-7(2001).
CC -!- FUNCTION: Occurs in almost all aerobically respiring organisms and
CC serves to protect cells from the toxic effects of hydrogen
CC peroxide. Promotes growth of cells including T-cells, B-cells,
CC myeloid leukemia cells, melanoma cells, mastocytoma cells and
CC normal and transformed fibroblast cells.
CC -!- CATALYTIC ACTIVITY: 2 H(2)O(2) = O(2) + 2 H(2)O.
CC -!- COFACTOR: Heme group.
CC -!- COFACTOR: NADP.
CC -!- SUBUNIT: Homotetramer.
CC -!- SUBCELLULAR LOCATION: Peroxisome.
CC -!- PTM: The N-terminus is blocked.
CC -!- DISEASE: Acatalasemia (ACATLAS) [MIM:614097]: A metabolic disorder
CC characterized by a total or near total loss of catalase activity
CC in red cells. It is often associated with ulcerating oral lesions.
CC Note=The disease is caused by mutations affecting the gene
CC represented in this entry.
CC -!- SIMILARITY: Belongs to the catalase family.
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Catalase entry;
CC URL="http://en.wikipedia.org/wiki/Catalase";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/cat/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X04085; CAA27721.1; -; Genomic_DNA.
DR EMBL; X04086; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04087; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04088; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04089; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04090; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04091; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04092; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04093; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04094; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04095; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04096; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04076; CAA27717.1; -; mRNA.
DR EMBL; AY028632; AAK29181.1; -; mRNA.
DR EMBL; AK291585; BAF84274.1; -; mRNA.
DR EMBL; AK315350; BAG37746.1; -; mRNA.
DR EMBL; AY545477; AAS37679.1; -; Genomic_DNA.
DR EMBL; AL035079; CAB45236.1; -; Genomic_DNA.
DR EMBL; CH471064; EAW68170.1; -; Genomic_DNA.
DR EMBL; CH471064; EAW68171.1; -; Genomic_DNA.
DR EMBL; BC110398; AAI10399.1; -; mRNA.
DR EMBL; BC112217; AAI12218.1; -; mRNA.
DR EMBL; BC112219; AAI12220.1; -; mRNA.
DR EMBL; L13609; AAA16651.1; -; Genomic_DNA.
DR EMBL; K02400; AAB59522.1; -; Genomic_DNA.
DR PIR; A23646; CSHU.
DR RefSeq; NP_001743.1; NM_001752.3.
DR UniGene; Hs.502302; -.
DR PDB; 1DGB; X-ray; 2.20 A; A/B/C/D=4-501.
DR PDB; 1DGF; X-ray; 1.50 A; A/B/C/D=5-501.
DR PDB; 1DGG; X-ray; 1.80 A; A/B/C/D=5-501.
DR PDB; 1DGH; X-ray; 2.00 A; A/B/C/D=4-501.
DR PDB; 1F4J; X-ray; 2.40 A; A/B/C/D=1-527.
DR PDB; 1QQW; X-ray; 2.75 A; A/B/C/D=1-527.
DR PDBsum; 1DGB; -.
DR PDBsum; 1DGF; -.
DR PDBsum; 1DGG; -.
DR PDBsum; 1DGH; -.
DR PDBsum; 1F4J; -.
DR PDBsum; 1QQW; -.
DR ProteinModelPortal; P04040; -.
DR SMR; P04040; 5-501.
DR IntAct; P04040; 15.
DR MINT; MINT-1210583; -.
DR STRING; 9606.ENSP00000241052; -.
DR DrugBank; DB01213; Fomepizole.
DR PeroxiBase; 5282; HsKat01.
DR PhosphoSite; P04040; -.
DR DMDM; 115702; -.
DR OGP; P04040; -.
DR REPRODUCTION-2DPAGE; IPI00465436; -.
DR REPRODUCTION-2DPAGE; P04040; -.
DR SWISS-2DPAGE; P04040; -.
DR PaxDb; P04040; -.
DR PeptideAtlas; P04040; -.
DR PRIDE; P04040; -.
DR DNASU; 847; -.
DR Ensembl; ENST00000241052; ENSP00000241052; ENSG00000121691.
DR GeneID; 847; -.
DR KEGG; hsa:847; -.
DR UCSC; uc001mvm.3; human.
DR CTD; 847; -.
DR GeneCards; GC11P034460; -.
DR H-InvDB; HIX0009550; -.
DR HGNC; HGNC:1516; CAT.
DR HPA; CAB001515; -.
DR MIM; 115500; gene.
DR MIM; 614097; phenotype.
DR neXtProt; NX_P04040; -.
DR Orphanet; 926; Acatalasemia.
DR PharmGKB; PA26099; -.
DR eggNOG; COG0753; -.
DR HOVERGEN; HBG003986; -.
DR InParanoid; P04040; -.
DR KO; K03781; -.
DR OMA; LYTQINA; -.
DR OrthoDB; EOG7V7660; -.
DR PhylomeDB; P04040; -.
DR BioCyc; MetaCyc:MONOMER66-341; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P04040; -.
DR ChiTaRS; CAT; human.
DR EvolutionaryTrace; P04040; -.
DR GeneWiki; Catalase; -.
DR GenomeRNAi; 847; -.
DR NextBio; 3550; -.
DR PRO; PR:P04040; -.
DR ArrayExpress; P04040; -.
DR Bgee; P04040; -.
DR CleanEx; HS_CAT; -.
DR Genevestigator; P04040; -.
DR GO; GO:0005829; C:cytosol; IEA:Ensembl.
DR GO; GO:0005783; C:endoplasmic reticulum; IEA:Ensembl.
DR GO; GO:0005794; C:Golgi apparatus; IEA:Ensembl.
DR GO; GO:0005764; C:lysosome; IEA:Ensembl.
DR GO; GO:0005758; C:mitochondrial intermembrane space; IEA:Ensembl.
DR GO; GO:0005782; C:peroxisomal matrix; TAS:Reactome.
DR GO; GO:0005778; C:peroxisomal membrane; ISS:UniProtKB.
DR GO; GO:0005886; C:plasma membrane; IEA:Ensembl.
DR GO; GO:0004046; F:aminoacylase activity; IEA:Ensembl.
DR GO; GO:0004096; F:catalase activity; IDA:UniProtKB.
DR GO; GO:0020037; F:heme binding; IDA:UniProtKB.
DR GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR GO; GO:0050661; F:NADP binding; IDA:UniProtKB.
DR GO; GO:0042803; F:protein homodimerization activity; IDA:UniProtKB.
DR GO; GO:0009060; P:aerobic respiration; IEA:Ensembl.
DR GO; GO:0071363; P:cellular response to growth factor stimulus; IEA:Ensembl.
DR GO; GO:0008203; P:cholesterol metabolic process; IEA:Ensembl.
DR GO; GO:0020027; P:hemoglobin metabolic process; IEA:Ensembl.
DR GO; GO:0042744; P:hydrogen peroxide catabolic process; IDA:UniProtKB.
DR GO; GO:0042697; P:menopause; IEA:Ensembl.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IMP:UniProtKB.
DR GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; IEA:Ensembl.
DR GO; GO:0051781; P:positive regulation of cell division; IEA:UniProtKB-KW.
DR GO; GO:0051092; P:positive regulation of NF-kappaB transcription factor activity; IEA:Ensembl.
DR GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase cascade; IEA:Ensembl.
DR GO; GO:0051289; P:protein homotetramerization; IDA:UniProtKB.
DR GO; GO:0006144; P:purine nucleobase metabolic process; TAS:Reactome.
DR GO; GO:0006195; P:purine nucleotide catabolic process; TAS:Reactome.
DR GO; GO:0055093; P:response to hyperoxia; IEA:Ensembl.
DR GO; GO:0001666; P:response to hypoxia; IEA:Ensembl.
DR GO; GO:0033197; P:response to vitamin E; IEA:Ensembl.
DR GO; GO:0006641; P:triglyceride metabolic process; IEA:Ensembl.
DR GO; GO:0009650; P:UV protection; IMP:UniProtKB.
DR Gene3D; 2.40.180.10; -; 1.
DR InterPro; IPR018028; Catalase.
DR InterPro; IPR020835; Catalase-like_dom.
DR InterPro; IPR024708; Catalase_AS.
DR InterPro; IPR024711; Catalase_clade1/3.
DR InterPro; IPR011614; Catalase_core.
DR InterPro; IPR002226; Catalase_haem_BS.
DR InterPro; IPR010582; Catalase_immune_responsive.
DR PANTHER; PTHR11465; PTHR11465; 1.
DR Pfam; PF00199; Catalase; 1.
DR Pfam; PF06628; Catalase-rel; 1.
DR PIRSF; PIRSF038928; Catalase_clade1-3; 1.
DR PRINTS; PR00067; CATALASE.
DR SMART; SM01060; Catalase; 1.
DR SUPFAM; SSF56634; SSF56634; 1.
DR PROSITE; PS00437; CATALASE_1; 1.
DR PROSITE; PS00438; CATALASE_2; 1.
DR PROSITE; PS51402; CATALASE_3; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome;
KW Direct protein sequencing; Heme; Hydrogen peroxide; Iron;
KW Metal-binding; Mitogen; NADP; Oxidoreductase; Peroxidase; Peroxisome;
KW Phosphoprotein; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 527 Catalase.
FT /FTId=PRO_0000084901.
FT ACT_SITE 75 75
FT ACT_SITE 148 148
FT METAL 358 358 Iron (heme axial ligand).
FT MOD_RES 233 233 N6-acetyllysine (By similarity).
FT MOD_RES 306 306 N6-acetyllysine (By similarity).
FT MOD_RES 417 417 Phosphoserine (By similarity).
FT MOD_RES 480 480 N6-acetyllysine (By similarity).
FT MOD_RES 499 499 N6-acetyllysine (By similarity).
FT CONFLICT 54 54 D -> N (in Ref. 3; AAK29181).
FT CONFLICT 100 100 F -> L (in Ref. 4; BAG37746).
FT CONFLICT 239 239 D -> G (in Ref. 3; AAK29181).
FT CONFLICT 274 274 Y -> D (in Ref. 3; AAK29181).
FT CONFLICT 301 301 K -> R (in Ref. 3; AAK29181).
FT CONFLICT 366 366 L -> P (in Ref. 4; BAG37746).
FT CONFLICT 449 449 N -> D (in Ref. 4; BAG37746).
FT CONFLICT 514 514 Q -> R (in Ref. 3; AAK29181).
FT CONFLICT 520 520 A -> V (in Ref. 3; AAK29181).
FT TURN 7 10
FT HELIX 11 18
FT TURN 19 21
FT STRAND 30 32
FT STRAND 38 40
FT STRAND 42 45
FT HELIX 55 64
FT STRAND 73 75
FT STRAND 77 87
FT TURN 92 94
FT HELIX 98 100
FT STRAND 106 114
FT STRAND 116 118
FT STRAND 124 128
FT STRAND 131 138
FT STRAND 141 152
FT HELIX 158 160
FT HELIX 161 168
FT TURN 172 174
FT HELIX 179 188
FT HELIX 190 192
FT HELIX 193 199
FT HELIX 202 204
FT STRAND 205 209
FT STRAND 220 223
FT STRAND 229 238
FT HELIX 247 256
FT HELIX 260 270
FT STRAND 276 284
FT HELIX 286 291
FT TURN 305 307
FT STRAND 311 320
FT HELIX 325 328
FT TURN 329 331
FT STRAND 343 345
FT HELIX 349 365
FT HELIX 370 372
FT HELIX 374 376
FT TURN 397 400
FT STRAND 404 406
FT HELIX 416 418
FT STRAND 427 431
FT HELIX 441 449
FT HELIX 453 467
FT HELIX 472 485
FT HELIX 487 500
SQ SEQUENCE 527 AA; 59756 MW; 7BAA2394D124ED20 CRC64;
MADSRDPASD QMQHWKEQRA AQKADVLTTG AGNPVGDKLN VITVGPRGPL LVQDVVFTDE
MAHFDRERIP ERVVHAKGAG AFGYFEVTHD ITKYSKAKVF EHIGKKTPIA VRFSTVAGES
GSADTVRDPR GFAVKFYTED GNWDLVGNNT PIFFIRDPIL FPSFIHSQKR NPQTHLKDPD
MVWDFWSLRP ESLHQVSFLF SDRGIPDGHR HMNGYGSHTF KLVNANGEAV YCKFHYKTDQ
GIKNLSVEDA ARLSQEDPDY GIRDLFNAIA TGKYPSWTFY IQVMTFNQAE TFPFNPFDLT
KVWPHKDYPL IPVGKLVLNR NPVNYFAEVE QIAFDPSNMP PGIEASPDKM LQGRLFAYPD
THRHRLGPNY LHIPVNCPYR ARVANYQRDG PMCMQDNQGG APNYYPNSFG APEQQPSALE
HSIQYSGEVR RFNTANDDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA QIFIQKKAVK
NFTEVHPDYG SHIQALLDKY NAEKPKNAIH TFVQSGSHLA AREKANL
//
ID CATA_HUMAN Reviewed; 527 AA.
AC P04040; A8K6C0; B2RCZ9; D3DR07; Q2M1U4; Q4VXX5; Q9BWT9; Q9UC85;
read moreDT 01-NOV-1986, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 162.
DE RecName: Full=Catalase;
DE EC=1.11.1.6;
GN Name=CAT;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=3755525; DOI=10.1093/nar/14.13.5321;
RA Quan F., Korneluk R.G., Tropak M.B., Gravel R.A.;
RT "Isolation and characterization of the human catalase gene.";
RL Nucleic Acids Res. 14:5321-5335(1986).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Kidney;
RX PubMed=3755526;
RA Bell G.I., Najarian R.C., Mullenbach G.T., Hallewell R.A.;
RT "cDNA sequence coding for human kidney catalase.";
RL Nucleic Acids Res. 14:5561-5562(1986).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Liver;
RX PubMed=11728823; DOI=10.1016/S0891-5849(01)00734-1;
RA Jin L.H., Bahn J.H., Eum W.S., Kwon H.Y., Jang S.H., Han K.H.,
RA Kang T.-C., Won M.H., Kang J.H., Cho S.-W., Park J., Choi S.Y.;
RT "Transduction of human catalase mediated by an HIV-1 TAT protein basic
RT domain and arginine-rich peptides into mammalian cells.";
RL Free Radic. Biol. Med. 31:1509-1519(2001).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Placenta, and Uterus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RG SeattleSNPs variation discovery resource;
RL Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16554811; DOI=10.1038/nature04632;
RA Taylor T.D., Noguchi H., Totoki Y., Toyoda A., Kuroki Y., Dewar K.,
RA Lloyd C., Itoh T., Takeda T., Kim D.-W., She X., Barlow K.F.,
RA Bloom T., Bruford E., Chang J.L., Cuomo C.A., Eichler E.,
RA FitzGerald M.G., Jaffe D.B., LaButti K., Nicol R., Park H.-S.,
RA Seaman C., Sougnez C., Yang X., Zimmer A.R., Zody M.C., Birren B.W.,
RA Nusbaum C., Fujiyama A., Hattori M., Rogers J., Lander E.S.,
RA Sakaki Y.;
RT "Human chromosome 11 DNA sequence and analysis including novel gene
RT identification.";
RL Nature 440:497-500(2006).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-22.
RX PubMed=8282800; DOI=10.1172/JCI116959;
RA Yoo J.-H., Erzurum S.C., Hay J.G., Lemarchand P., Crystal R.G.;
RT "Vulnerability of the human airway epithelium to hyperoxia.
RT Constitutive expression of the catalase gene in human bronchial
RT epithelial cells despite oxidant stress.";
RL J. Clin. Invest. 93:297-302(1994).
RN [10]
RP PROTEIN SEQUENCE OF 2-19.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [11]
RP PROTEIN SEQUENCE OF 24-38; 99-105; 307-315 AND 469-476, FUNCTION, AND
RP CATALYTIC ACTIVITY.
RC TISSUE=Erythrocyte;
RX PubMed=7882369;
RA Takeuchi A., Miyamoto T., Yamaji K., Masuho Y., Hayashi M.,
RA Hayashi H., Onozaki K.;
RT "A human erythrocyte-derived growth-promoting factor with a wide
RT target cell spectrum: identification as catalase.";
RL Cancer Res. 55:1586-1589(1995).
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 77-527.
RC TISSUE=Fibroblast;
RX PubMed=6548744;
RA Korneluk R.G., Quan F., Lewis W.H., Guise K.S., Willard H.F.,
RA Holmes M.T., Gravel R.A.;
RT "Isolation of human fibroblast catalase cDNA clones. Sequence of
RT clones derived from spliced and unspliced mRNA.";
RL J. Biol. Chem. 259:13819-13823(1984).
RN [13]
RP PROTEIN SEQUENCE OF 445-456, AND MASS SPECTROMETRY.
RC TISSUE=Brain, and Cajal-Retzius cell;
RA Lubec G., Vishwanath V.;
RL Submitted (MAR-2007) to UniProtKB.
RN [14]
RP INVOLVEMENT IN ACATLAS.
RX PubMed=2308162; DOI=10.1016/0022-2836(90)90359-T;
RA Wen J.K., Osumi T., Hashimoto T., Ogata M.;
RT "Molecular analysis of human acatalasemia. Identification of a
RT splicing mutation.";
RL J. Mol. Biol. 211:383-393(1990).
RN [15]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [18]
RP X-RAY CRYSTALLOGRAPHY (2.75 ANGSTROMS).
RX PubMed=10666617; DOI=10.1107/S0907444999015930;
RA Ko T.P., Safo M.K., Musayev F.N., Di Salvo M.L., Wang C., Wu S.H.,
RA Abraham D.J.;
RT "Structure of human erythrocyte catalase.";
RL Acta Crystallogr. D 56:241-245(2000).
RN [19]
RP X-RAY CRYSTALLOGRAPHY (1.5 ANGSTROMS).
RX PubMed=10656833; DOI=10.1006/jmbi.1999.3458;
RA Putnam C.D., Arvai A.S., Bourne Y., Tainer J.A.;
RT "Active and inhibited human catalase structures: ligand and NADPH
RT binding and catalytic mechanism.";
RL J. Mol. Biol. 296:295-309(2000).
RN [20]
RP X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
RX PubMed=11134921; DOI=10.1107/S0907444900013767;
RA Safo M.K., Musayev F.N., Wu S.H., Abraham D.J., Ko T.P.;
RT "Structure of tetragonal crystals of human erythrocyte catalase.";
RL Acta Crystallogr. D 57:1-7(2001).
CC -!- FUNCTION: Occurs in almost all aerobically respiring organisms and
CC serves to protect cells from the toxic effects of hydrogen
CC peroxide. Promotes growth of cells including T-cells, B-cells,
CC myeloid leukemia cells, melanoma cells, mastocytoma cells and
CC normal and transformed fibroblast cells.
CC -!- CATALYTIC ACTIVITY: 2 H(2)O(2) = O(2) + 2 H(2)O.
CC -!- COFACTOR: Heme group.
CC -!- COFACTOR: NADP.
CC -!- SUBUNIT: Homotetramer.
CC -!- SUBCELLULAR LOCATION: Peroxisome.
CC -!- PTM: The N-terminus is blocked.
CC -!- DISEASE: Acatalasemia (ACATLAS) [MIM:614097]: A metabolic disorder
CC characterized by a total or near total loss of catalase activity
CC in red cells. It is often associated with ulcerating oral lesions.
CC Note=The disease is caused by mutations affecting the gene
CC represented in this entry.
CC -!- SIMILARITY: Belongs to the catalase family.
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Catalase entry;
CC URL="http://en.wikipedia.org/wiki/Catalase";
CC -!- WEB RESOURCE: Name=SeattleSNPs;
CC URL="http://pga.gs.washington.edu/data/cat/";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X04085; CAA27721.1; -; Genomic_DNA.
DR EMBL; X04086; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04087; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04088; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04089; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04090; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04091; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04092; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04093; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04094; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04095; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04096; CAA27721.1; JOINED; Genomic_DNA.
DR EMBL; X04076; CAA27717.1; -; mRNA.
DR EMBL; AY028632; AAK29181.1; -; mRNA.
DR EMBL; AK291585; BAF84274.1; -; mRNA.
DR EMBL; AK315350; BAG37746.1; -; mRNA.
DR EMBL; AY545477; AAS37679.1; -; Genomic_DNA.
DR EMBL; AL035079; CAB45236.1; -; Genomic_DNA.
DR EMBL; CH471064; EAW68170.1; -; Genomic_DNA.
DR EMBL; CH471064; EAW68171.1; -; Genomic_DNA.
DR EMBL; BC110398; AAI10399.1; -; mRNA.
DR EMBL; BC112217; AAI12218.1; -; mRNA.
DR EMBL; BC112219; AAI12220.1; -; mRNA.
DR EMBL; L13609; AAA16651.1; -; Genomic_DNA.
DR EMBL; K02400; AAB59522.1; -; Genomic_DNA.
DR PIR; A23646; CSHU.
DR RefSeq; NP_001743.1; NM_001752.3.
DR UniGene; Hs.502302; -.
DR PDB; 1DGB; X-ray; 2.20 A; A/B/C/D=4-501.
DR PDB; 1DGF; X-ray; 1.50 A; A/B/C/D=5-501.
DR PDB; 1DGG; X-ray; 1.80 A; A/B/C/D=5-501.
DR PDB; 1DGH; X-ray; 2.00 A; A/B/C/D=4-501.
DR PDB; 1F4J; X-ray; 2.40 A; A/B/C/D=1-527.
DR PDB; 1QQW; X-ray; 2.75 A; A/B/C/D=1-527.
DR PDBsum; 1DGB; -.
DR PDBsum; 1DGF; -.
DR PDBsum; 1DGG; -.
DR PDBsum; 1DGH; -.
DR PDBsum; 1F4J; -.
DR PDBsum; 1QQW; -.
DR ProteinModelPortal; P04040; -.
DR SMR; P04040; 5-501.
DR IntAct; P04040; 15.
DR MINT; MINT-1210583; -.
DR STRING; 9606.ENSP00000241052; -.
DR DrugBank; DB01213; Fomepizole.
DR PeroxiBase; 5282; HsKat01.
DR PhosphoSite; P04040; -.
DR DMDM; 115702; -.
DR OGP; P04040; -.
DR REPRODUCTION-2DPAGE; IPI00465436; -.
DR REPRODUCTION-2DPAGE; P04040; -.
DR SWISS-2DPAGE; P04040; -.
DR PaxDb; P04040; -.
DR PeptideAtlas; P04040; -.
DR PRIDE; P04040; -.
DR DNASU; 847; -.
DR Ensembl; ENST00000241052; ENSP00000241052; ENSG00000121691.
DR GeneID; 847; -.
DR KEGG; hsa:847; -.
DR UCSC; uc001mvm.3; human.
DR CTD; 847; -.
DR GeneCards; GC11P034460; -.
DR H-InvDB; HIX0009550; -.
DR HGNC; HGNC:1516; CAT.
DR HPA; CAB001515; -.
DR MIM; 115500; gene.
DR MIM; 614097; phenotype.
DR neXtProt; NX_P04040; -.
DR Orphanet; 926; Acatalasemia.
DR PharmGKB; PA26099; -.
DR eggNOG; COG0753; -.
DR HOVERGEN; HBG003986; -.
DR InParanoid; P04040; -.
DR KO; K03781; -.
DR OMA; LYTQINA; -.
DR OrthoDB; EOG7V7660; -.
DR PhylomeDB; P04040; -.
DR BioCyc; MetaCyc:MONOMER66-341; -.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P04040; -.
DR ChiTaRS; CAT; human.
DR EvolutionaryTrace; P04040; -.
DR GeneWiki; Catalase; -.
DR GenomeRNAi; 847; -.
DR NextBio; 3550; -.
DR PRO; PR:P04040; -.
DR ArrayExpress; P04040; -.
DR Bgee; P04040; -.
DR CleanEx; HS_CAT; -.
DR Genevestigator; P04040; -.
DR GO; GO:0005829; C:cytosol; IEA:Ensembl.
DR GO; GO:0005783; C:endoplasmic reticulum; IEA:Ensembl.
DR GO; GO:0005794; C:Golgi apparatus; IEA:Ensembl.
DR GO; GO:0005764; C:lysosome; IEA:Ensembl.
DR GO; GO:0005758; C:mitochondrial intermembrane space; IEA:Ensembl.
DR GO; GO:0005782; C:peroxisomal matrix; TAS:Reactome.
DR GO; GO:0005778; C:peroxisomal membrane; ISS:UniProtKB.
DR GO; GO:0005886; C:plasma membrane; IEA:Ensembl.
DR GO; GO:0004046; F:aminoacylase activity; IEA:Ensembl.
DR GO; GO:0004096; F:catalase activity; IDA:UniProtKB.
DR GO; GO:0020037; F:heme binding; IDA:UniProtKB.
DR GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW.
DR GO; GO:0050661; F:NADP binding; IDA:UniProtKB.
DR GO; GO:0042803; F:protein homodimerization activity; IDA:UniProtKB.
DR GO; GO:0009060; P:aerobic respiration; IEA:Ensembl.
DR GO; GO:0071363; P:cellular response to growth factor stimulus; IEA:Ensembl.
DR GO; GO:0008203; P:cholesterol metabolic process; IEA:Ensembl.
DR GO; GO:0020027; P:hemoglobin metabolic process; IEA:Ensembl.
DR GO; GO:0042744; P:hydrogen peroxide catabolic process; IDA:UniProtKB.
DR GO; GO:0042697; P:menopause; IEA:Ensembl.
DR GO; GO:0043066; P:negative regulation of apoptotic process; IMP:UniProtKB.
DR GO; GO:0032088; P:negative regulation of NF-kappaB transcription factor activity; IEA:Ensembl.
DR GO; GO:0051781; P:positive regulation of cell division; IEA:UniProtKB-KW.
DR GO; GO:0051092; P:positive regulation of NF-kappaB transcription factor activity; IEA:Ensembl.
DR GO; GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase cascade; IEA:Ensembl.
DR GO; GO:0051289; P:protein homotetramerization; IDA:UniProtKB.
DR GO; GO:0006144; P:purine nucleobase metabolic process; TAS:Reactome.
DR GO; GO:0006195; P:purine nucleotide catabolic process; TAS:Reactome.
DR GO; GO:0055093; P:response to hyperoxia; IEA:Ensembl.
DR GO; GO:0001666; P:response to hypoxia; IEA:Ensembl.
DR GO; GO:0033197; P:response to vitamin E; IEA:Ensembl.
DR GO; GO:0006641; P:triglyceride metabolic process; IEA:Ensembl.
DR GO; GO:0009650; P:UV protection; IMP:UniProtKB.
DR Gene3D; 2.40.180.10; -; 1.
DR InterPro; IPR018028; Catalase.
DR InterPro; IPR020835; Catalase-like_dom.
DR InterPro; IPR024708; Catalase_AS.
DR InterPro; IPR024711; Catalase_clade1/3.
DR InterPro; IPR011614; Catalase_core.
DR InterPro; IPR002226; Catalase_haem_BS.
DR InterPro; IPR010582; Catalase_immune_responsive.
DR PANTHER; PTHR11465; PTHR11465; 1.
DR Pfam; PF00199; Catalase; 1.
DR Pfam; PF06628; Catalase-rel; 1.
DR PIRSF; PIRSF038928; Catalase_clade1-3; 1.
DR PRINTS; PR00067; CATALASE.
DR SMART; SM01060; Catalase; 1.
DR SUPFAM; SSF56634; SSF56634; 1.
DR PROSITE; PS00437; CATALASE_1; 1.
DR PROSITE; PS00438; CATALASE_2; 1.
DR PROSITE; PS51402; CATALASE_3; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Complete proteome;
KW Direct protein sequencing; Heme; Hydrogen peroxide; Iron;
KW Metal-binding; Mitogen; NADP; Oxidoreductase; Peroxidase; Peroxisome;
KW Phosphoprotein; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 527 Catalase.
FT /FTId=PRO_0000084901.
FT ACT_SITE 75 75
FT ACT_SITE 148 148
FT METAL 358 358 Iron (heme axial ligand).
FT MOD_RES 233 233 N6-acetyllysine (By similarity).
FT MOD_RES 306 306 N6-acetyllysine (By similarity).
FT MOD_RES 417 417 Phosphoserine (By similarity).
FT MOD_RES 480 480 N6-acetyllysine (By similarity).
FT MOD_RES 499 499 N6-acetyllysine (By similarity).
FT CONFLICT 54 54 D -> N (in Ref. 3; AAK29181).
FT CONFLICT 100 100 F -> L (in Ref. 4; BAG37746).
FT CONFLICT 239 239 D -> G (in Ref. 3; AAK29181).
FT CONFLICT 274 274 Y -> D (in Ref. 3; AAK29181).
FT CONFLICT 301 301 K -> R (in Ref. 3; AAK29181).
FT CONFLICT 366 366 L -> P (in Ref. 4; BAG37746).
FT CONFLICT 449 449 N -> D (in Ref. 4; BAG37746).
FT CONFLICT 514 514 Q -> R (in Ref. 3; AAK29181).
FT CONFLICT 520 520 A -> V (in Ref. 3; AAK29181).
FT TURN 7 10
FT HELIX 11 18
FT TURN 19 21
FT STRAND 30 32
FT STRAND 38 40
FT STRAND 42 45
FT HELIX 55 64
FT STRAND 73 75
FT STRAND 77 87
FT TURN 92 94
FT HELIX 98 100
FT STRAND 106 114
FT STRAND 116 118
FT STRAND 124 128
FT STRAND 131 138
FT STRAND 141 152
FT HELIX 158 160
FT HELIX 161 168
FT TURN 172 174
FT HELIX 179 188
FT HELIX 190 192
FT HELIX 193 199
FT HELIX 202 204
FT STRAND 205 209
FT STRAND 220 223
FT STRAND 229 238
FT HELIX 247 256
FT HELIX 260 270
FT STRAND 276 284
FT HELIX 286 291
FT TURN 305 307
FT STRAND 311 320
FT HELIX 325 328
FT TURN 329 331
FT STRAND 343 345
FT HELIX 349 365
FT HELIX 370 372
FT HELIX 374 376
FT TURN 397 400
FT STRAND 404 406
FT HELIX 416 418
FT STRAND 427 431
FT HELIX 441 449
FT HELIX 453 467
FT HELIX 472 485
FT HELIX 487 500
SQ SEQUENCE 527 AA; 59756 MW; 7BAA2394D124ED20 CRC64;
MADSRDPASD QMQHWKEQRA AQKADVLTTG AGNPVGDKLN VITVGPRGPL LVQDVVFTDE
MAHFDRERIP ERVVHAKGAG AFGYFEVTHD ITKYSKAKVF EHIGKKTPIA VRFSTVAGES
GSADTVRDPR GFAVKFYTED GNWDLVGNNT PIFFIRDPIL FPSFIHSQKR NPQTHLKDPD
MVWDFWSLRP ESLHQVSFLF SDRGIPDGHR HMNGYGSHTF KLVNANGEAV YCKFHYKTDQ
GIKNLSVEDA ARLSQEDPDY GIRDLFNAIA TGKYPSWTFY IQVMTFNQAE TFPFNPFDLT
KVWPHKDYPL IPVGKLVLNR NPVNYFAEVE QIAFDPSNMP PGIEASPDKM LQGRLFAYPD
THRHRLGPNY LHIPVNCPYR ARVANYQRDG PMCMQDNQGG APNYYPNSFG APEQQPSALE
HSIQYSGEVR RFNTANDDNV TQVRAFYVNV LNEEQRKRLC ENIAGHLKDA QIFIQKKAVK
NFTEVHPDYG SHIQALLDKY NAEKPKNAIH TFVQSGSHLA AREKANL
//
MIM
115500
*RECORD*
*FIELD* NO
115500
*FIELD* TI
*115500 CATALASE; CAT
*FIELD* TX
DESCRIPTION
Catalase (EC 1.11.1.6) catalyzes the decomposition of hydrogen peroxide
read moreto oxygen and water. Mammalian catalase of approximately 240 kD occurs
as a complex of 4 identical subunits, each of which contains 526 amino
acid residues (summary by Ogata, 1991; Ogata et al., 2008).
CLONING
Bell et al. (1986) gave the cDNA sequence for human kidney catalase. The
coding region had 1,581 basepairs.
GENE STRUCTURE
Quan et al. (1986) found that the CAT gene is 34 kb long and split into
13 exons.
MAPPING
Wieacker et al. (1980) assigned a gene for catalase to 11p by study of
man-mouse cell hybrid clones. In the hybrid cells, detection of human
catalase was precluded by the complexity of the electrophoretic patterns
resulting from interference by a catalase-modifying enzyme activity.
Therefore, a specific antihuman antibody was used in conjunction with
electrophoresis. In mouse, catalase is not syntenic to the beta-globin
cluster or to LDH-A.
Niikawa et al. (1982) confirmed the close linkage of catalase to the
gene of the WAGR complex (see 194070) by demonstrating low levels of
catalase activity in the erythrocytes of 2 unrelated patients with the
WAGR syndrome and small deletions in 11p. From the study of dosage in 2
unrelated patients with an interstitial deletion involving 11p13,
Narahara et al. (1984) concluded that both the catalase locus and the
WAGR locus are situated in the chromosome segment 11p1306-p1305, with
catalase distal to WAGR.
By classic linkage studies using RFLPs of the several genes as markers,
Kittur et al. (1985) derived the following sequence of loci:
cen--CAT--16 cM--CALC--8 cM--PTH--pter, with the interval between CAT
and PTH estimated at 26 cM.
CYTOGENETICS
Junien et al. (1980) investigated catalase gene dosage effects in a case
of 11p13 deletion, a case of trisomy of all of 11p except 11p13, and a
case of trisomy 11p13. The results were consistent with assignment of
the catalase locus to 11p13 and its linkage with the WAGR complex
(194070). Assay of catalase activity should be useful in identifying
those cases of presumed new mutation aniridia that have a risk of Wilms
tumor or gonadoblastoma, even in the absence of visible chromosomal
deletion. In karyotypically normal patients with aniridia, Wilms tumor,
or the combination of the 2, Ferrell and Riccardi (1981) found normal
catalase levels.
BIOCHEMICAL FEATURES
Several rare electrophoretic variants of red cell catalase were
identified by Baur (1963). Nance et al. (1968) also described
electrophoretic variants.
Kenney et al. (2005) found that keratoconus (see 148300) corneas
exhibited a 2.20-fold increase in catalase mRNA and 1.8-fold increase in
enzyme activity. They concluded that elevated levels of cathepsins V/L2,
B (116810), and G (116830) in keratoconus corneas could stimulate
hydrogen peroxide production which, in turn, could upregulate catalase,
an antioxidant enzyme. These and other findings supported the hypothesis
that keratoconus corneas undergo oxidative stress and tissue
degradation.
Shibata et al. (1967) found that an immunologically reactive but
enzymatically inactive protein about one-sixth the size of active
catalase is present in red cells of patients with acatalasemia (614097).
MOLECULAR GENETICS
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
- Acatalasemia
In Japanese patients with acatalasemia (614097), Wen et al. (1990)
identified a homozygous splice site mutation in the CAT gene
(115500.0001).
Goth and Eaton (2000) reported an increased frequency of diabetes in
catalase-deficient (hypo/acatalasemic) Hungarian patients as compared
with unaffected first-degree relatives and the general Hungarian
population. The authors speculated that quantitative deficiency of
catalase might predispose to cumulative oxidant damage of pancreatic
beta-cells and resulting diabetes.
- Aniridia
Boyd et al. (1986) described a catalase RFLP with 2 different enzymes
and used these polymorphisms to exclude deletion of the catalase gene in
patients with sporadic aniridia, including one who was known to have a
deletion and another suspected of having a deletion.
Mannens et al. (1987) found deletion of the catalase locus in 6 of 9
patients with aniridia (AN2; 106210). One of these catalase-deficient
aniridia patients had a normal karyotype. No catalase deletion could be
demonstrated in 7 Wilms tumors.
- Hypertension
Jiang et al. (2001) found an association between essential hypertension
defined as elevation of systolic blood pressure and a single-nucleotide
polymorphism (SNP) located 844 bp upstream of the start codon of the CAT
gene. The TT phenotype was associated with higher blood pressure than
the CC phenotype and CT was intermediate.
ANIMAL MODEL
In the acatalasemic mouse, Shaffer and Preston (1990) demonstrated that
a CAG (glutamine)-to-CAT (histidine) transversion in the third position
of codon 11 was responsible for the deficiency.
To determine the role of reactive oxygen species in mammalian longevity,
Schriner et al. (2005) generated transgenic mice that overexpressed
human catalase localized to the peroxisome, the nucleus, or
mitochondria. Median and maximum life spans were maximally increased
(average of 5 months and 5.5 months, respectively) in the mitochondrial
catalase-expressing animals. Cardiac pathology and cataract development
were delayed, oxidative damage was reduced, peroxide production and
peroxide-induced aconitase inactivation were attenuated, and the
development of mitochondrial deletions was reduced. Schriner et al.
(2005) concluded that their results support the free radical theory of
aging and reinforce the importance of mitochondria as a source of these
radicals.
*FIELD* AV
.0001
ACATALASEMIA, JAPANESE TYPE
CAT, IVS4, G-A, +5
By sequencing the CAT gene for all exons, exon/intron junctions, and
5-prime and 3-prime flanking regions in a case of the Japanese type of
acatalasemia (614097), Wen et al. (1990) concluded that the genetic
disorder resulted from a splicing mutation, namely, a G-to-A
substitution at the fifth position of intron 4. In studies using
chimeric genes constructed from the normal or mutant CAT gene and a part
of the alpha-globin gene, Wen et al. (1990) showed that when the mutant
gene construct was introduced into COS-7 cells, abnormal splicing
occurred. The same splice site mutation was found in the genomic DNA of
another unrelated acatalasemic person. Kishimoto et al. (1992) found the
same mutation in 2 other unrelated Japanese patients and suggested that
only a single mutated allele had spread in the Japanese population.
.0002
ACATALASEMIA, JAPANESE TYPE
CAT, 1-BP DEL, 358T
In a Japanese individual with acatalasemia (614097), Hirono et al.
(1995) identified a homozygous 1-bp deletion (358T) in exon 4 of the CAT
gene, causing a frameshift and a premature termination codon. The
truncated peptide chain consisted of 133 amino acid residues.
.0003
ACATALASEMIA, HUNGARIAN TYPE
CAT, 2-BP INS, 138GA
In a Hungarian patient with acatalasemia (614097), Goth et al. (2000)
identified a 138GA insertion in exon 2 of the CAT gene, increasing the
GA repeat number from 4 to 5. The insertion caused a frameshift and a
premature termination codon. The truncated protein lacks the essential
amino acid (histidine 74) in the active center.
*FIELD* SA
Agar et al. (1986); Feinstein et al. (1966); Kidd et al. (1987); Quan
et al. (1985); Schroeder and Saunders (1987)
*FIELD* RF
1. Agar, N. S.; Sadrzadeh, S. M. H.; Hallaway, P. E.; Eaton, J. W.
: Erythrocyte catalase: a somatic oxidant defense? J. Clin. Invest. 77:
319-321, 1986.
2. Baur, E. W.: Catalase abnormality in a Caucasian family in the
United States. Science 140: 816-817, 1963.
3. Bell, G. I.; Najarian, R. C.; Mullenbach, G. T.; Hallewell, R.
A.: cDNA sequence coding for human kidney catalase. Nucleic Acids
Res. 14: 5561-5562, 1986.
4. Boyd, P.; van Heyningen, V.; Seawright, A.; Fekete, G.; Hastie,
N.: Use of catalase polymorphisms in the study of sporadic aniridia. Hum.
Genet. 73: 171-174, 1986.
5. Feinstein, R. N.; Howard, J. B.; Braun, J. T.; Seaholm, J. E.:
Acatalasemic and hypocatalasemic mouse mutants. Genetics 53: 923-933,
1966.
6. Ferrell, R. E.; Riccardi, V. M.: Catalase levels in patients with
aniridia and-or Wilms' tumor: utility and limitations. Cytogenet.
Cell Genet. 31: 120-123, 1981.
7. Goth, L.; Eaton, J. W.: Hereditary catalase deficiencies and increased
risk of diabetes. Lancet 356: 1820-1821, 2000.
8. Goth, L.; Shemirani, A.; Kalmar, T.: A novel catalase mutation
(a GA insertion) causes the Hungarian type of acatalasemia. Blood
Cells Molec. Dis. 26: 151-154, 2000.
9. Hirono, A.; Sasaya-Hamada, F.; Kanno, H.; Fujii, H.; Yoshida, T.;
Miwa, S.: A novel human catalase mutation (358T-del) causing Japanese-type
acatalasemia. Blood Cells Molec. Dis. 21: 232-234, 1995.
10. Jiang, Z.; Akey, J. M.; Shi, J.; Xiong, M.; Wang, Y.; Shen, Y.;
Xu, X.; Chen, H.; Wu, H.; Xiao, J.; Lu, D.; Huang, W.; Jin, L.: A
polymorphism in the promoter region of catalase is associated with
blood pressure levels. Hum. Genet. 109: 95-98, 2001.
11. Junien, C.; Turleau, C.; de Grouchy, J.; Said, R.; Rethore, M.-O.;
Tenconi, R.; Dufier, J. L.: Regional assignment of catalase (CAT)
gene to band 11p13: association with the aniridia-Wilms' tumor-gonadoblastoma
(WAGR) complex. Ann. Genet. 23: 165-168, 1980.
12. Kenney, M. C.; Chwa, M.; Atilano, S. R.; Tran, A.; Carballo, M.;
Saghizadeh, M.; Vasiliou, V.; Adachi, W.; Brown, D. J.: Increased
levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus
corneas: evidence that oxidative stress plays an role in this disorder. Invest.
Ophthal. Vis. Sci. 46: 823-832, 2005.
13. Kidd, J. R.; Castiglione, C. M.; Pakstis, A. J.; Kidd, K. K.:
The anonymous RFLP locus D11S16 is tightly linked to catalase on 11p. Cytogenet.
Cell Genet. 45: 63-64, 1987.
14. Kishimoto, Y.; Murakami, Y.; Hayashi, K.; Takahara, S.; Sugimura,
T.; Sekiya, T.: Detection of a common mutation of the catalase gene
in Japanese acatalasemic patients. Hum. Genet. 88: 487-490, 1992.
15. Kittur, S. D.; Hoppener, J. W. M.; Antonarakis, S. E.; Daniels,
J. D. J.; Meyers, D. A.; Maestri, N. E.; Jansen, M.; Korneluk, R.
G.; Nelkin, B. D.; Kazazian, H. H., Jr.: Linkage map of the short
arm of human chromosome 11: location of the genes for catalase calcitonin,
and insulin-like growth factor II. Proc. Nat. Acad. Sci. 82: 5064-5067,
1985.
16. Mannens, M.; Slater, R. M.; Heyting, C.; Bliek, J.; Hoovers, J.;
Bleeker-Wagemakers, E. M.; Voute, P. A.; Coad, N.; Frants, R. R.;
Pearson, P. L.: Chromosome 11, Wilms' tumour and associated congenital
diseases. (Abstract) Cytogenet. Cell Genet. 46: 655 only, 1987.
17. Nance, W. E.; Empson, J. E.; Bennett, T. W.; Larson, L.: Haptoglobin
and catalase loci in man: possible genetic linkage. Science 160:
1230-1231, 1968.
18. Narahara, K.; Kikkawa, K.; Kimira, S.; Kimoto, H.; Ogata, M.;
Kasai, R.; Hamawaki, M.; Matsuoka, K.: Regional mapping of catalase
and Wilms tumor--aniridia, genitourinary abnormalities, and mental
retardation triad loci to the chromosome segment 11p1305-p1306. Hum.
Genet. 66: 181-185, 1984.
19. Niikawa, N.; Fukushima, Y.; Taniguchi, N.; Iizuka, S.; Kajii,
T.: Chromosome abnormalities involving 11p13 and low erythrocyte
catalase activity. Hum. Genet. 60: 373-375, 1982.
20. Ogata, M.: Acatalasemia. Hum. Genet. 86: 331-340, 1991.
21. Ogata, M.; Wang, D.-H.; Ogino, K.: Mammalian acatalasemia: the
perspectives of bioinformatics and genetic toxicology. Acta Med.
Okayama 62: 345-361, 2008. Note: Erratum: Acta Med. Okayama 63: 121-122,
2009.
22. Quan, F.; Korneluk, R. G.; MacLeod, H. L.; Tsui, L. C.; Gravel,
R. A.: An RFLP associated with the human catalase gene. Nucleic
Acids Res. 13: 8288 only, 1985.
23. Quan, F.; Korneluk, R. G.; Tropak, M. B.; Gravel, R. A.: Isolation
and characterization of the human catalase gene. Nucleic Acids Res. 14:
5321-5335, 1986.
24. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
25. Schriner, S. E.; Linford, N. J.; Martin, G. M.; Treuting, P.;
Ogburn, C. E.; Emond, M.; Coskun, P. E.; Ladiges, W.; Wolf, N.; Van
Remmen, H.; Wallace, D. C.; Rabinovitch, P. S.: Extension of murine
life span by overexpression of catalase targeted to mitochondria. Science 308:
1909-1911, 2005.
26. Schroeder, W. T.; Saunders, G. F.: Localization of the human
catalase and apolipoprotein A-I genes to chromosome 11. Cytogenet.
Cell Genet. 44: 231-233, 1987.
27. Shaffer, J. B.; Preston, K. E.: Molecular analysis of an acatalasemic
mouse mutant. Biochem. Biophys. Res. Commun. 173: 1043-1050, 1990.
28. Shibata, Y.; Higashi, T.; Hirai, H.; Hamilton, H. B.: Immunochemical
studies on catalase. II. An anticatalase reacting component in normal
hypocatalasic, and acatalasic human erythrocytes. Arch. Biochem. 118:
200-209, 1967.
29. Wen, J. K.; Osumi, T.; Hashimoto, T.; Ogata, M.: Molecular analysis
of human acatalasemia: identification of a splicing mutation. J.
Molec. Biol. 211: 383-393, 1990.
30. Wieacker, P.; Mueller, C. R.; Mayerova, A.; Grzeschik, K. H.;
Ropers, H. H.: Assignment of the gene coding for human catalase to
the short arm of chromosome 11. Ann. Genet. 23: 73-77, 1980.
*FIELD* CN
Jane Kelly - updated: 12/9/2005
Ada Hamosh - updated: 7/27/2005
Victor A. McKusick - updated: 8/30/2001
Victor A. McKusick - updated: 1/26/2001
*FIELD* CD
Victor A. McKusick: 6/23/1986
*FIELD* ED
terry: 03/14/2013
terry: 8/2/2011
carol: 7/19/2011
carol: 7/18/2011
alopez: 3/30/2006
alopez: 12/9/2005
terry: 7/27/2005
carol: 3/17/2004
mcapotos: 8/30/2001
mcapotos: 1/29/2001
terry: 1/26/2001
terry: 4/30/1999
davew: 8/1/1994
mimadm: 6/25/1994
carol: 10/21/1993
carol: 6/3/1992
carol: 4/28/1992
supermim: 3/16/1992
*RECORD*
*FIELD* NO
115500
*FIELD* TI
*115500 CATALASE; CAT
*FIELD* TX
DESCRIPTION
Catalase (EC 1.11.1.6) catalyzes the decomposition of hydrogen peroxide
read moreto oxygen and water. Mammalian catalase of approximately 240 kD occurs
as a complex of 4 identical subunits, each of which contains 526 amino
acid residues (summary by Ogata, 1991; Ogata et al., 2008).
CLONING
Bell et al. (1986) gave the cDNA sequence for human kidney catalase. The
coding region had 1,581 basepairs.
GENE STRUCTURE
Quan et al. (1986) found that the CAT gene is 34 kb long and split into
13 exons.
MAPPING
Wieacker et al. (1980) assigned a gene for catalase to 11p by study of
man-mouse cell hybrid clones. In the hybrid cells, detection of human
catalase was precluded by the complexity of the electrophoretic patterns
resulting from interference by a catalase-modifying enzyme activity.
Therefore, a specific antihuman antibody was used in conjunction with
electrophoresis. In mouse, catalase is not syntenic to the beta-globin
cluster or to LDH-A.
Niikawa et al. (1982) confirmed the close linkage of catalase to the
gene of the WAGR complex (see 194070) by demonstrating low levels of
catalase activity in the erythrocytes of 2 unrelated patients with the
WAGR syndrome and small deletions in 11p. From the study of dosage in 2
unrelated patients with an interstitial deletion involving 11p13,
Narahara et al. (1984) concluded that both the catalase locus and the
WAGR locus are situated in the chromosome segment 11p1306-p1305, with
catalase distal to WAGR.
By classic linkage studies using RFLPs of the several genes as markers,
Kittur et al. (1985) derived the following sequence of loci:
cen--CAT--16 cM--CALC--8 cM--PTH--pter, with the interval between CAT
and PTH estimated at 26 cM.
CYTOGENETICS
Junien et al. (1980) investigated catalase gene dosage effects in a case
of 11p13 deletion, a case of trisomy of all of 11p except 11p13, and a
case of trisomy 11p13. The results were consistent with assignment of
the catalase locus to 11p13 and its linkage with the WAGR complex
(194070). Assay of catalase activity should be useful in identifying
those cases of presumed new mutation aniridia that have a risk of Wilms
tumor or gonadoblastoma, even in the absence of visible chromosomal
deletion. In karyotypically normal patients with aniridia, Wilms tumor,
or the combination of the 2, Ferrell and Riccardi (1981) found normal
catalase levels.
BIOCHEMICAL FEATURES
Several rare electrophoretic variants of red cell catalase were
identified by Baur (1963). Nance et al. (1968) also described
electrophoretic variants.
Kenney et al. (2005) found that keratoconus (see 148300) corneas
exhibited a 2.20-fold increase in catalase mRNA and 1.8-fold increase in
enzyme activity. They concluded that elevated levels of cathepsins V/L2,
B (116810), and G (116830) in keratoconus corneas could stimulate
hydrogen peroxide production which, in turn, could upregulate catalase,
an antioxidant enzyme. These and other findings supported the hypothesis
that keratoconus corneas undergo oxidative stress and tissue
degradation.
Shibata et al. (1967) found that an immunologically reactive but
enzymatically inactive protein about one-sixth the size of active
catalase is present in red cells of patients with acatalasemia (614097).
MOLECULAR GENETICS
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
- Acatalasemia
In Japanese patients with acatalasemia (614097), Wen et al. (1990)
identified a homozygous splice site mutation in the CAT gene
(115500.0001).
Goth and Eaton (2000) reported an increased frequency of diabetes in
catalase-deficient (hypo/acatalasemic) Hungarian patients as compared
with unaffected first-degree relatives and the general Hungarian
population. The authors speculated that quantitative deficiency of
catalase might predispose to cumulative oxidant damage of pancreatic
beta-cells and resulting diabetes.
- Aniridia
Boyd et al. (1986) described a catalase RFLP with 2 different enzymes
and used these polymorphisms to exclude deletion of the catalase gene in
patients with sporadic aniridia, including one who was known to have a
deletion and another suspected of having a deletion.
Mannens et al. (1987) found deletion of the catalase locus in 6 of 9
patients with aniridia (AN2; 106210). One of these catalase-deficient
aniridia patients had a normal karyotype. No catalase deletion could be
demonstrated in 7 Wilms tumors.
- Hypertension
Jiang et al. (2001) found an association between essential hypertension
defined as elevation of systolic blood pressure and a single-nucleotide
polymorphism (SNP) located 844 bp upstream of the start codon of the CAT
gene. The TT phenotype was associated with higher blood pressure than
the CC phenotype and CT was intermediate.
ANIMAL MODEL
In the acatalasemic mouse, Shaffer and Preston (1990) demonstrated that
a CAG (glutamine)-to-CAT (histidine) transversion in the third position
of codon 11 was responsible for the deficiency.
To determine the role of reactive oxygen species in mammalian longevity,
Schriner et al. (2005) generated transgenic mice that overexpressed
human catalase localized to the peroxisome, the nucleus, or
mitochondria. Median and maximum life spans were maximally increased
(average of 5 months and 5.5 months, respectively) in the mitochondrial
catalase-expressing animals. Cardiac pathology and cataract development
were delayed, oxidative damage was reduced, peroxide production and
peroxide-induced aconitase inactivation were attenuated, and the
development of mitochondrial deletions was reduced. Schriner et al.
(2005) concluded that their results support the free radical theory of
aging and reinforce the importance of mitochondria as a source of these
radicals.
*FIELD* AV
.0001
ACATALASEMIA, JAPANESE TYPE
CAT, IVS4, G-A, +5
By sequencing the CAT gene for all exons, exon/intron junctions, and
5-prime and 3-prime flanking regions in a case of the Japanese type of
acatalasemia (614097), Wen et al. (1990) concluded that the genetic
disorder resulted from a splicing mutation, namely, a G-to-A
substitution at the fifth position of intron 4. In studies using
chimeric genes constructed from the normal or mutant CAT gene and a part
of the alpha-globin gene, Wen et al. (1990) showed that when the mutant
gene construct was introduced into COS-7 cells, abnormal splicing
occurred. The same splice site mutation was found in the genomic DNA of
another unrelated acatalasemic person. Kishimoto et al. (1992) found the
same mutation in 2 other unrelated Japanese patients and suggested that
only a single mutated allele had spread in the Japanese population.
.0002
ACATALASEMIA, JAPANESE TYPE
CAT, 1-BP DEL, 358T
In a Japanese individual with acatalasemia (614097), Hirono et al.
(1995) identified a homozygous 1-bp deletion (358T) in exon 4 of the CAT
gene, causing a frameshift and a premature termination codon. The
truncated peptide chain consisted of 133 amino acid residues.
.0003
ACATALASEMIA, HUNGARIAN TYPE
CAT, 2-BP INS, 138GA
In a Hungarian patient with acatalasemia (614097), Goth et al. (2000)
identified a 138GA insertion in exon 2 of the CAT gene, increasing the
GA repeat number from 4 to 5. The insertion caused a frameshift and a
premature termination codon. The truncated protein lacks the essential
amino acid (histidine 74) in the active center.
*FIELD* SA
Agar et al. (1986); Feinstein et al. (1966); Kidd et al. (1987); Quan
et al. (1985); Schroeder and Saunders (1987)
*FIELD* RF
1. Agar, N. S.; Sadrzadeh, S. M. H.; Hallaway, P. E.; Eaton, J. W.
: Erythrocyte catalase: a somatic oxidant defense? J. Clin. Invest. 77:
319-321, 1986.
2. Baur, E. W.: Catalase abnormality in a Caucasian family in the
United States. Science 140: 816-817, 1963.
3. Bell, G. I.; Najarian, R. C.; Mullenbach, G. T.; Hallewell, R.
A.: cDNA sequence coding for human kidney catalase. Nucleic Acids
Res. 14: 5561-5562, 1986.
4. Boyd, P.; van Heyningen, V.; Seawright, A.; Fekete, G.; Hastie,
N.: Use of catalase polymorphisms in the study of sporadic aniridia. Hum.
Genet. 73: 171-174, 1986.
5. Feinstein, R. N.; Howard, J. B.; Braun, J. T.; Seaholm, J. E.:
Acatalasemic and hypocatalasemic mouse mutants. Genetics 53: 923-933,
1966.
6. Ferrell, R. E.; Riccardi, V. M.: Catalase levels in patients with
aniridia and-or Wilms' tumor: utility and limitations. Cytogenet.
Cell Genet. 31: 120-123, 1981.
7. Goth, L.; Eaton, J. W.: Hereditary catalase deficiencies and increased
risk of diabetes. Lancet 356: 1820-1821, 2000.
8. Goth, L.; Shemirani, A.; Kalmar, T.: A novel catalase mutation
(a GA insertion) causes the Hungarian type of acatalasemia. Blood
Cells Molec. Dis. 26: 151-154, 2000.
9. Hirono, A.; Sasaya-Hamada, F.; Kanno, H.; Fujii, H.; Yoshida, T.;
Miwa, S.: A novel human catalase mutation (358T-del) causing Japanese-type
acatalasemia. Blood Cells Molec. Dis. 21: 232-234, 1995.
10. Jiang, Z.; Akey, J. M.; Shi, J.; Xiong, M.; Wang, Y.; Shen, Y.;
Xu, X.; Chen, H.; Wu, H.; Xiao, J.; Lu, D.; Huang, W.; Jin, L.: A
polymorphism in the promoter region of catalase is associated with
blood pressure levels. Hum. Genet. 109: 95-98, 2001.
11. Junien, C.; Turleau, C.; de Grouchy, J.; Said, R.; Rethore, M.-O.;
Tenconi, R.; Dufier, J. L.: Regional assignment of catalase (CAT)
gene to band 11p13: association with the aniridia-Wilms' tumor-gonadoblastoma
(WAGR) complex. Ann. Genet. 23: 165-168, 1980.
12. Kenney, M. C.; Chwa, M.; Atilano, S. R.; Tran, A.; Carballo, M.;
Saghizadeh, M.; Vasiliou, V.; Adachi, W.; Brown, D. J.: Increased
levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus
corneas: evidence that oxidative stress plays an role in this disorder. Invest.
Ophthal. Vis. Sci. 46: 823-832, 2005.
13. Kidd, J. R.; Castiglione, C. M.; Pakstis, A. J.; Kidd, K. K.:
The anonymous RFLP locus D11S16 is tightly linked to catalase on 11p. Cytogenet.
Cell Genet. 45: 63-64, 1987.
14. Kishimoto, Y.; Murakami, Y.; Hayashi, K.; Takahara, S.; Sugimura,
T.; Sekiya, T.: Detection of a common mutation of the catalase gene
in Japanese acatalasemic patients. Hum. Genet. 88: 487-490, 1992.
15. Kittur, S. D.; Hoppener, J. W. M.; Antonarakis, S. E.; Daniels,
J. D. J.; Meyers, D. A.; Maestri, N. E.; Jansen, M.; Korneluk, R.
G.; Nelkin, B. D.; Kazazian, H. H., Jr.: Linkage map of the short
arm of human chromosome 11: location of the genes for catalase calcitonin,
and insulin-like growth factor II. Proc. Nat. Acad. Sci. 82: 5064-5067,
1985.
16. Mannens, M.; Slater, R. M.; Heyting, C.; Bliek, J.; Hoovers, J.;
Bleeker-Wagemakers, E. M.; Voute, P. A.; Coad, N.; Frants, R. R.;
Pearson, P. L.: Chromosome 11, Wilms' tumour and associated congenital
diseases. (Abstract) Cytogenet. Cell Genet. 46: 655 only, 1987.
17. Nance, W. E.; Empson, J. E.; Bennett, T. W.; Larson, L.: Haptoglobin
and catalase loci in man: possible genetic linkage. Science 160:
1230-1231, 1968.
18. Narahara, K.; Kikkawa, K.; Kimira, S.; Kimoto, H.; Ogata, M.;
Kasai, R.; Hamawaki, M.; Matsuoka, K.: Regional mapping of catalase
and Wilms tumor--aniridia, genitourinary abnormalities, and mental
retardation triad loci to the chromosome segment 11p1305-p1306. Hum.
Genet. 66: 181-185, 1984.
19. Niikawa, N.; Fukushima, Y.; Taniguchi, N.; Iizuka, S.; Kajii,
T.: Chromosome abnormalities involving 11p13 and low erythrocyte
catalase activity. Hum. Genet. 60: 373-375, 1982.
20. Ogata, M.: Acatalasemia. Hum. Genet. 86: 331-340, 1991.
21. Ogata, M.; Wang, D.-H.; Ogino, K.: Mammalian acatalasemia: the
perspectives of bioinformatics and genetic toxicology. Acta Med.
Okayama 62: 345-361, 2008. Note: Erratum: Acta Med. Okayama 63: 121-122,
2009.
22. Quan, F.; Korneluk, R. G.; MacLeod, H. L.; Tsui, L. C.; Gravel,
R. A.: An RFLP associated with the human catalase gene. Nucleic
Acids Res. 13: 8288 only, 1985.
23. Quan, F.; Korneluk, R. G.; Tropak, M. B.; Gravel, R. A.: Isolation
and characterization of the human catalase gene. Nucleic Acids Res. 14:
5321-5335, 1986.
24. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
25. Schriner, S. E.; Linford, N. J.; Martin, G. M.; Treuting, P.;
Ogburn, C. E.; Emond, M.; Coskun, P. E.; Ladiges, W.; Wolf, N.; Van
Remmen, H.; Wallace, D. C.; Rabinovitch, P. S.: Extension of murine
life span by overexpression of catalase targeted to mitochondria. Science 308:
1909-1911, 2005.
26. Schroeder, W. T.; Saunders, G. F.: Localization of the human
catalase and apolipoprotein A-I genes to chromosome 11. Cytogenet.
Cell Genet. 44: 231-233, 1987.
27. Shaffer, J. B.; Preston, K. E.: Molecular analysis of an acatalasemic
mouse mutant. Biochem. Biophys. Res. Commun. 173: 1043-1050, 1990.
28. Shibata, Y.; Higashi, T.; Hirai, H.; Hamilton, H. B.: Immunochemical
studies on catalase. II. An anticatalase reacting component in normal
hypocatalasic, and acatalasic human erythrocytes. Arch. Biochem. 118:
200-209, 1967.
29. Wen, J. K.; Osumi, T.; Hashimoto, T.; Ogata, M.: Molecular analysis
of human acatalasemia: identification of a splicing mutation. J.
Molec. Biol. 211: 383-393, 1990.
30. Wieacker, P.; Mueller, C. R.; Mayerova, A.; Grzeschik, K. H.;
Ropers, H. H.: Assignment of the gene coding for human catalase to
the short arm of chromosome 11. Ann. Genet. 23: 73-77, 1980.
*FIELD* CN
Jane Kelly - updated: 12/9/2005
Ada Hamosh - updated: 7/27/2005
Victor A. McKusick - updated: 8/30/2001
Victor A. McKusick - updated: 1/26/2001
*FIELD* CD
Victor A. McKusick: 6/23/1986
*FIELD* ED
terry: 03/14/2013
terry: 8/2/2011
carol: 7/19/2011
carol: 7/18/2011
alopez: 3/30/2006
alopez: 12/9/2005
terry: 7/27/2005
carol: 3/17/2004
mcapotos: 8/30/2001
mcapotos: 1/29/2001
terry: 1/26/2001
terry: 4/30/1999
davew: 8/1/1994
mimadm: 6/25/1994
carol: 10/21/1993
carol: 6/3/1992
carol: 4/28/1992
supermim: 3/16/1992
MIM
614097
*RECORD*
*FIELD* NO
614097
*FIELD* TI
#614097 ACATALASEMIA
;;ACATALASIA;;
CATALASE DEFICIENCY
*FIELD* TX
A number sign (#) is used with this entry because acatalasemia is caused
read moreby homozygous mutation in the CAT gene (115500) on chromosome 11p13.
DESCRIPTION
Acatalasemia, also known as acatalasia, is a metabolic disorder
characterized by a total or near total loss of catalase activity in
erythrocytes. About half of cases originate from ulcerating oral
gangrenes, and these cases are referred to as having Takahara disease.
Half-normal levels of catalase in heterozygotes is referred to as
hypocatalasemia or hypocatalasia (Ogata, 1991).
CLINICAL FEATURES
Acatalasemia was first discovered in Japan by Takahara, an
otolaryngologist who found that in cases of progressive oral gangrene,
hydrogen peroxide applied to the ulcerated areas did not froth in the
usual manner (Takahara and Miyamoto, 1948). Heterozygotes have an
intermediate level of catalase in the blood. The frequency of
heterozygotes is 0.09% in Hiroshima and Nagasaki but is of the order of
1.4% in other parts of Japan (Hamilton et al., 1961).
Acatalasia has been detected in Switzerland (Aebi et al., 1962) and in
Israel (Szeinberg et al., 1963). In the Swiss and the Israelis the
homozygotes showed some residual catalase activity, suggesting that this
may be a different mutation from that responsible for the Japanese
disease in which catalase activity is zero and no cross-reacting
material has been identified.
Ogata (1991) compared the properties of residual catalase in the
Japanese and Swiss forms of the disease and in the mutant mouse.
Shibata et al. (1967) found that an immunologically reactive but
enzymatically inactive protein about one-sixth the size of active
catalase is present in red cells of individuals with acatalasemia.
Goth and Eaton (2000) reported an increased frequency of diabetes in
catalase-deficient (hypo/acatalasemic) Hungarian patients as compared
with unaffected first-degree relatives and the general Hungarian
population. The authors speculated that quantitative deficiency of
catalase might predispose to cumulative oxidant damage of pancreatic
beta-cells and resulting diabetes.
INHERITANCE
Acatalasemia is inherited as an autosomal recessive trait (Ogata, 1991).
POPULATION GENETICS
Ogata (1991) reported that 90 of 107 known individuals with acatalasemia
were Japanese.
Goth et al. (2000) stated that the incidence of acatalasemia in Hungary
in 5:106.
MOLECULAR GENETICS
In a Japanese patient with acatalasemia, Wen et al. (1990) identified a
homozygous splice site mutation in the CAT gene (115500.0001).
In a Japanese patient with acatalasemia, Hirono et al. (1995) identified
1-bp deletion in the CAT gene (115500.0002).
In a Hungarian patient with acatalasemia, Goth et al. (2000) identified
a homozygous insertion mutation in the CAT gene (115500.0003).
ANIMAL MODEL
Hypocatalasia has been found in the guinea pig, dog, and domestic fowl
(see review by Lush, 1966). In the acatalasemic mouse, Shaffer and
Preston (1990) demonstrated that a CAG (glutamine)-to-CAT (histidine)
transversion in the third position of codon 11 was responsible for the
deficiency.
*FIELD* SA
Aebi et al. (1964); Aebi and Suter (1972); Hamilton and Neel (1963);
Kishimoto et al. (1992); Matsunaga et al. (1985)
*FIELD* RF
1. Aebi, H.; Baggiolini, M.; Dewald, B.; Lauber, E.; Sutter, H.; Micheli,
A.; Frei, J.: Observations in two Swiss families with acatalasia. Enzymol.
Biol. Clin. 4: 121-151, 1964.
2. Aebi, H.; Jeunet, F.; Richterich, R.; Suter, H.; Butler, R.; Frei,
J.; Marti, H. R.: Observations in two Swiss families with acatalasia. Enzymol.
Biol. Clin. 2: 1-22, 1962.
3. Aebi, H.; Suter, H.: Acatalasia.In: Stanbury, J. B.; Wyngaarden,
J. B.; Fredrickson, D. S. (eds.): The Metabolic Basis of Inherited
Disease. New York: McGraw-Hill (pub.) (3rd ed.): 1972. Pp. 1710-1729.
4. Goth, L.; Eaton, J. W.: Hereditary catalase deficiencies and increased
risk of diabetes. Lancet 356: 1820-1821, 2000.
5. Goth, L.; Shemirani, A.; Kalmar, T.: A novel catalase mutation
(a GA insertion) causes the Hungarian type of acatalasemia. Blood
Cells Molec. Dis. 26: 151-154, 2000.
6. Hamilton, H. B.; Neel, J. V.: Genetic heterogeneity in human acatalasia. Am.
J. Hum. Genet. 15: 408-419, 1963.
7. Hamilton, H. B.; Neel, J. V.; Kobara, T. Y.; Ozaki, K.: The frequency
in Japan of carriers of the rare 'recessive' gene causing acatalasemia. J.
Clin. Invest. 40: 2199-2208, 1961.
8. Hirono, A.; Sasaya-Hamada, F.; Kanno, H.; Fujii, H.; Yoshida, T.;
Miwa, S.: A novel human catalase mutation (358T-del) causing Japanese-type
acatalasemia. Blood Cells Molec. Dis. 21: 232-234, 1995.
9. Kishimoto, Y.; Murakami, Y.; Hayashi, K.; Takahara, S.; Sugimura,
T.; Sekiya, T.: Detection of a common mutation of the catalase gene
in Japanese acatalasemic patients. Hum. Genet. 88: 487-490, 1992.
10. Lush, I. E.: The Biochemical Genetics of Vertebrates Except Man.
Philadelphia: W. B. Saunders (pub.) 1966.
11. Matsunaga, T.; Seger, R.; Hoger, P.; Tiefenauer, L.; Hitzig, W.
H.: Congenital acatalasemia: a study of neutrophil functions after
provocation with hydrogen peroxide. Pediat. Res. 19: 1187-1190,
1985.
12. Ogata, M.: Acatalasemia. Hum. Genet. 86: 331-340, 1991.
13. Shaffer, J. B.; Preston, K. E.: Molecular analysis of an acatalasemic
mouse mutant. Biochem. Biophys. Res. Commun. 173: 1043-1050, 1990.
14. Shibata, Y.; Higashi, T.; Hirai, H.; Hamilton, H. B.: Immunochemical
studies on catalase. II. An anticatalase reacting component in normal
hypocatalasic, and acatalasic human erythrocytes. Arch. Biochem. 118:
200-209, 1967.
15. Szeinberg, A.; De Vries, A.; Pinkhas, J.; Djaldetti, M.; Ezra,
R.: A dual hereditary red blood cell defect in one family: hypocatalasemia
and glucose-6-phosphate dehydrogenase deficiency. Acta Genet. Med.
Gemellol. 12: 247-255, 1963.
16. Takahara, S.; Miyamoto, H.: Three cases of progressive oral gangrene
due to lack of catalase in the blood. Nippon Jibi-Inkoka Gakkai Kaiho 51:
163 only, 1948.
17. Wen, J. K.; Osumi, T.; Hashimoto, T.; Ogata, M.: Molecular analysis
of human acatalasemia: identification of a splicing mutation. J.
Molec. Biol. 211: 383-393, 1990.
*FIELD* CD
Carol A. Bocchini: 7/18/2011
*FIELD* ED
terry: 08/02/2011
terry: 7/18/2011
carol: 7/18/2011
*RECORD*
*FIELD* NO
614097
*FIELD* TI
#614097 ACATALASEMIA
;;ACATALASIA;;
CATALASE DEFICIENCY
*FIELD* TX
A number sign (#) is used with this entry because acatalasemia is caused
read moreby homozygous mutation in the CAT gene (115500) on chromosome 11p13.
DESCRIPTION
Acatalasemia, also known as acatalasia, is a metabolic disorder
characterized by a total or near total loss of catalase activity in
erythrocytes. About half of cases originate from ulcerating oral
gangrenes, and these cases are referred to as having Takahara disease.
Half-normal levels of catalase in heterozygotes is referred to as
hypocatalasemia or hypocatalasia (Ogata, 1991).
CLINICAL FEATURES
Acatalasemia was first discovered in Japan by Takahara, an
otolaryngologist who found that in cases of progressive oral gangrene,
hydrogen peroxide applied to the ulcerated areas did not froth in the
usual manner (Takahara and Miyamoto, 1948). Heterozygotes have an
intermediate level of catalase in the blood. The frequency of
heterozygotes is 0.09% in Hiroshima and Nagasaki but is of the order of
1.4% in other parts of Japan (Hamilton et al., 1961).
Acatalasia has been detected in Switzerland (Aebi et al., 1962) and in
Israel (Szeinberg et al., 1963). In the Swiss and the Israelis the
homozygotes showed some residual catalase activity, suggesting that this
may be a different mutation from that responsible for the Japanese
disease in which catalase activity is zero and no cross-reacting
material has been identified.
Ogata (1991) compared the properties of residual catalase in the
Japanese and Swiss forms of the disease and in the mutant mouse.
Shibata et al. (1967) found that an immunologically reactive but
enzymatically inactive protein about one-sixth the size of active
catalase is present in red cells of individuals with acatalasemia.
Goth and Eaton (2000) reported an increased frequency of diabetes in
catalase-deficient (hypo/acatalasemic) Hungarian patients as compared
with unaffected first-degree relatives and the general Hungarian
population. The authors speculated that quantitative deficiency of
catalase might predispose to cumulative oxidant damage of pancreatic
beta-cells and resulting diabetes.
INHERITANCE
Acatalasemia is inherited as an autosomal recessive trait (Ogata, 1991).
POPULATION GENETICS
Ogata (1991) reported that 90 of 107 known individuals with acatalasemia
were Japanese.
Goth et al. (2000) stated that the incidence of acatalasemia in Hungary
in 5:106.
MOLECULAR GENETICS
In a Japanese patient with acatalasemia, Wen et al. (1990) identified a
homozygous splice site mutation in the CAT gene (115500.0001).
In a Japanese patient with acatalasemia, Hirono et al. (1995) identified
1-bp deletion in the CAT gene (115500.0002).
In a Hungarian patient with acatalasemia, Goth et al. (2000) identified
a homozygous insertion mutation in the CAT gene (115500.0003).
ANIMAL MODEL
Hypocatalasia has been found in the guinea pig, dog, and domestic fowl
(see review by Lush, 1966). In the acatalasemic mouse, Shaffer and
Preston (1990) demonstrated that a CAG (glutamine)-to-CAT (histidine)
transversion in the third position of codon 11 was responsible for the
deficiency.
*FIELD* SA
Aebi et al. (1964); Aebi and Suter (1972); Hamilton and Neel (1963);
Kishimoto et al. (1992); Matsunaga et al. (1985)
*FIELD* RF
1. Aebi, H.; Baggiolini, M.; Dewald, B.; Lauber, E.; Sutter, H.; Micheli,
A.; Frei, J.: Observations in two Swiss families with acatalasia. Enzymol.
Biol. Clin. 4: 121-151, 1964.
2. Aebi, H.; Jeunet, F.; Richterich, R.; Suter, H.; Butler, R.; Frei,
J.; Marti, H. R.: Observations in two Swiss families with acatalasia. Enzymol.
Biol. Clin. 2: 1-22, 1962.
3. Aebi, H.; Suter, H.: Acatalasia.In: Stanbury, J. B.; Wyngaarden,
J. B.; Fredrickson, D. S. (eds.): The Metabolic Basis of Inherited
Disease. New York: McGraw-Hill (pub.) (3rd ed.): 1972. Pp. 1710-1729.
4. Goth, L.; Eaton, J. W.: Hereditary catalase deficiencies and increased
risk of diabetes. Lancet 356: 1820-1821, 2000.
5. Goth, L.; Shemirani, A.; Kalmar, T.: A novel catalase mutation
(a GA insertion) causes the Hungarian type of acatalasemia. Blood
Cells Molec. Dis. 26: 151-154, 2000.
6. Hamilton, H. B.; Neel, J. V.: Genetic heterogeneity in human acatalasia. Am.
J. Hum. Genet. 15: 408-419, 1963.
7. Hamilton, H. B.; Neel, J. V.; Kobara, T. Y.; Ozaki, K.: The frequency
in Japan of carriers of the rare 'recessive' gene causing acatalasemia. J.
Clin. Invest. 40: 2199-2208, 1961.
8. Hirono, A.; Sasaya-Hamada, F.; Kanno, H.; Fujii, H.; Yoshida, T.;
Miwa, S.: A novel human catalase mutation (358T-del) causing Japanese-type
acatalasemia. Blood Cells Molec. Dis. 21: 232-234, 1995.
9. Kishimoto, Y.; Murakami, Y.; Hayashi, K.; Takahara, S.; Sugimura,
T.; Sekiya, T.: Detection of a common mutation of the catalase gene
in Japanese acatalasemic patients. Hum. Genet. 88: 487-490, 1992.
10. Lush, I. E.: The Biochemical Genetics of Vertebrates Except Man.
Philadelphia: W. B. Saunders (pub.) 1966.
11. Matsunaga, T.; Seger, R.; Hoger, P.; Tiefenauer, L.; Hitzig, W.
H.: Congenital acatalasemia: a study of neutrophil functions after
provocation with hydrogen peroxide. Pediat. Res. 19: 1187-1190,
1985.
12. Ogata, M.: Acatalasemia. Hum. Genet. 86: 331-340, 1991.
13. Shaffer, J. B.; Preston, K. E.: Molecular analysis of an acatalasemic
mouse mutant. Biochem. Biophys. Res. Commun. 173: 1043-1050, 1990.
14. Shibata, Y.; Higashi, T.; Hirai, H.; Hamilton, H. B.: Immunochemical
studies on catalase. II. An anticatalase reacting component in normal
hypocatalasic, and acatalasic human erythrocytes. Arch. Biochem. 118:
200-209, 1967.
15. Szeinberg, A.; De Vries, A.; Pinkhas, J.; Djaldetti, M.; Ezra,
R.: A dual hereditary red blood cell defect in one family: hypocatalasemia
and glucose-6-phosphate dehydrogenase deficiency. Acta Genet. Med.
Gemellol. 12: 247-255, 1963.
16. Takahara, S.; Miyamoto, H.: Three cases of progressive oral gangrene
due to lack of catalase in the blood. Nippon Jibi-Inkoka Gakkai Kaiho 51:
163 only, 1948.
17. Wen, J. K.; Osumi, T.; Hashimoto, T.; Ogata, M.: Molecular analysis
of human acatalasemia: identification of a splicing mutation. J.
Molec. Biol. 211: 383-393, 1990.
*FIELD* CD
Carol A. Bocchini: 7/18/2011
*FIELD* ED
terry: 08/02/2011
terry: 7/18/2011
carol: 7/18/2011