Full text data of EIF3J
EIF3J
(EIF3S1)
[Confidence: low (only semi-automatic identification from reviews)]
Eukaryotic translation initiation factor 3 subunit J; eIF3j (Eukaryotic translation initiation factor 3 subunit 1; eIF-3-alpha; eIF3 p35)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Eukaryotic translation initiation factor 3 subunit J; eIF3j (Eukaryotic translation initiation factor 3 subunit 1; eIF-3-alpha; eIF3 p35)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
O75822
ID EIF3J_HUMAN Reviewed; 258 AA.
AC O75822; Q9BUD2; Q9H8Q2; Q9UI65;
DT 30-MAY-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 19-SEP-2002, sequence version 2.
DT 22-JAN-2014, entry version 136.
DE RecName: Full=Eukaryotic translation initiation factor 3 subunit J;
DE Short=eIF3j;
DE AltName: Full=Eukaryotic translation initiation factor 3 subunit 1;
DE AltName: Full=eIF-3-alpha;
DE AltName: Full=eIF3 p35;
GN Name=EIF3J; Synonyms=EIF3S1; ORFNames=PRO0391;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], PARTIAL PROTEIN SEQUENCE, AND INTERACTION
RP WITH EIF3A.
RX PubMed=9822659; DOI=10.1074/jbc.273.48.31901;
RA Block K.L., Vornlocher H.-P., Hershey J.W.B.;
RT "Characterization of cDNAs encoding the p44 and p35 subunits of human
RT translation initiation factor eIF3.";
RL J. Biol. Chem. 273:31901-31908(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT THR-141.
RC TISSUE=Ovarian carcinoma;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP PROTEIN SEQUENCE OF 2-27; 99-119; 123-133 AND 199-210, CLEAVAGE OF
RP INITIATOR METHIONINE, ACETYLATION AT ALA-2, AND MASS SPECTROMETRY.
RC TISSUE=Lung carcinoma;
RA Bienvenut W.V., Vousden K.H., Lukashchuk N.;
RL Submitted (MAR-2008) to UniProtKB.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 148-258.
RC TISSUE=Fetal liver;
RA Yu Y., Zhang C., Luo L., Ouyang S., Zhang S., Li W., Wu J., Zhou S.,
RA Liu M., He F.;
RT "Functional prediction of the coding sequences of 50 new genes deduced
RT by analysis of cDNA clones from human fetal liver.";
RL Submitted (SEP-1998) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP INTERACTION WITH EIF3K.
RX PubMed=14519125; DOI=10.1046/j.1432-1033.2003.03807.x;
RA Mayeur G.L., Fraser C.S., Peiretti F., Block K.L., Hershey J.W.B.;
RT "Characterization of eIF3k: a newly discovered subunit of mammalian
RT translation initiation factor eIF3.";
RL Eur. J. Biochem. 270:4133-4139(2003).
RN [7]
RP INTERACTION WITH EIF3B AND THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=14688252; DOI=10.1074/jbc.M312745200;
RA Fraser C.S., Lee J.Y., Mayeur G.L., Bushell M., Doudna J.A.,
RA Hershey J.W.B.;
RT "The j-subunit of human translation initiation factor eIF3 is required
RT for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal
RT subunits in vitro.";
RL J. Biol. Chem. 279:8946-8956(2004).
RN [8]
RP CHARACTERIZATION OF THE EIF-3 COMPLEX.
RX PubMed=15703437; DOI=10.1261/rna.7215305;
RA Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U.T.,
RA Pestova T.V.;
RT "Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits
RT and its role in ribosomal dissociation and anti-association.";
RL RNA 11:470-486(2005).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [10]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND IDENTIFICATION BY MASS
RP SPECTROMETRY.
RX PubMed=16766523; DOI=10.1074/jbc.M605418200;
RA LeFebvre A.K., Korneeva N.L., Trutschl M., Cvek U., Duzan R.D.,
RA Bradley C.A., Hershey J.W.B., Rhoads R.E.;
RT "Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e
RT subunit.";
RL J. Biol. Chem. 281:22917-22932(2006).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-109, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16964243; DOI=10.1038/nbt1240;
RA Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
RT "A probability-based approach for high-throughput protein
RT phosphorylation analysis and site localization.";
RL Nat. Biotechnol. 24:1285-1292(2006).
RN [12]
RP INTERACTION WITH EIF3B AND THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=17190833; DOI=10.1074/jbc.M610860200;
RA ElAntak L., Tzakos A.G., Locker N., Lukavsky P.J.;
RT "Structure of eIF3b RNA recognition motif and its interaction with
RT eIF3j: structural insights into the recruitment of eIF3b to the 40 S
RT ribosomal subunit.";
RL J. Biol. Chem. 282:8165-8174(2007).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-109, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17924679; DOI=10.1021/pr070152u;
RA Yu L.R., Zhu Z., Chan K.C., Issaq H.J., Dimitrov D.S., Veenstra T.D.;
RT "Improved titanium dioxide enrichment of phosphopeptides from HeLa
RT cells and high confident phosphopeptide identification by cross-
RT validation of MS/MS and MS/MS/MS spectra.";
RL J. Proteome Res. 6:4150-4162(2007).
RN [14]
RP INTERACTION WITH THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=17588516; DOI=10.1016/j.molcel.2007.05.019;
RA Fraser C.S., Berry K.E., Hershey J.W.B., Doudna J.A.;
RT "eIF3j is located in the decoding center of the human 40S ribosomal
RT subunit.";
RL Mol. Cell 26:811-819(2007).
RN [15]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT ALA-2,
RP PHOSPHORYLATION AT SER-11; SER-13; SER-20 AND THR-109, AND MASS
RP SPECTROMETRY.
RX PubMed=17322308; DOI=10.1074/mcp.M600399-MCP200;
RA Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L.,
RA Hershey J.W.B., Doudna J.A., Robinson C.V., Leary J.A.;
RT "Structural characterization of the human eukaryotic initiation factor
RT 3 protein complex by mass spectrometry.";
RL Mol. Cell. Proteomics 6:1135-1146(2007).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [17]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=18599441; DOI=10.1073/pnas.0801313105;
RA Zhou M., Sandercock A.M., Fraser C.S., Ridlova G., Stephens E.,
RA Schenauer M.R., Yokoi-Fong T., Barsky D., Leary J.A., Hershey J.W.B.,
RA Doudna J.A., Robinson C.V.;
RT "Mass spectrometry reveals modularity and a complete subunit
RT interaction map of the eukaryotic translation factor eIF3.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:18139-18144(2008).
RN [18]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [19]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19369195; DOI=10.1074/mcp.M800588-MCP200;
RA Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,
RA Mann M., Daub H.;
RT "Large-scale proteomics analysis of the human kinome.";
RL Mol. Cell. Proteomics 8:1751-1764(2009).
RN [20]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-254, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-11; SER-13; THR-109 AND SER-127, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-11; SER-13 AND THR-109, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [25]
RP 3D-STRUCTURE MODELING, AND ELECTRON MICROSCOPY.
RX PubMed=16322461; DOI=10.1126/science.1118977;
RA Siridechadilok B., Fraser C.S., Hall R.J., Doudna J.A., Nogales E.;
RT "Structural roles for human translation factor eIF3 in initiation of
RT protein synthesis.";
RL Science 310:1513-1515(2005).
RN [26]
RP X-RAY CRYSTALLOGRAPHY (1.85 ANGSTROMS) OF 141-220.
RG Structural genomics consortium (SGC);
RT "Crystal structure of human translation initiation factor 3, subunit 1
RT alpha.";
RL Submitted (JAN-2008) to the PDB data bank.
CC -!- FUNCTION: Component of the eukaryotic translation initiation
CC factor 3 (eIF-3) complex, which is required for several steps in
CC the initiation of protein synthesis. The eIF-3 complex associates
CC with the 40S ribosome and facilitates the recruitment of eIF-1,
CC eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S
CC preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA
CC recruitment to the 43S PIC and scanning of the mRNA for AUG
CC recognition. The eIF-3 complex is also required for disassembly
CC and recycling of post-termination ribosomal complexes and
CC subsequently prevents premature joining of the 40S and 60S
CC ribosomal subunits prior to initiation. This subunit binds
CC directly within the mRNA entry channel of the 40S ribosome to the
CC aminoacyl (A) site. It may regulate the interaction between the
CC 43S PIC and mRNA.
CC -!- SUBUNIT: Component of the eukaryotic translation initiation factor
CC 3 (eIF-3) complex, which is composed of 13 subunits: EIF3A, EIF3B,
CC EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, EIF3K,
CC EIF3L and EIF3M. The eIF-3 complex appears to include 3 stable
CC modules: module A is composed of EIF3A, EIF3B, EIF3G and EIF3I;
CC module B is composed of EIF3F, EIF3H, and EIF3M; and module C is
CC composed of EIF3C, EIF3D, EIF3E, EIF3K and EIF3L. EIF3C of module
CC C binds EIF3B of module A and EIF3H of module B, thereby linking
CC the three modules. EIF3J is a labile subunit that binds to the
CC eIF-3 complex via EIF3B. The eIF-3 complex interacts with RPS6KB1
CC under conditions of nutrient depletion. Mitogenic stimulation
CC leads to binding and activation of a complex composed of MTOR and
CC RPTOR, leading to phosphorylation and release of RPS6KB1 and
CC binding of EIF4B to eIF-3.
CC -!- INTERACTION:
CC P55884:EIF3B; NbExp=5; IntAct=EBI-366647, EBI-366696;
CC Q04637:EIF4G1; NbExp=2; IntAct=EBI-366647, EBI-73711;
CC -!- SUBCELLULAR LOCATION: Cytoplasm (By similarity).
CC -!- PTM: Phosphorylated. Phosphorylation is enhanced upon serum
CC stimulation.
CC -!- MASS SPECTROMETRY: Mass=29293.2; Method=Unknown; Range=1-258;
CC Source=PubMed:17322308;
CC -!- MASS SPECTROMETRY: Mass=28974.2; Mass_error=0.3; Method=MALDI;
CC Range=1-258; Source=PubMed:18599441;
CC -!- SIMILARITY: Belongs to the eIF-3 subunit J family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U97670; AAC78729.1; -; mRNA.
DR EMBL; AK023388; BAB14555.1; -; mRNA.
DR EMBL; BC002719; AAH02719.1; -; mRNA.
DR EMBL; AF090923; AAF24039.1; -; mRNA.
DR RefSeq; NP_001271264.1; NM_001284335.1.
DR RefSeq; NP_001271265.1; NM_001284336.1.
DR RefSeq; NP_003749.2; NM_003758.3.
DR UniGene; Hs.404056; -.
DR PDB; 2KRB; NMR; -; B=45-55.
DR PDB; 3BPJ; X-ray; 1.85 A; A/B/C/D=141-220.
DR PDBsum; 2KRB; -.
DR PDBsum; 3BPJ; -.
DR ProteinModelPortal; O75822; -.
DR SMR; O75822; 141-211.
DR DIP; DIP-31117N; -.
DR IntAct; O75822; 14.
DR MINT; MINT-5003918; -.
DR STRING; 9606.ENSP00000261868; -.
DR PhosphoSite; O75822; -.
DR PaxDb; O75822; -.
DR PeptideAtlas; O75822; -.
DR PRIDE; O75822; -.
DR Ensembl; ENST00000261868; ENSP00000261868; ENSG00000104131.
DR GeneID; 8669; -.
DR KEGG; hsa:8669; -.
DR UCSC; uc001ztv.3; human.
DR CTD; 8669; -.
DR GeneCards; GC15P044829; -.
DR HGNC; HGNC:3270; EIF3J.
DR HPA; HPA050977; -.
DR MIM; 603910; gene.
DR neXtProt; NX_O75822; -.
DR PharmGKB; PA162384902; -.
DR eggNOG; NOG247523; -.
DR HOGENOM; HOG000048982; -.
DR InParanoid; O75822; -.
DR KO; K03245; -.
DR OMA; APVSDWE; -.
DR OrthoDB; EOG7J70H8; -.
DR PhylomeDB; O75822; -.
DR Reactome; REACT_17015; Metabolism of proteins.
DR Reactome; REACT_1762; 3' -UTR-mediated translational regulation.
DR Reactome; REACT_71; Gene Expression.
DR EvolutionaryTrace; O75822; -.
DR GeneWiki; EIF3J; -.
DR GenomeRNAi; 8669; -.
DR NextBio; 32519; -.
DR PMAP-CutDB; O75822; -.
DR PRO; PR:O75822; -.
DR ArrayExpress; O75822; -.
DR Bgee; O75822; -.
DR CleanEx; HS_EIF3J; -.
DR Genevestigator; O75822; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0016282; C:eukaryotic 43S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0033290; C:eukaryotic 48S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0005852; C:eukaryotic translation initiation factor 3 complex; IDA:UniProtKB.
DR GO; GO:0003743; F:translation initiation factor activity; IEA:UniProtKB-HAMAP.
DR GO; GO:0001731; P:formation of translation preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0006446; P:regulation of translational initiation; IEA:UniProtKB-HAMAP.
DR GO; GO:0006413; P:translational initiation; IC:UniProtKB.
DR Gene3D; 1.10.246.60; -; 1.
DR HAMAP; MF_03009; eIF3j; 1; -.
DR InterPro; IPR023194; eIF3-like_dom.
DR InterPro; IPR013906; eIF3j.
DR PANTHER; PTHR21681; PTHR21681; 1.
DR Pfam; PF08597; eIF3_subunit; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Coiled coil; Complete proteome; Cytoplasm;
KW Direct protein sequencing; Initiation factor; Phosphoprotein;
KW Polymorphism; Protein biosynthesis; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 258 Eukaryotic translation initiation factor
FT 3 subunit J.
FT /FTId=PRO_0000123506.
FT REGION 2 69 Sufficient for interaction with EIF3B.
FT REGION 243 258 Promotes stable association with the 40S
FT ribosome.
FT COILED 70 135 Potential.
FT COMPBIAS 2 8 Poly-Ala.
FT COMPBIAS 29 32 Poly-Gly.
FT COMPBIAS 53 57 Poly-Asp.
FT COMPBIAS 218 224 Poly-Lys.
FT MOD_RES 2 2 N-acetylalanine.
FT MOD_RES 11 11 Phosphoserine.
FT MOD_RES 13 13 Phosphoserine.
FT MOD_RES 20 20 Phosphoserine.
FT MOD_RES 109 109 Phosphothreonine.
FT MOD_RES 127 127 Phosphoserine.
FT MOD_RES 254 254 Phosphotyrosine.
FT VARIANT 141 141 A -> T (in dbSNP:rs2303578).
FT /FTId=VAR_034007.
FT CONFLICT 40 40 E -> G (in Ref. 1; AAC78729).
FT TURN 145 147
FT HELIX 153 167
FT HELIX 168 170
FT HELIX 176 188
FT HELIX 193 212
SQ SEQUENCE 258 AA; 29062 MW; 83624235424445AA CRC64;
MAAAAAAAGD SDSWDADAFS VEDPVRKVGG GGTAGGDRWE GEDEDEDVKD NWDDDDDEKK
EEAEVKPEVK ISEKKKIAEK IKEKERQQKK RQEEIKKRLE EPEEPKVLTP EEQLADKLRL
KKLQEESDLE LAKETFGVNN AVYGIDAMNP SSRDDFTEFG KLLKDKITQY EKSLYYASFL
EVLVRDVCIS LEIDDLKKIT NSLTVLCSEK QKQEKQSKAK KKKKGVVPGG GLKATMKDDL
ADYGGYDGGY VQDYEDFM
//
ID EIF3J_HUMAN Reviewed; 258 AA.
AC O75822; Q9BUD2; Q9H8Q2; Q9UI65;
DT 30-MAY-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 19-SEP-2002, sequence version 2.
DT 22-JAN-2014, entry version 136.
DE RecName: Full=Eukaryotic translation initiation factor 3 subunit J;
DE Short=eIF3j;
DE AltName: Full=Eukaryotic translation initiation factor 3 subunit 1;
DE AltName: Full=eIF-3-alpha;
DE AltName: Full=eIF3 p35;
GN Name=EIF3J; Synonyms=EIF3S1; ORFNames=PRO0391;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], PARTIAL PROTEIN SEQUENCE, AND INTERACTION
RP WITH EIF3A.
RX PubMed=9822659; DOI=10.1074/jbc.273.48.31901;
RA Block K.L., Vornlocher H.-P., Hershey J.W.B.;
RT "Characterization of cDNAs encoding the p44 and p35 subunits of human
RT translation initiation factor eIF3.";
RL J. Biol. Chem. 273:31901-31908(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT THR-141.
RC TISSUE=Ovarian carcinoma;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP PROTEIN SEQUENCE OF 2-27; 99-119; 123-133 AND 199-210, CLEAVAGE OF
RP INITIATOR METHIONINE, ACETYLATION AT ALA-2, AND MASS SPECTROMETRY.
RC TISSUE=Lung carcinoma;
RA Bienvenut W.V., Vousden K.H., Lukashchuk N.;
RL Submitted (MAR-2008) to UniProtKB.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 148-258.
RC TISSUE=Fetal liver;
RA Yu Y., Zhang C., Luo L., Ouyang S., Zhang S., Li W., Wu J., Zhou S.,
RA Liu M., He F.;
RT "Functional prediction of the coding sequences of 50 new genes deduced
RT by analysis of cDNA clones from human fetal liver.";
RL Submitted (SEP-1998) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP INTERACTION WITH EIF3K.
RX PubMed=14519125; DOI=10.1046/j.1432-1033.2003.03807.x;
RA Mayeur G.L., Fraser C.S., Peiretti F., Block K.L., Hershey J.W.B.;
RT "Characterization of eIF3k: a newly discovered subunit of mammalian
RT translation initiation factor eIF3.";
RL Eur. J. Biochem. 270:4133-4139(2003).
RN [7]
RP INTERACTION WITH EIF3B AND THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=14688252; DOI=10.1074/jbc.M312745200;
RA Fraser C.S., Lee J.Y., Mayeur G.L., Bushell M., Doudna J.A.,
RA Hershey J.W.B.;
RT "The j-subunit of human translation initiation factor eIF3 is required
RT for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal
RT subunits in vitro.";
RL J. Biol. Chem. 279:8946-8956(2004).
RN [8]
RP CHARACTERIZATION OF THE EIF-3 COMPLEX.
RX PubMed=15703437; DOI=10.1261/rna.7215305;
RA Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U.T.,
RA Pestova T.V.;
RT "Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits
RT and its role in ribosomal dissociation and anti-association.";
RL RNA 11:470-486(2005).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [10]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND IDENTIFICATION BY MASS
RP SPECTROMETRY.
RX PubMed=16766523; DOI=10.1074/jbc.M605418200;
RA LeFebvre A.K., Korneeva N.L., Trutschl M., Cvek U., Duzan R.D.,
RA Bradley C.A., Hershey J.W.B., Rhoads R.E.;
RT "Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e
RT subunit.";
RL J. Biol. Chem. 281:22917-22932(2006).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-109, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=16964243; DOI=10.1038/nbt1240;
RA Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.;
RT "A probability-based approach for high-throughput protein
RT phosphorylation analysis and site localization.";
RL Nat. Biotechnol. 24:1285-1292(2006).
RN [12]
RP INTERACTION WITH EIF3B AND THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=17190833; DOI=10.1074/jbc.M610860200;
RA ElAntak L., Tzakos A.G., Locker N., Lukavsky P.J.;
RT "Structure of eIF3b RNA recognition motif and its interaction with
RT eIF3j: structural insights into the recruitment of eIF3b to the 40 S
RT ribosomal subunit.";
RL J. Biol. Chem. 282:8165-8174(2007).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-109, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17924679; DOI=10.1021/pr070152u;
RA Yu L.R., Zhu Z., Chan K.C., Issaq H.J., Dimitrov D.S., Veenstra T.D.;
RT "Improved titanium dioxide enrichment of phosphopeptides from HeLa
RT cells and high confident phosphopeptide identification by cross-
RT validation of MS/MS and MS/MS/MS spectra.";
RL J. Proteome Res. 6:4150-4162(2007).
RN [14]
RP INTERACTION WITH THE 40S RIBOSOMAL SUBUNIT.
RX PubMed=17588516; DOI=10.1016/j.molcel.2007.05.019;
RA Fraser C.S., Berry K.E., Hershey J.W.B., Doudna J.A.;
RT "eIF3j is located in the decoding center of the human 40S ribosomal
RT subunit.";
RL Mol. Cell 26:811-819(2007).
RN [15]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT ALA-2,
RP PHOSPHORYLATION AT SER-11; SER-13; SER-20 AND THR-109, AND MASS
RP SPECTROMETRY.
RX PubMed=17322308; DOI=10.1074/mcp.M600399-MCP200;
RA Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L.,
RA Hershey J.W.B., Doudna J.A., Robinson C.V., Leary J.A.;
RT "Structural characterization of the human eukaryotic initiation factor
RT 3 protein complex by mass spectrometry.";
RL Mol. Cell. Proteomics 6:1135-1146(2007).
RN [16]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [17]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=18599441; DOI=10.1073/pnas.0801313105;
RA Zhou M., Sandercock A.M., Fraser C.S., Ridlova G., Stephens E.,
RA Schenauer M.R., Yokoi-Fong T., Barsky D., Leary J.A., Hershey J.W.B.,
RA Doudna J.A., Robinson C.V.;
RT "Mass spectrometry reveals modularity and a complete subunit
RT interaction map of the eukaryotic translation factor eIF3.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:18139-18144(2008).
RN [18]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [19]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=19369195; DOI=10.1074/mcp.M800588-MCP200;
RA Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,
RA Mann M., Daub H.;
RT "Large-scale proteomics analysis of the human kinome.";
RL Mol. Cell. Proteomics 8:1751-1764(2009).
RN [20]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-254, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-11; SER-13; THR-109 AND SER-127, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-11; SER-13 AND THR-109, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [25]
RP 3D-STRUCTURE MODELING, AND ELECTRON MICROSCOPY.
RX PubMed=16322461; DOI=10.1126/science.1118977;
RA Siridechadilok B., Fraser C.S., Hall R.J., Doudna J.A., Nogales E.;
RT "Structural roles for human translation factor eIF3 in initiation of
RT protein synthesis.";
RL Science 310:1513-1515(2005).
RN [26]
RP X-RAY CRYSTALLOGRAPHY (1.85 ANGSTROMS) OF 141-220.
RG Structural genomics consortium (SGC);
RT "Crystal structure of human translation initiation factor 3, subunit 1
RT alpha.";
RL Submitted (JAN-2008) to the PDB data bank.
CC -!- FUNCTION: Component of the eukaryotic translation initiation
CC factor 3 (eIF-3) complex, which is required for several steps in
CC the initiation of protein synthesis. The eIF-3 complex associates
CC with the 40S ribosome and facilitates the recruitment of eIF-1,
CC eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S
CC preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA
CC recruitment to the 43S PIC and scanning of the mRNA for AUG
CC recognition. The eIF-3 complex is also required for disassembly
CC and recycling of post-termination ribosomal complexes and
CC subsequently prevents premature joining of the 40S and 60S
CC ribosomal subunits prior to initiation. This subunit binds
CC directly within the mRNA entry channel of the 40S ribosome to the
CC aminoacyl (A) site. It may regulate the interaction between the
CC 43S PIC and mRNA.
CC -!- SUBUNIT: Component of the eukaryotic translation initiation factor
CC 3 (eIF-3) complex, which is composed of 13 subunits: EIF3A, EIF3B,
CC EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, EIF3K,
CC EIF3L and EIF3M. The eIF-3 complex appears to include 3 stable
CC modules: module A is composed of EIF3A, EIF3B, EIF3G and EIF3I;
CC module B is composed of EIF3F, EIF3H, and EIF3M; and module C is
CC composed of EIF3C, EIF3D, EIF3E, EIF3K and EIF3L. EIF3C of module
CC C binds EIF3B of module A and EIF3H of module B, thereby linking
CC the three modules. EIF3J is a labile subunit that binds to the
CC eIF-3 complex via EIF3B. The eIF-3 complex interacts with RPS6KB1
CC under conditions of nutrient depletion. Mitogenic stimulation
CC leads to binding and activation of a complex composed of MTOR and
CC RPTOR, leading to phosphorylation and release of RPS6KB1 and
CC binding of EIF4B to eIF-3.
CC -!- INTERACTION:
CC P55884:EIF3B; NbExp=5; IntAct=EBI-366647, EBI-366696;
CC Q04637:EIF4G1; NbExp=2; IntAct=EBI-366647, EBI-73711;
CC -!- SUBCELLULAR LOCATION: Cytoplasm (By similarity).
CC -!- PTM: Phosphorylated. Phosphorylation is enhanced upon serum
CC stimulation.
CC -!- MASS SPECTROMETRY: Mass=29293.2; Method=Unknown; Range=1-258;
CC Source=PubMed:17322308;
CC -!- MASS SPECTROMETRY: Mass=28974.2; Mass_error=0.3; Method=MALDI;
CC Range=1-258; Source=PubMed:18599441;
CC -!- SIMILARITY: Belongs to the eIF-3 subunit J family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U97670; AAC78729.1; -; mRNA.
DR EMBL; AK023388; BAB14555.1; -; mRNA.
DR EMBL; BC002719; AAH02719.1; -; mRNA.
DR EMBL; AF090923; AAF24039.1; -; mRNA.
DR RefSeq; NP_001271264.1; NM_001284335.1.
DR RefSeq; NP_001271265.1; NM_001284336.1.
DR RefSeq; NP_003749.2; NM_003758.3.
DR UniGene; Hs.404056; -.
DR PDB; 2KRB; NMR; -; B=45-55.
DR PDB; 3BPJ; X-ray; 1.85 A; A/B/C/D=141-220.
DR PDBsum; 2KRB; -.
DR PDBsum; 3BPJ; -.
DR ProteinModelPortal; O75822; -.
DR SMR; O75822; 141-211.
DR DIP; DIP-31117N; -.
DR IntAct; O75822; 14.
DR MINT; MINT-5003918; -.
DR STRING; 9606.ENSP00000261868; -.
DR PhosphoSite; O75822; -.
DR PaxDb; O75822; -.
DR PeptideAtlas; O75822; -.
DR PRIDE; O75822; -.
DR Ensembl; ENST00000261868; ENSP00000261868; ENSG00000104131.
DR GeneID; 8669; -.
DR KEGG; hsa:8669; -.
DR UCSC; uc001ztv.3; human.
DR CTD; 8669; -.
DR GeneCards; GC15P044829; -.
DR HGNC; HGNC:3270; EIF3J.
DR HPA; HPA050977; -.
DR MIM; 603910; gene.
DR neXtProt; NX_O75822; -.
DR PharmGKB; PA162384902; -.
DR eggNOG; NOG247523; -.
DR HOGENOM; HOG000048982; -.
DR InParanoid; O75822; -.
DR KO; K03245; -.
DR OMA; APVSDWE; -.
DR OrthoDB; EOG7J70H8; -.
DR PhylomeDB; O75822; -.
DR Reactome; REACT_17015; Metabolism of proteins.
DR Reactome; REACT_1762; 3' -UTR-mediated translational regulation.
DR Reactome; REACT_71; Gene Expression.
DR EvolutionaryTrace; O75822; -.
DR GeneWiki; EIF3J; -.
DR GenomeRNAi; 8669; -.
DR NextBio; 32519; -.
DR PMAP-CutDB; O75822; -.
DR PRO; PR:O75822; -.
DR ArrayExpress; O75822; -.
DR Bgee; O75822; -.
DR CleanEx; HS_EIF3J; -.
DR Genevestigator; O75822; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0016282; C:eukaryotic 43S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0033290; C:eukaryotic 48S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0005852; C:eukaryotic translation initiation factor 3 complex; IDA:UniProtKB.
DR GO; GO:0003743; F:translation initiation factor activity; IEA:UniProtKB-HAMAP.
DR GO; GO:0001731; P:formation of translation preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0006446; P:regulation of translational initiation; IEA:UniProtKB-HAMAP.
DR GO; GO:0006413; P:translational initiation; IC:UniProtKB.
DR Gene3D; 1.10.246.60; -; 1.
DR HAMAP; MF_03009; eIF3j; 1; -.
DR InterPro; IPR023194; eIF3-like_dom.
DR InterPro; IPR013906; eIF3j.
DR PANTHER; PTHR21681; PTHR21681; 1.
DR Pfam; PF08597; eIF3_subunit; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Coiled coil; Complete proteome; Cytoplasm;
KW Direct protein sequencing; Initiation factor; Phosphoprotein;
KW Polymorphism; Protein biosynthesis; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 258 Eukaryotic translation initiation factor
FT 3 subunit J.
FT /FTId=PRO_0000123506.
FT REGION 2 69 Sufficient for interaction with EIF3B.
FT REGION 243 258 Promotes stable association with the 40S
FT ribosome.
FT COILED 70 135 Potential.
FT COMPBIAS 2 8 Poly-Ala.
FT COMPBIAS 29 32 Poly-Gly.
FT COMPBIAS 53 57 Poly-Asp.
FT COMPBIAS 218 224 Poly-Lys.
FT MOD_RES 2 2 N-acetylalanine.
FT MOD_RES 11 11 Phosphoserine.
FT MOD_RES 13 13 Phosphoserine.
FT MOD_RES 20 20 Phosphoserine.
FT MOD_RES 109 109 Phosphothreonine.
FT MOD_RES 127 127 Phosphoserine.
FT MOD_RES 254 254 Phosphotyrosine.
FT VARIANT 141 141 A -> T (in dbSNP:rs2303578).
FT /FTId=VAR_034007.
FT CONFLICT 40 40 E -> G (in Ref. 1; AAC78729).
FT TURN 145 147
FT HELIX 153 167
FT HELIX 168 170
FT HELIX 176 188
FT HELIX 193 212
SQ SEQUENCE 258 AA; 29062 MW; 83624235424445AA CRC64;
MAAAAAAAGD SDSWDADAFS VEDPVRKVGG GGTAGGDRWE GEDEDEDVKD NWDDDDDEKK
EEAEVKPEVK ISEKKKIAEK IKEKERQQKK RQEEIKKRLE EPEEPKVLTP EEQLADKLRL
KKLQEESDLE LAKETFGVNN AVYGIDAMNP SSRDDFTEFG KLLKDKITQY EKSLYYASFL
EVLVRDVCIS LEIDDLKKIT NSLTVLCSEK QKQEKQSKAK KKKKGVVPGG GLKATMKDDL
ADYGGYDGGY VQDYEDFM
//
MIM
603910
*RECORD*
*FIELD* NO
603910
*FIELD* TI
*603910 EUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT J; EIF3J
;;EIF3-p35;;
EIF3-ALPHA;;
read moreEUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT 1, FORMERLY; EIF3S1,
FORMERLY
*FIELD* TX
DESCRIPTION
Eukaryotic initiation factor-3 (EIF3) has a molecular mass of about 600
kD and contains 13 nonidentical protein subunits, including EIF3J. EIF3
plays a central role in binding of initiator methionyl-tRNA and mRNA to
the 40S ribosomal subunit to form the 40S initiation complex (Fraser et
al., 2004; Fraser et al., 2007).
CLONING
By searching an EST database with partial protein sequences of the human
eIF3-p35 and eIF3-p44 (EIF3G; 603913) subunits, Block et al. (1998)
isolated cDNAs encoding p35 and p44. The predicted p35 protein contains
258 amino acids. Both p44 and p35 coimmunoprecipitated with p170,
indicating that they are components of the eIF3 complex. Northern blot
analysis revealed that p35 is expressed as an approximately 2.4-kb mRNA
in HeLa cells.
GENE FUNCTION
Using insect cells to express EIF3 subunits and an in vitro binding
assay, Fraser et al. (2004) identified EIF3J as the EIF3 component
required for stable 40S binding. EIF3J promoted binding of a core
subcomplex made up of EIF3B (603917), EIF3G, and EIF3I (603911).
Purified EIF3 lacking EIF3J bound 40S ribosomal subunits weakly, but it
bound tightly when EIF3J was added. Cleavage of a 16-residue C-terminal
peptide from EIF3J by caspase-3 (CASP3; 600636) reduced its affinity for
the 40S ribosomal subunit, and the cleaved form provided substantially
less stabilization of purified EIF3-40S complexes.
Fraser et al. (2007) found that EIF3J bound directly to the mRNA entry
channel and aminoacyl site of the 40S subunit, placing EIF3J directly in
the ribosomal decoding center. EIF3J also interacted with EIF3A (602039)
and reduced 40S subunit affinity for mRNA. High affinity for mRNA was
restored upon recruitment of initiator tRNA, even though EIF3J remained
in the mRNA-binding cleft in the presence of tRNA. Fraser et al. (2007)
concluded that EIF3J governs the binding of initiation factors and mRNA
to form the initiation complex.
BIOCHEMICAL FEATURES
- Crystal Structure
Hashem et al. (2013) presented a cryoelectron microscopy reconstruction
of a 40S ribosomal complex containing EIF3 and the classical swine fever
virus (CSFV) internal ribosome entry sites (IRES). Although the position
and interactions of the CSFV IRES with the 40S subunit in this complex
are similar to those of the hepatitis C virus (HCV) IRES in the 40S-IRES
binary complex, EIF3 is completely displaced from its ribosomal position
in the 43S complex, and instead interacts through its ribosome-binding
surface exclusively with the apical region of domain III of the IRES.
Hashem et al. (2013) concluded that their results suggested a role for
the specific interaction of HCV-like IRESs with EIF3 in preventing
ribosomal association of EIF3, which could serve 2 purposes: relieving
the competition between the IRES and EIF3 for a common binding site on
the 40S subunit, and reducing formation of 43S complexes, thereby
favoring translation of viral mRNAs.
*FIELD* RF
1. Block, K. L.; Vornlocher, H.-P.; Hershey, J. W. B.: Characterization
of cDNAs encoding the p44 and p35 subunits of human translation initiation
factor eIF3. J. Biol. Chem. 273: 31901-31908, 1998.
2. Fraser, C. S.; Berry, K. E.; Hershey, J. W. B.; Doudna, J. A.:
eIF3j is located in the decoding center of the human 40S ribosomal
subunit. Molec. Cell 26: 811-819, 2007.
3. Fraser, C. S.; Lee, J. Y.; Mayeur, G. L.; Bushell, M.; Doudna,
J. A.; Hershey, J. W. B.: The j-subunit of human translation initiation
factor eIF3 is required for the stable binding of eIF3 and its subcomplexes
to 40 S ribosomal subunits in vitro. J. Biol. Chem. 279: 8946-8956,
2004.
4. Hashem, Y.; des Georges, A.; Dhote, V.; Langlois, R.; Liao, H.
Y.; Grassucci, R. A.; Pestova, T. V.; Hellen, C. U. T.; Frank, J.
: Hepatitis-C-virus-like internal ribosome entry sites displace eIF3
to gain access to the 40S subunit. Nature 503: 539-543, 2013.
*FIELD* CN
Ada Hamosh - updated: 1/10/2014
Patricia A. Hartz - updated: 9/25/2007
*FIELD* CD
Rebekah S. Rasooly: 6/16/1999
*FIELD* ED
alopez: 01/10/2014
alopez: 1/10/2014
mgross: 10/2/2007
terry: 9/25/2007
alopez: 6/17/1999
*RECORD*
*FIELD* NO
603910
*FIELD* TI
*603910 EUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT J; EIF3J
;;EIF3-p35;;
EIF3-ALPHA;;
read moreEUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT 1, FORMERLY; EIF3S1,
FORMERLY
*FIELD* TX
DESCRIPTION
Eukaryotic initiation factor-3 (EIF3) has a molecular mass of about 600
kD and contains 13 nonidentical protein subunits, including EIF3J. EIF3
plays a central role in binding of initiator methionyl-tRNA and mRNA to
the 40S ribosomal subunit to form the 40S initiation complex (Fraser et
al., 2004; Fraser et al., 2007).
CLONING
By searching an EST database with partial protein sequences of the human
eIF3-p35 and eIF3-p44 (EIF3G; 603913) subunits, Block et al. (1998)
isolated cDNAs encoding p35 and p44. The predicted p35 protein contains
258 amino acids. Both p44 and p35 coimmunoprecipitated with p170,
indicating that they are components of the eIF3 complex. Northern blot
analysis revealed that p35 is expressed as an approximately 2.4-kb mRNA
in HeLa cells.
GENE FUNCTION
Using insect cells to express EIF3 subunits and an in vitro binding
assay, Fraser et al. (2004) identified EIF3J as the EIF3 component
required for stable 40S binding. EIF3J promoted binding of a core
subcomplex made up of EIF3B (603917), EIF3G, and EIF3I (603911).
Purified EIF3 lacking EIF3J bound 40S ribosomal subunits weakly, but it
bound tightly when EIF3J was added. Cleavage of a 16-residue C-terminal
peptide from EIF3J by caspase-3 (CASP3; 600636) reduced its affinity for
the 40S ribosomal subunit, and the cleaved form provided substantially
less stabilization of purified EIF3-40S complexes.
Fraser et al. (2007) found that EIF3J bound directly to the mRNA entry
channel and aminoacyl site of the 40S subunit, placing EIF3J directly in
the ribosomal decoding center. EIF3J also interacted with EIF3A (602039)
and reduced 40S subunit affinity for mRNA. High affinity for mRNA was
restored upon recruitment of initiator tRNA, even though EIF3J remained
in the mRNA-binding cleft in the presence of tRNA. Fraser et al. (2007)
concluded that EIF3J governs the binding of initiation factors and mRNA
to form the initiation complex.
BIOCHEMICAL FEATURES
- Crystal Structure
Hashem et al. (2013) presented a cryoelectron microscopy reconstruction
of a 40S ribosomal complex containing EIF3 and the classical swine fever
virus (CSFV) internal ribosome entry sites (IRES). Although the position
and interactions of the CSFV IRES with the 40S subunit in this complex
are similar to those of the hepatitis C virus (HCV) IRES in the 40S-IRES
binary complex, EIF3 is completely displaced from its ribosomal position
in the 43S complex, and instead interacts through its ribosome-binding
surface exclusively with the apical region of domain III of the IRES.
Hashem et al. (2013) concluded that their results suggested a role for
the specific interaction of HCV-like IRESs with EIF3 in preventing
ribosomal association of EIF3, which could serve 2 purposes: relieving
the competition between the IRES and EIF3 for a common binding site on
the 40S subunit, and reducing formation of 43S complexes, thereby
favoring translation of viral mRNAs.
*FIELD* RF
1. Block, K. L.; Vornlocher, H.-P.; Hershey, J. W. B.: Characterization
of cDNAs encoding the p44 and p35 subunits of human translation initiation
factor eIF3. J. Biol. Chem. 273: 31901-31908, 1998.
2. Fraser, C. S.; Berry, K. E.; Hershey, J. W. B.; Doudna, J. A.:
eIF3j is located in the decoding center of the human 40S ribosomal
subunit. Molec. Cell 26: 811-819, 2007.
3. Fraser, C. S.; Lee, J. Y.; Mayeur, G. L.; Bushell, M.; Doudna,
J. A.; Hershey, J. W. B.: The j-subunit of human translation initiation
factor eIF3 is required for the stable binding of eIF3 and its subcomplexes
to 40 S ribosomal subunits in vitro. J. Biol. Chem. 279: 8946-8956,
2004.
4. Hashem, Y.; des Georges, A.; Dhote, V.; Langlois, R.; Liao, H.
Y.; Grassucci, R. A.; Pestova, T. V.; Hellen, C. U. T.; Frank, J.
: Hepatitis-C-virus-like internal ribosome entry sites displace eIF3
to gain access to the 40S subunit. Nature 503: 539-543, 2013.
*FIELD* CN
Ada Hamosh - updated: 1/10/2014
Patricia A. Hartz - updated: 9/25/2007
*FIELD* CD
Rebekah S. Rasooly: 6/16/1999
*FIELD* ED
alopez: 01/10/2014
alopez: 1/10/2014
mgross: 10/2/2007
terry: 9/25/2007
alopez: 6/17/1999