Full text data of EIF3M
EIF3M
(HFLB5, PCID1)
[Confidence: low (only semi-automatic identification from reviews)]
Eukaryotic translation initiation factor 3 subunit M; eIF3m (Fetal lung protein B5; hFL-B5; PCI domain-containing protein 1)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Eukaryotic translation initiation factor 3 subunit M; eIF3m (Fetal lung protein B5; hFL-B5; PCI domain-containing protein 1)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
Q7L2H7
ID EIF3M_HUMAN Reviewed; 374 AA.
AC Q7L2H7; A8K7X4; O60735; Q2F836; Q53HL6; Q9BXW1;
DT 23-OCT-2007, integrated into UniProtKB/Swiss-Prot.
read moreDT 05-JUL-2005, sequence version 1.
DT 22-JAN-2014, entry version 85.
DE RecName: Full=Eukaryotic translation initiation factor 3 subunit M;
DE Short=eIF3m;
DE AltName: Full=Fetal lung protein B5;
DE Short=hFL-B5;
DE AltName: Full=PCI domain-containing protein 1;
GN Name=EIF3M; Synonyms=HFLB5, PCID1; ORFNames=GA17, PNAS-125;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, AND TISSUE SPECIFICITY.
RC TISSUE=Fetal lung;
RX PubMed=15919898; DOI=10.1128/JVI.79.12.7419-7430.2005;
RA Perez A., Li Q.-X., Perez-Romero P., DeLassus G., Lopez S.R.,
RA Sutter S., McLaren N., Fuller A.O.;
RT "A new class of receptor for herpes simplex virus has heptad repeat
RT motifs that are common to membrane fusion proteins.";
RL J. Virol. 79:7419-7430(2005).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT ARG-346.
RC TISSUE=Dendritic cell;
RA Zhao Z., Huang X., Li N., Zhu X., Cao X.;
RT "A novel gene from human dendritic cell.";
RL Submitted (MAY-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (MAY-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Synovium, and Thalamus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Coronary arterial endothelium;
RA Suzuki Y., Sugano S., Totoki Y., Toyoda A., Takeda T., Sakaki Y.,
RA Tanaka A., Yokoyama S.;
RL Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Muscle, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP PROTEIN SEQUENCE OF 2-19; 103-115; 184-201; 261-276 AND 279-290,
RP CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT SER-2, AND MASS
RP SPECTROMETRY.
RC TISSUE=Hepatoma, and Lung carcinoma;
RA Bienvenut W.V., Boldt K., von Kriegsheim A.F., Kolch W., Vousden K.H.,
RA Lukashchuk N.;
RL Submitted (MAR-2008) to UniProtKB.
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 4-139, AND INDUCTION.
RX PubMed=17719568; DOI=10.1016/j.brainres.2007.07.042;
RA Kobayashi K., Xin Y., Ymer S.I., Werther G.A., Russo V.C.;
RT "Subtractive hybridisation screen identifies genes regulated by
RT glucose deprivation in human neuroblastoma cells.";
RL Brain Res. 1170:129-139(2007).
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 171-374.
RA Yu W.-Q., Sun B.-Z., Chai Y.-B., Zhu F., Liu X.-S., Li Z., Lu F.,
RA Yan W., Yang H., Zhao Z.-L.;
RT "Human acute promyelocytic leukemia cell line NB4's
RT apoptosis/differentiation related genes.";
RL Submitted (JUN-2000) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=15601822; DOI=10.1101/gad.1255704;
RA Unbehaun A., Borukhov S.I., Hellen C.U.T., Pestova T.V.;
RT "Release of initiation factors from 48S complexes during ribosomal
RT subunit joining and the link between establishment of codon-anticodon
RT base-pairing and hydrolysis of eIF2-bound GTP.";
RL Genes Dev. 18:3078-3093(2004).
RN [12]
RP IDENTIFICATION.
RX PubMed=15904532; DOI=10.1186/1741-7007-3-14;
RA Zhou C., Arslan F., Wee S., Krishnan S., Ivanov A.R., Oliva A.,
RA Leatherwood J., Wolf D.A.;
RT "PCI proteins eIF3e and eIF3m define distinct translation initiation
RT factor 3 complexes.";
RL BMC Biol. 3:14-14(2005).
RN [13]
RP MUTAGENESIS OF LEU-350; LEU-354; LEU-361 AND VAL-364.
RX PubMed=15919899; DOI=10.1128/JVI.79.12.7431-7437.2005;
RA Perez-Romero P., Fuller A.O.;
RT "The C-terminus of the B5 receptor for herpes simplex virus contains a
RT functional region important for infection.";
RL J. Virol. 79:7431-7437(2005).
RN [14]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [15]
RP CHARACTERIZATION OF THE EIF-3 COMPLEX.
RX PubMed=15703437; DOI=10.1261/rna.7215305;
RA Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U.T.,
RA Pestova T.V.;
RT "Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits
RT and its role in ribosomal dissociation and anti-association.";
RL RNA 11:470-486(2005).
RN [16]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND IDENTIFICATION BY MASS
RP SPECTROMETRY.
RX PubMed=16766523; DOI=10.1074/jbc.M605418200;
RA LeFebvre A.K., Korneeva N.L., Trutschl M., Cvek U., Duzan R.D.,
RA Bradley C.A., Hershey J.W.B., Rhoads R.E.;
RT "Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e
RT subunit.";
RL J. Biol. Chem. 281:22917-22932(2006).
RN [17]
RP FUNCTION, AND IDENTIFICATION IN THE EIF-3 COMPLEX.
RX PubMed=17403899; DOI=10.1128/MCB.01724-06;
RA Luke-Glaser S., Roy M., Larsen B., Le Bihan T., Metalnikov P.,
RA Tyers M., Peter M., Pintard L.;
RT "CIF-1, a shared subunit of the COP9/signalosome and eukaryotic
RT initiation factor 3 complexes, regulates MEL-26 levels in the
RT Caenorhabditis elegans embryo.";
RL Mol. Cell. Biol. 27:4526-4540(2007).
RN [18]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT SER-2, AND
RP MASS SPECTROMETRY.
RX PubMed=17322308; DOI=10.1074/mcp.M600399-MCP200;
RA Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L.,
RA Hershey J.W.B., Doudna J.A., Robinson C.V., Leary J.A.;
RT "Structural characterization of the human eukaryotic initiation factor
RT 3 protein complex by mass spectrometry.";
RL Mol. Cell. Proteomics 6:1135-1146(2007).
RN [19]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, MASS SPECTROMETRY, AND INTERACTION WITH EIF3B; EIF3F AND
RP EIF3H.
RX PubMed=18599441; DOI=10.1073/pnas.0801313105;
RA Zhou M., Sandercock A.M., Fraser C.S., Ridlova G., Stephens E.,
RA Schenauer M.R., Yokoi-Fong T., Barsky D., Leary J.A., Hershey J.W.B.,
RA Doudna J.A., Robinson C.V.;
RT "Mass spectrometry reveals modularity and a complete subunit
RT interaction map of the eukaryotic translation factor eIF3.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:18139-18144(2008).
RN [20]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-254, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [25]
RP VARIANT [LARGE SCALE ANALYSIS] GLY-80.
RX PubMed=16959974; DOI=10.1126/science.1133427;
RA Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D.,
RA Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S.,
RA Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J.,
RA Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C.,
RA Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N.,
RA Vogelstein B., Kinzler K.W., Velculescu V.E.;
RT "The consensus coding sequences of human breast and colorectal
RT cancers.";
RL Science 314:268-274(2006).
CC -!- FUNCTION: Component of the eukaryotic translation initiation
CC factor 3 (eIF-3) complex, which is required for several steps in
CC the initiation of protein synthesis. The eIF-3 complex associates
CC with the 40S ribosome and facilitates the recruitment of eIF-1,
CC eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S
CC preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA
CC recruitment to the 43S PIC and scanning of the mRNA for AUG
CC recognition. The eIF-3 complex is also required for disassembly
CC and recycling of post-termination ribosomal complexes and
CC subsequently prevents premature joining of the 40S and 60S
CC ribosomal subunits prior to initiation. May favor virus entry in
CC case of infection with herpes simplex virus 1 (HSV1) or herpes
CC simplex virus 2 (HSV2).
CC -!- SUBUNIT: Component of the eukaryotic translation initiation factor
CC 3 (eIF-3) complex, which is composed of 13 subunits: EIF3A, EIF3B,
CC EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, EIF3K,
CC EIF3L and EIF3M. The eIF-3 complex appears to include 3 stable
CC modules: module A is composed of EIF3A, EIF3B, EIF3G and EIF3I;
CC module B is composed of EIF3F, EIF3H, and EIF3M; and module C is
CC composed of EIF3C, EIF3D, EIF3E, EIF3K and EIF3L. EIF3C of module
CC C binds EIF3B of module A and EIF3H of module B, thereby linking
CC the three modules. EIF3J is a labile subunit that binds to the
CC eIF-3 complex via EIF3B. The eIF-3 complex interacts with RPS6KB1
CC under conditions of nutrient depletion. Mitogenic stimulation
CC leads to binding and activation of a complex composed of MTOR and
CC RPTOR, leading to phosphorylation and release of RPS6KB1 and
CC binding of EIF4B to eIF-3.
CC -!- INTERACTION:
CC Q9Q2G4:ORF (xeno); NbExp=2; IntAct=EBI-353901, EBI-6248094;
CC -!- SUBCELLULAR LOCATION: Cytoplasm (By similarity).
CC -!- TISSUE SPECIFICITY: Broadly expressed.
CC -!- INDUCTION: By glucose deprivation in neuroblastoma cells.
CC -!- MASS SPECTROMETRY: Mass=42413.8; Method=Unknown; Range=1-374;
CC Source=PubMed:17322308;
CC -!- MASS SPECTROMETRY: Mass=42414.7; Mass_error=0.2; Method=MALDI;
CC Range=1-374; Source=PubMed:18599441;
CC -!- SIMILARITY: Belongs to the eIF-3 subunit M family.
CC -!- SIMILARITY: Contains 1 PCI domain.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAK07542.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAK07542.1; Type=Frameshift; Positions=371;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AY769947; AAX12524.1; -; mRNA.
DR EMBL; AF064603; AAC17108.1; -; mRNA.
DR EMBL; CR450300; CAG29296.1; -; mRNA.
DR EMBL; AK222564; BAD96284.1; -; mRNA.
DR EMBL; AK292139; BAF84828.1; -; mRNA.
DR EMBL; AK312512; BAG35413.1; -; mRNA.
DR EMBL; CH471064; EAW68217.1; -; Genomic_DNA.
DR EMBL; BC019103; AAH19103.1; -; mRNA.
DR EMBL; BC051292; AAH51292.1; -; mRNA.
DR EMBL; DQ185042; ABD14422.1; -; mRNA.
DR EMBL; AF277183; AAK07542.1; ALT_SEQ; mRNA.
DR RefSeq; NP_006351.2; NM_006360.4.
DR UniGene; Hs.502244; -.
DR ProteinModelPortal; Q7L2H7; -.
DR DIP; DIP-31256N; -.
DR IntAct; Q7L2H7; 12.
DR MINT; MINT-4915331; -.
DR STRING; 9606.ENSP00000319910; -.
DR PhosphoSite; Q7L2H7; -.
DR DMDM; 74754296; -.
DR PaxDb; Q7L2H7; -.
DR PeptideAtlas; Q7L2H7; -.
DR PRIDE; Q7L2H7; -.
DR DNASU; 10480; -.
DR Ensembl; ENST00000531120; ENSP00000436049; ENSG00000149100.
DR GeneID; 10480; -.
DR KEGG; hsa:10480; -.
DR UCSC; uc001mtu.4; human.
DR CTD; 10480; -.
DR GeneCards; GC11P032564; -.
DR HGNC; HGNC:24460; EIF3M.
DR HPA; HPA031063; -.
DR MIM; 609641; gene.
DR neXtProt; NX_Q7L2H7; -.
DR PharmGKB; PA162384944; -.
DR eggNOG; NOG253821; -.
DR HOGENOM; HOG000112351; -.
DR HOVERGEN; HBG107844; -.
DR InParanoid; Q7L2H7; -.
DR KO; K15030; -.
DR OMA; SSCGAIQ; -.
DR PhylomeDB; Q7L2H7; -.
DR ChiTaRS; EIF3M; human.
DR GeneWiki; EIF3M; -.
DR GenomeRNAi; 10480; -.
DR NextBio; 39758; -.
DR PRO; PR:Q7L2H7; -.
DR ArrayExpress; Q7L2H7; -.
DR Bgee; Q7L2H7; -.
DR CleanEx; HS_EIF3M; -.
DR Genevestigator; Q7L2H7; -.
DR GO; GO:0016282; C:eukaryotic 43S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0033290; C:eukaryotic 48S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0005852; C:eukaryotic translation initiation factor 3 complex; IDA:UniProtKB.
DR GO; GO:0003743; F:translation initiation factor activity; IEA:UniProtKB-HAMAP.
DR GO; GO:0001731; P:formation of translation preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0006446; P:regulation of translational initiation; IEA:UniProtKB-HAMAP.
DR GO; GO:0006413; P:translational initiation; IC:UniProtKB.
DR Gene3D; 1.10.10.10; -; 1.
DR HAMAP; MF_03012; eIF3m; 1; -.
DR InterPro; IPR016024; ARM-type_fold.
DR InterPro; IPR027528; eIF3m.
DR InterPro; IPR000717; PCI_dom.
DR InterPro; IPR011991; WHTH_DNA-bd_dom.
DR Pfam; PF01399; PCI; 1.
DR SMART; SM00088; PINT; 1.
DR SUPFAM; SSF48371; SSF48371; 1.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; Cytoplasm; Direct protein sequencing;
KW Initiation factor; Phosphoprotein; Polymorphism; Protein biosynthesis;
KW Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 374 Eukaryotic translation initiation factor
FT 3 subunit M.
FT /FTId=PRO_0000308195.
FT DOMAIN 235 336 PCI.
FT REGION 344 374 Interaction with HSV-1 and HSV-2.
FT MOD_RES 2 2 N-acetylserine.
FT MOD_RES 2 2 Phosphoserine.
FT MOD_RES 254 254 N6-acetyllysine.
FT VARIANT 37 37 G -> R (in dbSNP:rs11557143).
FT /FTId=VAR_036752.
FT VARIANT 80 80 E -> G (in a breast cancer sample;
FT somatic mutation).
FT /FTId=VAR_036753.
FT VARIANT 346 346 Q -> R (in dbSNP:rs1802363).
FT /FTId=VAR_036754.
FT MUTAGEN 350 350 L->P: Reduces HSV binding and entry.
FT MUTAGEN 354 354 L->P: Reduces HSV binding and entry.
FT MUTAGEN 361 361 L->P: Reduces HSV binding and entry.
FT MUTAGEN 364 364 V->P: Reduces HSV binding and entry.
FT CONFLICT 64 64 M -> V (in Ref. 2; AAC17108).
FT CONFLICT 121 121 Y -> C (in Ref. 9; ABD14422).
FT CONFLICT 129 131 KVA -> EVV (in Ref. 2; AAC17108).
FT CONFLICT 173 173 V -> A (in Ref. 2; AAC17108).
FT CONFLICT 210 211 RA -> EP (in Ref. 2; AAC17108).
FT CONFLICT 287 287 V -> I (in Ref. 2; AAC17108).
FT CONFLICT 297 297 M -> V (in Ref. 5; BAD96284).
SQ SEQUENCE 374 AA; 42503 MW; 63736CA2B093D794 CRC64;
MSVPAFIDIS EEDQAAELRA YLKSKGAEIS EENSEGGLHV DLAQIIEACD VCLKEDDKDV
ESVMNSVVSL LLILEPDKQE ALIESLCEKL VKFREGERPS LRLQLLSNLF HGMDKNTPVR
YTVYCSLIKV AASCGAIQYI PTELDQVRKW ISDWNLTTEK KHTLLRLLYE ALVDCKKSDA
ASKVMVELLG SYTEDNASQA RVDAHRCIVR ALKDPNAFLF DHLLTLKPVK FLEGELIHDL
LTIFVSAKLA SYVKFYQNNK DFIDSLGLLH EQNMAKMRLL TFMGMAVENK EISFDTMQQE
LQIGADDVEA FVIDAVRTKM VYCKIDQTQR KVVVSHSTHR TFGKQQWQQL YDTLNAWKQN
LNKVKNSLLS LSDT
//
ID EIF3M_HUMAN Reviewed; 374 AA.
AC Q7L2H7; A8K7X4; O60735; Q2F836; Q53HL6; Q9BXW1;
DT 23-OCT-2007, integrated into UniProtKB/Swiss-Prot.
read moreDT 05-JUL-2005, sequence version 1.
DT 22-JAN-2014, entry version 85.
DE RecName: Full=Eukaryotic translation initiation factor 3 subunit M;
DE Short=eIF3m;
DE AltName: Full=Fetal lung protein B5;
DE Short=hFL-B5;
DE AltName: Full=PCI domain-containing protein 1;
GN Name=EIF3M; Synonyms=HFLB5, PCID1; ORFNames=GA17, PNAS-125;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, AND TISSUE SPECIFICITY.
RC TISSUE=Fetal lung;
RX PubMed=15919898; DOI=10.1128/JVI.79.12.7419-7430.2005;
RA Perez A., Li Q.-X., Perez-Romero P., DeLassus G., Lopez S.R.,
RA Sutter S., McLaren N., Fuller A.O.;
RT "A new class of receptor for herpes simplex virus has heptad repeat
RT motifs that are common to membrane fusion proteins.";
RL J. Virol. 79:7419-7430(2005).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANT ARG-346.
RC TISSUE=Dendritic cell;
RA Zhao Z., Huang X., Li N., Zhu X., Cao X.;
RT "A novel gene from human dendritic cell.";
RL Submitted (MAY-1998) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (MAY-2004) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Synovium, and Thalamus;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Coronary arterial endothelium;
RA Suzuki Y., Sugano S., Totoki Y., Toyoda A., Takeda T., Sakaki Y.,
RA Tanaka A., Yokoyama S.;
RL Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Muscle, and Uterus;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP PROTEIN SEQUENCE OF 2-19; 103-115; 184-201; 261-276 AND 279-290,
RP CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT SER-2, AND MASS
RP SPECTROMETRY.
RC TISSUE=Hepatoma, and Lung carcinoma;
RA Bienvenut W.V., Boldt K., von Kriegsheim A.F., Kolch W., Vousden K.H.,
RA Lukashchuk N.;
RL Submitted (MAR-2008) to UniProtKB.
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 4-139, AND INDUCTION.
RX PubMed=17719568; DOI=10.1016/j.brainres.2007.07.042;
RA Kobayashi K., Xin Y., Ymer S.I., Werther G.A., Russo V.C.;
RT "Subtractive hybridisation screen identifies genes regulated by
RT glucose deprivation in human neuroblastoma cells.";
RL Brain Res. 1170:129-139(2007).
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 171-374.
RA Yu W.-Q., Sun B.-Z., Chai Y.-B., Zhu F., Liu X.-S., Li Z., Lu F.,
RA Yan W., Yang H., Zhao Z.-L.;
RT "Human acute promyelocytic leukemia cell line NB4's
RT apoptosis/differentiation related genes.";
RL Submitted (JUN-2000) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND MASS SPECTROMETRY.
RX PubMed=15601822; DOI=10.1101/gad.1255704;
RA Unbehaun A., Borukhov S.I., Hellen C.U.T., Pestova T.V.;
RT "Release of initiation factors from 48S complexes during ribosomal
RT subunit joining and the link between establishment of codon-anticodon
RT base-pairing and hydrolysis of eIF2-bound GTP.";
RL Genes Dev. 18:3078-3093(2004).
RN [12]
RP IDENTIFICATION.
RX PubMed=15904532; DOI=10.1186/1741-7007-3-14;
RA Zhou C., Arslan F., Wee S., Krishnan S., Ivanov A.R., Oliva A.,
RA Leatherwood J., Wolf D.A.;
RT "PCI proteins eIF3e and eIF3m define distinct translation initiation
RT factor 3 complexes.";
RL BMC Biol. 3:14-14(2005).
RN [13]
RP MUTAGENESIS OF LEU-350; LEU-354; LEU-361 AND VAL-364.
RX PubMed=15919899; DOI=10.1128/JVI.79.12.7431-7437.2005;
RA Perez-Romero P., Fuller A.O.;
RT "The C-terminus of the B5 receptor for herpes simplex virus contains a
RT functional region important for infection.";
RL J. Virol. 79:7431-7437(2005).
RN [14]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [15]
RP CHARACTERIZATION OF THE EIF-3 COMPLEX.
RX PubMed=15703437; DOI=10.1261/rna.7215305;
RA Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U.T.,
RA Pestova T.V.;
RT "Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits
RT and its role in ribosomal dissociation and anti-association.";
RL RNA 11:470-486(2005).
RN [16]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, AND IDENTIFICATION BY MASS
RP SPECTROMETRY.
RX PubMed=16766523; DOI=10.1074/jbc.M605418200;
RA LeFebvre A.K., Korneeva N.L., Trutschl M., Cvek U., Duzan R.D.,
RA Bradley C.A., Hershey J.W.B., Rhoads R.E.;
RT "Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e
RT subunit.";
RL J. Biol. Chem. 281:22917-22932(2006).
RN [17]
RP FUNCTION, AND IDENTIFICATION IN THE EIF-3 COMPLEX.
RX PubMed=17403899; DOI=10.1128/MCB.01724-06;
RA Luke-Glaser S., Roy M., Larsen B., Le Bihan T., Metalnikov P.,
RA Tyers M., Peter M., Pintard L.;
RT "CIF-1, a shared subunit of the COP9/signalosome and eukaryotic
RT initiation factor 3 complexes, regulates MEL-26 levels in the
RT Caenorhabditis elegans embryo.";
RL Mol. Cell. Biol. 27:4526-4540(2007).
RN [18]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, CLEAVAGE OF INITIATOR METHIONINE, ACETYLATION AT SER-2, AND
RP MASS SPECTROMETRY.
RX PubMed=17322308; DOI=10.1074/mcp.M600399-MCP200;
RA Damoc E., Fraser C.S., Zhou M., Videler H., Mayeur G.L.,
RA Hershey J.W.B., Doudna J.A., Robinson C.V., Leary J.A.;
RT "Structural characterization of the human eukaryotic initiation factor
RT 3 protein complex by mass spectrometry.";
RL Mol. Cell. Proteomics 6:1135-1146(2007).
RN [19]
RP IDENTIFICATION IN THE EIF-3 COMPLEX, CHARACTERIZATION OF THE EIF-3
RP COMPLEX, MASS SPECTROMETRY, AND INTERACTION WITH EIF3B; EIF3F AND
RP EIF3H.
RX PubMed=18599441; DOI=10.1073/pnas.0801313105;
RA Zhou M., Sandercock A.M., Fraser C.S., Ridlova G., Stephens E.,
RA Schenauer M.R., Yokoi-Fong T., Barsky D., Leary J.A., Hershey J.W.B.,
RA Doudna J.A., Robinson C.V.;
RT "Mass spectrometry reveals modularity and a complete subunit
RT interaction map of the eukaryotic translation factor eIF3.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:18139-18144(2008).
RN [20]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-254, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [24]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [25]
RP VARIANT [LARGE SCALE ANALYSIS] GLY-80.
RX PubMed=16959974; DOI=10.1126/science.1133427;
RA Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D.,
RA Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S.,
RA Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J.,
RA Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C.,
RA Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N.,
RA Vogelstein B., Kinzler K.W., Velculescu V.E.;
RT "The consensus coding sequences of human breast and colorectal
RT cancers.";
RL Science 314:268-274(2006).
CC -!- FUNCTION: Component of the eukaryotic translation initiation
CC factor 3 (eIF-3) complex, which is required for several steps in
CC the initiation of protein synthesis. The eIF-3 complex associates
CC with the 40S ribosome and facilitates the recruitment of eIF-1,
CC eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S
CC preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA
CC recruitment to the 43S PIC and scanning of the mRNA for AUG
CC recognition. The eIF-3 complex is also required for disassembly
CC and recycling of post-termination ribosomal complexes and
CC subsequently prevents premature joining of the 40S and 60S
CC ribosomal subunits prior to initiation. May favor virus entry in
CC case of infection with herpes simplex virus 1 (HSV1) or herpes
CC simplex virus 2 (HSV2).
CC -!- SUBUNIT: Component of the eukaryotic translation initiation factor
CC 3 (eIF-3) complex, which is composed of 13 subunits: EIF3A, EIF3B,
CC EIF3C, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3I, EIF3J, EIF3K,
CC EIF3L and EIF3M. The eIF-3 complex appears to include 3 stable
CC modules: module A is composed of EIF3A, EIF3B, EIF3G and EIF3I;
CC module B is composed of EIF3F, EIF3H, and EIF3M; and module C is
CC composed of EIF3C, EIF3D, EIF3E, EIF3K and EIF3L. EIF3C of module
CC C binds EIF3B of module A and EIF3H of module B, thereby linking
CC the three modules. EIF3J is a labile subunit that binds to the
CC eIF-3 complex via EIF3B. The eIF-3 complex interacts with RPS6KB1
CC under conditions of nutrient depletion. Mitogenic stimulation
CC leads to binding and activation of a complex composed of MTOR and
CC RPTOR, leading to phosphorylation and release of RPS6KB1 and
CC binding of EIF4B to eIF-3.
CC -!- INTERACTION:
CC Q9Q2G4:ORF (xeno); NbExp=2; IntAct=EBI-353901, EBI-6248094;
CC -!- SUBCELLULAR LOCATION: Cytoplasm (By similarity).
CC -!- TISSUE SPECIFICITY: Broadly expressed.
CC -!- INDUCTION: By glucose deprivation in neuroblastoma cells.
CC -!- MASS SPECTROMETRY: Mass=42413.8; Method=Unknown; Range=1-374;
CC Source=PubMed:17322308;
CC -!- MASS SPECTROMETRY: Mass=42414.7; Mass_error=0.2; Method=MALDI;
CC Range=1-374; Source=PubMed:18599441;
CC -!- SIMILARITY: Belongs to the eIF-3 subunit M family.
CC -!- SIMILARITY: Contains 1 PCI domain.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAK07542.1; Type=Erroneous initiation; Note=Translation N-terminally extended;
CC Sequence=AAK07542.1; Type=Frameshift; Positions=371;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AY769947; AAX12524.1; -; mRNA.
DR EMBL; AF064603; AAC17108.1; -; mRNA.
DR EMBL; CR450300; CAG29296.1; -; mRNA.
DR EMBL; AK222564; BAD96284.1; -; mRNA.
DR EMBL; AK292139; BAF84828.1; -; mRNA.
DR EMBL; AK312512; BAG35413.1; -; mRNA.
DR EMBL; CH471064; EAW68217.1; -; Genomic_DNA.
DR EMBL; BC019103; AAH19103.1; -; mRNA.
DR EMBL; BC051292; AAH51292.1; -; mRNA.
DR EMBL; DQ185042; ABD14422.1; -; mRNA.
DR EMBL; AF277183; AAK07542.1; ALT_SEQ; mRNA.
DR RefSeq; NP_006351.2; NM_006360.4.
DR UniGene; Hs.502244; -.
DR ProteinModelPortal; Q7L2H7; -.
DR DIP; DIP-31256N; -.
DR IntAct; Q7L2H7; 12.
DR MINT; MINT-4915331; -.
DR STRING; 9606.ENSP00000319910; -.
DR PhosphoSite; Q7L2H7; -.
DR DMDM; 74754296; -.
DR PaxDb; Q7L2H7; -.
DR PeptideAtlas; Q7L2H7; -.
DR PRIDE; Q7L2H7; -.
DR DNASU; 10480; -.
DR Ensembl; ENST00000531120; ENSP00000436049; ENSG00000149100.
DR GeneID; 10480; -.
DR KEGG; hsa:10480; -.
DR UCSC; uc001mtu.4; human.
DR CTD; 10480; -.
DR GeneCards; GC11P032564; -.
DR HGNC; HGNC:24460; EIF3M.
DR HPA; HPA031063; -.
DR MIM; 609641; gene.
DR neXtProt; NX_Q7L2H7; -.
DR PharmGKB; PA162384944; -.
DR eggNOG; NOG253821; -.
DR HOGENOM; HOG000112351; -.
DR HOVERGEN; HBG107844; -.
DR InParanoid; Q7L2H7; -.
DR KO; K15030; -.
DR OMA; SSCGAIQ; -.
DR PhylomeDB; Q7L2H7; -.
DR ChiTaRS; EIF3M; human.
DR GeneWiki; EIF3M; -.
DR GenomeRNAi; 10480; -.
DR NextBio; 39758; -.
DR PRO; PR:Q7L2H7; -.
DR ArrayExpress; Q7L2H7; -.
DR Bgee; Q7L2H7; -.
DR CleanEx; HS_EIF3M; -.
DR Genevestigator; Q7L2H7; -.
DR GO; GO:0016282; C:eukaryotic 43S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0033290; C:eukaryotic 48S preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0005852; C:eukaryotic translation initiation factor 3 complex; IDA:UniProtKB.
DR GO; GO:0003743; F:translation initiation factor activity; IEA:UniProtKB-HAMAP.
DR GO; GO:0001731; P:formation of translation preinitiation complex; IEA:UniProtKB-HAMAP.
DR GO; GO:0006446; P:regulation of translational initiation; IEA:UniProtKB-HAMAP.
DR GO; GO:0006413; P:translational initiation; IC:UniProtKB.
DR Gene3D; 1.10.10.10; -; 1.
DR HAMAP; MF_03012; eIF3m; 1; -.
DR InterPro; IPR016024; ARM-type_fold.
DR InterPro; IPR027528; eIF3m.
DR InterPro; IPR000717; PCI_dom.
DR InterPro; IPR011991; WHTH_DNA-bd_dom.
DR Pfam; PF01399; PCI; 1.
DR SMART; SM00088; PINT; 1.
DR SUPFAM; SSF48371; SSF48371; 1.
PE 1: Evidence at protein level;
KW Acetylation; Complete proteome; Cytoplasm; Direct protein sequencing;
KW Initiation factor; Phosphoprotein; Polymorphism; Protein biosynthesis;
KW Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 374 Eukaryotic translation initiation factor
FT 3 subunit M.
FT /FTId=PRO_0000308195.
FT DOMAIN 235 336 PCI.
FT REGION 344 374 Interaction with HSV-1 and HSV-2.
FT MOD_RES 2 2 N-acetylserine.
FT MOD_RES 2 2 Phosphoserine.
FT MOD_RES 254 254 N6-acetyllysine.
FT VARIANT 37 37 G -> R (in dbSNP:rs11557143).
FT /FTId=VAR_036752.
FT VARIANT 80 80 E -> G (in a breast cancer sample;
FT somatic mutation).
FT /FTId=VAR_036753.
FT VARIANT 346 346 Q -> R (in dbSNP:rs1802363).
FT /FTId=VAR_036754.
FT MUTAGEN 350 350 L->P: Reduces HSV binding and entry.
FT MUTAGEN 354 354 L->P: Reduces HSV binding and entry.
FT MUTAGEN 361 361 L->P: Reduces HSV binding and entry.
FT MUTAGEN 364 364 V->P: Reduces HSV binding and entry.
FT CONFLICT 64 64 M -> V (in Ref. 2; AAC17108).
FT CONFLICT 121 121 Y -> C (in Ref. 9; ABD14422).
FT CONFLICT 129 131 KVA -> EVV (in Ref. 2; AAC17108).
FT CONFLICT 173 173 V -> A (in Ref. 2; AAC17108).
FT CONFLICT 210 211 RA -> EP (in Ref. 2; AAC17108).
FT CONFLICT 287 287 V -> I (in Ref. 2; AAC17108).
FT CONFLICT 297 297 M -> V (in Ref. 5; BAD96284).
SQ SEQUENCE 374 AA; 42503 MW; 63736CA2B093D794 CRC64;
MSVPAFIDIS EEDQAAELRA YLKSKGAEIS EENSEGGLHV DLAQIIEACD VCLKEDDKDV
ESVMNSVVSL LLILEPDKQE ALIESLCEKL VKFREGERPS LRLQLLSNLF HGMDKNTPVR
YTVYCSLIKV AASCGAIQYI PTELDQVRKW ISDWNLTTEK KHTLLRLLYE ALVDCKKSDA
ASKVMVELLG SYTEDNASQA RVDAHRCIVR ALKDPNAFLF DHLLTLKPVK FLEGELIHDL
LTIFVSAKLA SYVKFYQNNK DFIDSLGLLH EQNMAKMRLL TFMGMAVENK EISFDTMQQE
LQIGADDVEA FVIDAVRTKM VYCKIDQTQR KVVVSHSTHR TFGKQQWQQL YDTLNAWKQN
LNKVKNSLLS LSDT
//
MIM
609641
*RECORD*
*FIELD* NO
609641
*FIELD* TI
*609641 EUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT M; EIF3M
;;PCI DOMAIN-CONTAINING PROTEIN 1; PCID1;;
read moreHUMAN FETAL LUNG PROTEIN B5; HFLB5; B5;;
DENDRITIC CELL PROTEIN GA17; GA17
*FIELD* TX
DESCRIPTION
HFLB5 encodes a broadly expressed protein containing putative membrane
fusion domains that acts as a receptor or coreceptor for entry of herpes
simplex virus (HSV) (Perez et al., 2005).
CLONING
By searching for genes in a region of chromosome 11 associated with WAGR
syndrome (194072), Gawin et al. (1999) identified and cloned EIF3M,
which they called GA17. Northern blot analysis detected a 1.5-kb
transcript in all human tissues examined. Variable Ga17 expression was
detected in all adult tissues examined, and Ga17 expression was also
detected at all stages of mouse embryonic development. In situ
hybridization of mouse embryos showed expression mainly in lung, thymus,
and developing kidney, with lower levels in muscle and neuronal tissues.
By screening a fetal lung cDNA library for sequences that transferred
HSV susceptibility to entry-defective, replication-competent porcine
kidney cells, Perez et al. (2005) obtained a cDNA encoding HFLB5. The
predicted 374-amino acid type II membrane protein contains 2
N-glycosylation sites and a C-terminal heptad repeat that forms a
coiled-coil structure. HFLB5 lacks a signal peptide. Microscopic,
immunoprecipitation, Western blot, and FACS analyses demonstrated that
the HFLB5 C terminus is exposed extracellularly on the cell surface.
Northern blot and RT-PCR analyses of human tissues and cell lines
revealed broad expression of a 1.3-kb HFLB5 transcript.
GENE FUNCTION
Perez et al. (2005) determined that expression of HFLB5 in
entry-defective, replication-competent porcine kidney cells transferred
susceptibility to both HSV-1 and HSV-2. Entry of HSV into
HFLB5-expressing porcine and human cells could be blocked by a 30-mer
peptide identical to the HFLB5 C-terminal coiled-coil region.
Using mutagenesis and synthetic peptides, Perez-Romero and Fuller (2005)
showed that only the wildtype B5 C-terminal coiled-coil sequence or the
B5 C terminus with nondisruptive mutations blocked HSV entry. They
concluded that the C terminus of B5 contains a functional region
important for B5 to mediate HSV entry.
Chew et al. (2009) presented a highly validated set of targets that is
necessary for apoptosis provoked by several stimuli in Drosophila. Among
these, Tango7, whose human homolog is PCID1, was identified as a new
effector. Cells depleted for this gene resisted apoptosis at a step
before the induction of effector caspase activity, and the directed
silencing of Tango7 in Drosophila prevented caspase-dependent programmed
cell death. Unlike known apoptosis regulators in this model system,
Tango7 activity did not influence stimulus-dependent loss of Drosophila
DIAP1 (human homolog DIAPH1, 602121), but instead regulated levels of
the apical caspase Dronc (human homolog CASP9, 602234). Similarly, Chew
et al. (2009) found that human PCID1 impinged on CASP9, revealing a
novel regulatory axis affecting the apoptosome.
MAPPING
By analyzing a PAC contig covering chromosome 11p14.1-p13, Gawin et al.
(1999) mapped the EIF3M gene to chromosome 11p13, centromeric to the WT1
gene (607102) and telomeric to the TR2 gene (DEPDC7; 612294).
*FIELD* RF
1. Chew, S. K.; Chen, P.; Link, N.; Galindo, K. A.; Pogue, K.; Abrams,
J. M.: Genome-wide silencing in Drosophila captures conserved apoptotic
effectors. Nature 460: 123-127, 2009.
2. Gawin, B.; Niederfuhr, A.; Schumacher, N.; Hummerich, H.; Little,
P. F. R.; Gessler, M.: A 7.5 Mb sequence-ready PAC contig and gene
expression map of human chromosome 11p13-p14.1. Genome Res. 9: 1074-1086,
1999.
3. Perez, A.; Li, Q.-X.; Perez-Romero, P.; DeLassus, G.; Lopez, S.
R.; Sutter, S.; McLaren, N.; Fuller, A. O.: A new class of receptor
for herpes simplex virus has heptad repeat motifs that are common
to membrane fusion proteins. J. Virol. 79: 7419-7430, 2005.
4. Perez-Romero, P.; Fuller, A. O.: The C terminus of the B5 receptor
for herpes simplex virus contains a functional region important for
infection. J. Virol. 79: 7431-7437, 2005.
*FIELD* CN
Ada Hamosh - updated: 8/25/2009
Patricia A. Hartz - updated: 9/16/2008
*FIELD* CD
Paul J. Converse: 10/10/2005
*FIELD* ED
alopez: 08/27/2009
terry: 8/25/2009
mgross: 9/18/2008
terry: 9/16/2008
mgross: 10/2/2007
alopez: 4/19/2006
mgross: 10/10/2005
*RECORD*
*FIELD* NO
609641
*FIELD* TI
*609641 EUKARYOTIC TRANSLATION INITIATION FACTOR 3, SUBUNIT M; EIF3M
;;PCI DOMAIN-CONTAINING PROTEIN 1; PCID1;;
read moreHUMAN FETAL LUNG PROTEIN B5; HFLB5; B5;;
DENDRITIC CELL PROTEIN GA17; GA17
*FIELD* TX
DESCRIPTION
HFLB5 encodes a broadly expressed protein containing putative membrane
fusion domains that acts as a receptor or coreceptor for entry of herpes
simplex virus (HSV) (Perez et al., 2005).
CLONING
By searching for genes in a region of chromosome 11 associated with WAGR
syndrome (194072), Gawin et al. (1999) identified and cloned EIF3M,
which they called GA17. Northern blot analysis detected a 1.5-kb
transcript in all human tissues examined. Variable Ga17 expression was
detected in all adult tissues examined, and Ga17 expression was also
detected at all stages of mouse embryonic development. In situ
hybridization of mouse embryos showed expression mainly in lung, thymus,
and developing kidney, with lower levels in muscle and neuronal tissues.
By screening a fetal lung cDNA library for sequences that transferred
HSV susceptibility to entry-defective, replication-competent porcine
kidney cells, Perez et al. (2005) obtained a cDNA encoding HFLB5. The
predicted 374-amino acid type II membrane protein contains 2
N-glycosylation sites and a C-terminal heptad repeat that forms a
coiled-coil structure. HFLB5 lacks a signal peptide. Microscopic,
immunoprecipitation, Western blot, and FACS analyses demonstrated that
the HFLB5 C terminus is exposed extracellularly on the cell surface.
Northern blot and RT-PCR analyses of human tissues and cell lines
revealed broad expression of a 1.3-kb HFLB5 transcript.
GENE FUNCTION
Perez et al. (2005) determined that expression of HFLB5 in
entry-defective, replication-competent porcine kidney cells transferred
susceptibility to both HSV-1 and HSV-2. Entry of HSV into
HFLB5-expressing porcine and human cells could be blocked by a 30-mer
peptide identical to the HFLB5 C-terminal coiled-coil region.
Using mutagenesis and synthetic peptides, Perez-Romero and Fuller (2005)
showed that only the wildtype B5 C-terminal coiled-coil sequence or the
B5 C terminus with nondisruptive mutations blocked HSV entry. They
concluded that the C terminus of B5 contains a functional region
important for B5 to mediate HSV entry.
Chew et al. (2009) presented a highly validated set of targets that is
necessary for apoptosis provoked by several stimuli in Drosophila. Among
these, Tango7, whose human homolog is PCID1, was identified as a new
effector. Cells depleted for this gene resisted apoptosis at a step
before the induction of effector caspase activity, and the directed
silencing of Tango7 in Drosophila prevented caspase-dependent programmed
cell death. Unlike known apoptosis regulators in this model system,
Tango7 activity did not influence stimulus-dependent loss of Drosophila
DIAP1 (human homolog DIAPH1, 602121), but instead regulated levels of
the apical caspase Dronc (human homolog CASP9, 602234). Similarly, Chew
et al. (2009) found that human PCID1 impinged on CASP9, revealing a
novel regulatory axis affecting the apoptosome.
MAPPING
By analyzing a PAC contig covering chromosome 11p14.1-p13, Gawin et al.
(1999) mapped the EIF3M gene to chromosome 11p13, centromeric to the WT1
gene (607102) and telomeric to the TR2 gene (DEPDC7; 612294).
*FIELD* RF
1. Chew, S. K.; Chen, P.; Link, N.; Galindo, K. A.; Pogue, K.; Abrams,
J. M.: Genome-wide silencing in Drosophila captures conserved apoptotic
effectors. Nature 460: 123-127, 2009.
2. Gawin, B.; Niederfuhr, A.; Schumacher, N.; Hummerich, H.; Little,
P. F. R.; Gessler, M.: A 7.5 Mb sequence-ready PAC contig and gene
expression map of human chromosome 11p13-p14.1. Genome Res. 9: 1074-1086,
1999.
3. Perez, A.; Li, Q.-X.; Perez-Romero, P.; DeLassus, G.; Lopez, S.
R.; Sutter, S.; McLaren, N.; Fuller, A. O.: A new class of receptor
for herpes simplex virus has heptad repeat motifs that are common
to membrane fusion proteins. J. Virol. 79: 7419-7430, 2005.
4. Perez-Romero, P.; Fuller, A. O.: The C terminus of the B5 receptor
for herpes simplex virus contains a functional region important for
infection. J. Virol. 79: 7431-7437, 2005.
*FIELD* CN
Ada Hamosh - updated: 8/25/2009
Patricia A. Hartz - updated: 9/16/2008
*FIELD* CD
Paul J. Converse: 10/10/2005
*FIELD* ED
alopez: 08/27/2009
terry: 8/25/2009
mgross: 9/18/2008
terry: 9/16/2008
mgross: 10/2/2007
alopez: 4/19/2006
mgross: 10/10/2005