Full text data of FCGR2A
FCGR2A
(CD32, FCG2, FCGR2A1, IGFR2)
[Confidence: low (only semi-automatic identification from reviews)]
Low affinity immunoglobulin gamma Fc region receptor II-a; IgG Fc receptor II-a (CDw32; Fc-gamma RII-a; Fc-gamma-RIIa; FcRII-a; CD32; Flags: Precursor)
Low affinity immunoglobulin gamma Fc region receptor II-a; IgG Fc receptor II-a (CDw32; Fc-gamma RII-a; Fc-gamma-RIIa; FcRII-a; CD32; Flags: Precursor)
UniProt
P12318
ID FCG2A_HUMAN Reviewed; 317 AA.
AC P12318; Q8WUN1; Q8WW64;
DT 01-OCT-1989, integrated into UniProtKB/Swiss-Prot.
read moreDT 13-NOV-2007, sequence version 4.
DT 22-JAN-2014, entry version 159.
DE RecName: Full=Low affinity immunoglobulin gamma Fc region receptor II-a;
DE Short=IgG Fc receptor II-a;
DE AltName: Full=CDw32;
DE AltName: Full=Fc-gamma RII-a;
DE Short=Fc-gamma-RIIa;
DE Short=FcRII-a;
DE AltName: CD_antigen=CD32;
DE Flags: Precursor;
GN Name=FCGR2A; Synonyms=CD32, FCG2, FCGR2A1, IGFR2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2824655; DOI=10.1084/jem.166.6.1668;
RA Stuart S.G., Trounstine M.L., Vaux D.J.T., Koch T., Martens C.L.,
RA Moore K.W.;
RT "Isolation and expression of cDNA clones encoding a human receptor for
RT IgG (Fc gamma RII).";
RL J. Exp. Med. 166:1668-1684(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2529342; DOI=10.1084/jem.170.4.1369;
RA Brooks D.G., Qiu W.Q., Luster A.D., Ravetch J.V.;
RT "Structure and expression of human IgG FcRII(CD32). Functional
RT heterogeneity is encoded by the alternatively spliced products of
RT multiple genes.";
RL J. Exp. Med. 170:1369-1385(1989).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2), AND VARIANTS
RP ARG-167 AND VAL-218.
RC TISSUE=Lung, and Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 2-317 (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2965389; DOI=10.1073/pnas.85.7.2240;
RA Hibbs M.L., Bonadonna L., Scott B.M., McKenzie I.F.C., Hogarth P.M.;
RT "Molecular cloning of a human immunoglobulin G Fc receptor.";
RL Proc. Natl. Acad. Sci. U.S.A. 85:2240-2244(1988).
RN [6]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-317 (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=3402431;
RA Stengelin S., Stamenkovic I., Seed B.;
RT "Isolation of cDNAs for two distinct human Fc receptors by ligand
RT affinity cloning.";
RL EMBO J. 7:1053-1059(1988).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-317 (ISOFORM 1).
RX PubMed=2526077; DOI=10.1007/BF02421463;
RA Seki T.;
RT "Identification of multiple isoforms of the low-affinity human IgG Fc
RT receptor.";
RL Immunogenetics 30:5-12(1989).
RN [8]
RP PROTEIN SEQUENCE OF N-TERMINUS, GLYCOSYLATION AT ASN-97 AND ASN-178,
RP AND CRYSTALLIZATION.
RX PubMed=10397151; DOI=10.1016/S0165-2478(99)00025-5;
RA Powell M.S., Barton P.A., Emmanouilidis D., Wines B.D., Neumann G.M.,
RA Peitersz G.A., Maxwell K.F., Garrett T.P., Hogarth P.M.;
RT "Biochemical analysis and crystallisation of Fc gamma RIIa, the low
RT affinity receptor for IgG.";
RL Immunol. Lett. 68:17-23(1999).
RN [9]
RP INTERACTION WITH FGR.
RX PubMed=8327512; DOI=10.1073/pnas.90.13.6305;
RA Hamada F., Aoki M., Akiyama T., Toyoshima K.;
RT "Association of immunoglobulin G Fc receptor II with Src-like protein-
RT tyrosine kinase Fgr in neutrophils.";
RL Proc. Natl. Acad. Sci. U.S.A. 90:6305-6309(1993).
RN [10]
RP INTERACTION WITH HCK, AND PHOSPHORYLATION.
RX PubMed=8132624;
RA Ghazizadeh S., Bolen J.B., Fleit H.B.;
RT "Physical and functional association of Src-related protein tyrosine
RT kinases with Fc gamma RII in monocytic THP-1 cells.";
RL J. Biol. Chem. 269:8878-8884(1994).
RN [11]
RP PHOSPHORYLATION AT TYR-288 AND TYR-304.
RX PubMed=8756631;
RA Bewarder N., Weinrich V., Budde P., Hartmann D., Flaswinkel H.,
RA Reth M., Frey J.;
RT "In vivo and in vitro specificity of protein tyrosine kinases for
RT immunoglobulin G receptor (FcgammaRII) phosphorylation.";
RL Mol. Cell. Biol. 16:4735-4743(1996).
RN [12]
RP INTERACTION WITH INPPL1.
RX PubMed=12690104; DOI=10.1074/jbc.M302907200;
RA Pengal R.A., Ganesan L.P., Fang H., Marsh C.B., Anderson C.L.,
RA Tridandapani S.;
RT "SHIP-2 inositol phosphatase is inducibly expressed in human monocytes
RT and serves to regulate Fcgamma receptor-mediated signaling.";
RL J. Biol. Chem. 278:22657-22663(2003).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 37-207.
RX PubMed=10331870; DOI=10.1038/8241;
RA Maxwell K.F., Powell M.S., Hulett M.D., Barton P.A., McKenzie I.F.,
RA Garrett T.P., Hogarth P.M.;
RT "Crystal structure of the human leukocyte Fc receptor, Fc gammaRIIa.";
RL Nat. Struct. Biol. 6:437-442(1999).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 37-208, AND DISULFIDE BONDS.
RX PubMed=11397093; DOI=10.1006/jmbi.2001.4670;
RA Sondermann P., Kaiser J., Jacob U.;
RT "Molecular basis for immune complex recognition: a comparison of Fc-
RT receptor structures.";
RL J. Mol. Biol. 309:737-749(2001).
RN [15]
RP X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 37-207 IN COMPLEX WITH APCS,
RP SUBCELLULAR LOCATION, FUNCTION, AND DISULFIDE BONDS.
RX PubMed=19011614; DOI=10.1038/nature07468;
RA Lu J., Marnell L.L., Marjon K.D., Mold C., Du Clos T.W., Sun P.D.;
RT "Structural recognition and functional activation of FcgammaR by
RT innate pentraxins.";
RL Nature 456:989-992(2008).
RN [16]
RP VARIANT ARG-167.
RX PubMed=8636449; DOI=10.1172/JCI118552;
RA Salmon J.E., Millard S., Schachter L.A., Arnett F.C., Ginzler E.M.,
RA Gourley M.F., Ramsey-Goldman R., Peterson M.G.E., Kimberly R.P.;
RT "Fc gamma RIIA alleles are heritable risk factors for lupus nephritis
RT in African Americans.";
RL J. Clin. Invest. 97:1348-1354(1996).
CC -!- FUNCTION: Binds to the Fc region of immunoglobulins gamma. Low
CC affinity receptor. By binding to IgG it initiates cellular
CC responses against pathogens and soluble antigens. Promotes
CC phagocytosis of opsonized antigens.
CC -!- SUBUNIT: Interacts with INPP5D/SHIP1 and INPPL1/SHIP2, regulating
CC its function. Interacts with APCS and FGR. Interacts with HCK.
CC -!- SUBCELLULAR LOCATION: Cell membrane; Single-pass type I membrane
CC protein.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P12318-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P12318-2; Sequence=VSP_036865;
CC -!- TISSUE SPECIFICITY: Found on monocytes, neutrophils and eosinophil
CC platelets.
CC -!- PTM: Phosphorylated by SRC-type Tyr-kinases such as LYN, BLK, FYN,
CC HCK and SYK.
CC -!- SIMILARITY: Contains 2 Ig-like C2-type (immunoglobulin-like)
CC domains.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAA35932.1; Type=Erroneous initiation;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; Y00644; CAA68672.1; -; mRNA.
DR EMBL; M31932; AAA35827.1; -; mRNA.
DR EMBL; AL590385; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; BC019931; AAH19931.1; -; mRNA.
DR EMBL; BC020823; AAH20823.1; -; mRNA.
DR EMBL; J03619; AAA35932.1; ALT_INIT; mRNA.
DR PIR; JL0118; JL0118.
DR RefSeq; NP_001129691.1; NM_001136219.1.
DR RefSeq; NP_067674.2; NM_021642.3.
DR UniGene; Hs.352642; -.
DR PDB; 1FCG; X-ray; 2.00 A; A=34-207.
DR PDB; 1H9V; X-ray; 3.00 A; A=37-208.
DR PDB; 3D5O; X-ray; 2.80 A; F=37-207.
DR PDB; 3RY4; X-ray; 1.50 A; A=37-206.
DR PDB; 3RY5; X-ray; 2.30 A; A=37-206.
DR PDB; 3RY6; X-ray; 3.80 A; C=40-206.
DR PDBsum; 1FCG; -.
DR PDBsum; 1H9V; -.
DR PDBsum; 3D5O; -.
DR PDBsum; 3RY4; -.
DR PDBsum; 3RY5; -.
DR PDBsum; 3RY6; -.
DR ProteinModelPortal; P12318; -.
DR SMR; P12318; 37-207.
DR IntAct; P12318; 2.
DR MINT; MINT-8013486; -.
DR STRING; 9606.ENSP00000271450; -.
DR BindingDB; P12318; -.
DR ChEMBL; CHEMBL5841; -.
DR DrugBank; DB00054; Abciximab.
DR DrugBank; DB00051; Adalimumab.
DR DrugBank; DB00092; Alefacept.
DR DrugBank; DB00087; Alemtuzumab.
DR DrugBank; DB00074; Basiliximab.
DR DrugBank; DB00112; Bevacizumab.
DR DrugBank; DB00002; Cetuximab.
DR DrugBank; DB00111; Daclizumab.
DR DrugBank; DB00095; Efalizumab.
DR DrugBank; DB00005; Etanercept.
DR DrugBank; DB00056; Gemtuzumab ozogamicin.
DR DrugBank; DB00078; Ibritumomab.
DR DrugBank; DB00028; Immune globulin.
DR DrugBank; DB00075; Muromonab.
DR DrugBank; DB00108; Natalizumab.
DR DrugBank; DB00110; Palivizumab.
DR DrugBank; DB00073; Rituximab.
DR DrugBank; DB00081; Tositumomab.
DR DrugBank; DB00072; Trastuzumab.
DR PhosphoSite; P12318; -.
DR DMDM; 160332371; -.
DR PaxDb; P12318; -.
DR PRIDE; P12318; -.
DR DNASU; 2212; -.
DR Ensembl; ENST00000271450; ENSP00000271450; ENSG00000143226.
DR Ensembl; ENST00000367972; ENSP00000356949; ENSG00000143226.
DR GeneID; 2212; -.
DR KEGG; hsa:2212; -.
DR UCSC; uc001gan.3; human.
DR CTD; 2212; -.
DR GeneCards; GC01P161475; -.
DR H-InvDB; HIX0018571; -.
DR HGNC; HGNC:3616; FCGR2A.
DR HPA; HPA010718; -.
DR MIM; 146790; gene.
DR neXtProt; NX_P12318; -.
DR PharmGKB; PA28063; -.
DR eggNOG; NOG25177; -.
DR HOGENOM; HOG000251632; -.
DR HOVERGEN; HBG051602; -.
DR InParanoid; P12318; -.
DR KO; K06472; -.
DR OMA; DLEPPWI; -.
DR OrthoDB; EOG708W0N; -.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; FCGR2A; human.
DR EvolutionaryTrace; P12318; -.
DR GeneWiki; FCGR2A; -.
DR GenomeRNAi; 2212; -.
DR NextBio; 8961; -.
DR PRO; PR:P12318; -.
DR ArrayExpress; P12318; -.
DR Bgee; P12318; -.
DR CleanEx; HS_FCGR2A; -.
DR Genevestigator; P12318; -.
DR GO; GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
DR GO; GO:0005886; C:plasma membrane; TAS:Reactome.
DR GO; GO:0038096; P:Fc-gamma receptor signaling pathway involved in phagocytosis; TAS:Reactome.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR Gene3D; 2.60.40.10; -; 2.
DR InterPro; IPR007110; Ig-like_dom.
DR InterPro; IPR013783; Ig-like_fold.
DR InterPro; IPR003599; Ig_sub.
DR SMART; SM00409; IG; 2.
DR PROSITE; PS50835; IG_LIKE; 2.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Cell membrane; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein;
KW IgG-binding protein; Immunity; Immunoglobulin domain; Membrane;
KW Phosphoprotein; Polymorphism; Receptor; Reference proteome; Repeat;
KW Signal; Transmembrane; Transmembrane helix.
FT SIGNAL 1 33
FT CHAIN 34 317 Low affinity immunoglobulin gamma Fc
FT region receptor II-a.
FT /FTId=PRO_0000015145.
FT TOPO_DOM 34 217 Extracellular (Potential).
FT TRANSMEM 218 240 Helical; (Potential).
FT TOPO_DOM 241 317 Cytoplasmic (Potential).
FT DOMAIN 39 118 Ig-like C2-type 1.
FT DOMAIN 122 204 Ig-like C2-type 2.
FT MOD_RES 288 288 Phosphotyrosine; by SRC-type Tyr-kinases.
FT MOD_RES 304 304 Phosphotyrosine; by SRC-type Tyr-kinases.
FT CARBOHYD 97 97 N-linked (GlcNAc...).
FT CARBOHYD 178 178 N-linked (GlcNAc...).
FT DISULFID 62 104
FT DISULFID 143 187
FT VAR_SEQ 35 35 Missing (in isoform 2).
FT /FTId=VSP_036865.
FT VARIANT 63 63 Q -> R (in dbSNP:rs9427398).
FT /FTId=VAR_054857.
FT VARIANT 140 140 M -> V (in dbSNP:rs4986941).
FT /FTId=VAR_054858.
FT VARIANT 167 167 H -> R (may be associated with
FT susceptibility to lupus nephritis; does
FT not efficiently recognize IgG2;
FT dbSNP:rs1801274).
FT /FTId=VAR_003955.
FT VARIANT 218 218 I -> V (in dbSNP:rs17851834).
FT /FTId=VAR_054859.
FT CONFLICT 2 2 T -> A (in Ref. 2; AAA35827).
FT STRAND 42 47
FT STRAND 50 53
FT STRAND 57 64
FT STRAND 68 71
FT STRAND 73 77
FT STRAND 80 82
FT STRAND 87 93
FT HELIX 96 98
FT STRAND 100 106
FT STRAND 107 110
FT STRAND 115 120
FT STRAND 123 127
FT STRAND 131 133
FT STRAND 139 145
FT HELIX 146 148
FT STRAND 151 158
FT STRAND 161 168
FT STRAND 171 176
FT HELIX 179 181
FT STRAND 183 191
FT STRAND 194 197
FT STRAND 201 205
SQ SEQUENCE 317 AA; 35001 MW; 07F73F3BB282DFF6 CRC64;
MTMETQMSQN VCPRNLWLLQ PLTVLLLLAS ADSQAAAPPK AVLKLEPPWI NVLQEDSVTL
TCQGARSPES DSIQWFHNGN LIPTHTQPSY RFKANNNDSG EYTCQTGQTS LSDPVHLTVL
SEWLVLQTPH LEFQEGETIM LRCHSWKDKP LVKVTFFQNG KSQKFSHLDP TFSIPQANHS
HSGDYHCTGN IGYTLFSSKP VTITVQVPSM GSSSPMGIIV AVVIATAVAA IVAAVVALIY
CRKKRISANS TDPVKAAQFE PPGRQMIAIR KRQLEETNND YETADGGYMT LNPRAPTDDD
KNIYLTLPPN DHVNSNN
//
ID FCG2A_HUMAN Reviewed; 317 AA.
AC P12318; Q8WUN1; Q8WW64;
DT 01-OCT-1989, integrated into UniProtKB/Swiss-Prot.
read moreDT 13-NOV-2007, sequence version 4.
DT 22-JAN-2014, entry version 159.
DE RecName: Full=Low affinity immunoglobulin gamma Fc region receptor II-a;
DE Short=IgG Fc receptor II-a;
DE AltName: Full=CDw32;
DE AltName: Full=Fc-gamma RII-a;
DE Short=Fc-gamma-RIIa;
DE Short=FcRII-a;
DE AltName: CD_antigen=CD32;
DE Flags: Precursor;
GN Name=FCGR2A; Synonyms=CD32, FCG2, FCGR2A1, IGFR2;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2824655; DOI=10.1084/jem.166.6.1668;
RA Stuart S.G., Trounstine M.L., Vaux D.J.T., Koch T., Martens C.L.,
RA Moore K.W.;
RT "Isolation and expression of cDNA clones encoding a human receptor for
RT IgG (Fc gamma RII).";
RL J. Exp. Med. 166:1668-1684(1987).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2529342; DOI=10.1084/jem.170.4.1369;
RA Brooks D.G., Qiu W.Q., Luster A.D., Ravetch J.V.;
RT "Structure and expression of human IgG FcRII(CD32). Functional
RT heterogeneity is encoded by the alternatively spliced products of
RT multiple genes.";
RL J. Exp. Med. 170:1369-1385(1989).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16710414; DOI=10.1038/nature04727;
RA Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D.,
RA Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A.,
RA Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F.,
RA McDonald L., Evans R., Phillips K., Atkinson A., Cooper R., Jones C.,
RA Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P.,
RA Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K.,
RA Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G.,
RA Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D.,
RA Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G.,
RA Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J.,
RA Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H.,
RA Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L.,
RA Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J.,
RA Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R.,
RA Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D.,
RA Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G.,
RA Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M.,
RA Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J.,
RA Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M.,
RA Loveland J., Lovell J., Lush M.J., Lyne R., Martin S.,
RA Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S.,
RA Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N.,
RA Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V.,
RA Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J.,
RA Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E.,
RA Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C.,
RA Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z.,
RA Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E.,
RA Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A.,
RA Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R.,
RA Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V.,
RA Beck S., Rogers J., Bentley D.R.;
RT "The DNA sequence and biological annotation of human chromosome 1.";
RL Nature 441:315-321(2006).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2), AND VARIANTS
RP ARG-167 AND VAL-218.
RC TISSUE=Lung, and Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 2-317 (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=2965389; DOI=10.1073/pnas.85.7.2240;
RA Hibbs M.L., Bonadonna L., Scott B.M., McKenzie I.F.C., Hogarth P.M.;
RT "Molecular cloning of a human immunoglobulin G Fc receptor.";
RL Proc. Natl. Acad. Sci. U.S.A. 85:2240-2244(1988).
RN [6]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-317 (ISOFORM 1), AND VARIANT ARG-167.
RX PubMed=3402431;
RA Stengelin S., Stamenkovic I., Seed B.;
RT "Isolation of cDNAs for two distinct human Fc receptors by ligand
RT affinity cloning.";
RL EMBO J. 7:1053-1059(1988).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-317 (ISOFORM 1).
RX PubMed=2526077; DOI=10.1007/BF02421463;
RA Seki T.;
RT "Identification of multiple isoforms of the low-affinity human IgG Fc
RT receptor.";
RL Immunogenetics 30:5-12(1989).
RN [8]
RP PROTEIN SEQUENCE OF N-TERMINUS, GLYCOSYLATION AT ASN-97 AND ASN-178,
RP AND CRYSTALLIZATION.
RX PubMed=10397151; DOI=10.1016/S0165-2478(99)00025-5;
RA Powell M.S., Barton P.A., Emmanouilidis D., Wines B.D., Neumann G.M.,
RA Peitersz G.A., Maxwell K.F., Garrett T.P., Hogarth P.M.;
RT "Biochemical analysis and crystallisation of Fc gamma RIIa, the low
RT affinity receptor for IgG.";
RL Immunol. Lett. 68:17-23(1999).
RN [9]
RP INTERACTION WITH FGR.
RX PubMed=8327512; DOI=10.1073/pnas.90.13.6305;
RA Hamada F., Aoki M., Akiyama T., Toyoshima K.;
RT "Association of immunoglobulin G Fc receptor II with Src-like protein-
RT tyrosine kinase Fgr in neutrophils.";
RL Proc. Natl. Acad. Sci. U.S.A. 90:6305-6309(1993).
RN [10]
RP INTERACTION WITH HCK, AND PHOSPHORYLATION.
RX PubMed=8132624;
RA Ghazizadeh S., Bolen J.B., Fleit H.B.;
RT "Physical and functional association of Src-related protein tyrosine
RT kinases with Fc gamma RII in monocytic THP-1 cells.";
RL J. Biol. Chem. 269:8878-8884(1994).
RN [11]
RP PHOSPHORYLATION AT TYR-288 AND TYR-304.
RX PubMed=8756631;
RA Bewarder N., Weinrich V., Budde P., Hartmann D., Flaswinkel H.,
RA Reth M., Frey J.;
RT "In vivo and in vitro specificity of protein tyrosine kinases for
RT immunoglobulin G receptor (FcgammaRII) phosphorylation.";
RL Mol. Cell. Biol. 16:4735-4743(1996).
RN [12]
RP INTERACTION WITH INPPL1.
RX PubMed=12690104; DOI=10.1074/jbc.M302907200;
RA Pengal R.A., Ganesan L.P., Fang H., Marsh C.B., Anderson C.L.,
RA Tridandapani S.;
RT "SHIP-2 inositol phosphatase is inducibly expressed in human monocytes
RT and serves to regulate Fcgamma receptor-mediated signaling.";
RL J. Biol. Chem. 278:22657-22663(2003).
RN [13]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 37-207.
RX PubMed=10331870; DOI=10.1038/8241;
RA Maxwell K.F., Powell M.S., Hulett M.D., Barton P.A., McKenzie I.F.,
RA Garrett T.P., Hogarth P.M.;
RT "Crystal structure of the human leukocyte Fc receptor, Fc gammaRIIa.";
RL Nat. Struct. Biol. 6:437-442(1999).
RN [14]
RP X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 37-208, AND DISULFIDE BONDS.
RX PubMed=11397093; DOI=10.1006/jmbi.2001.4670;
RA Sondermann P., Kaiser J., Jacob U.;
RT "Molecular basis for immune complex recognition: a comparison of Fc-
RT receptor structures.";
RL J. Mol. Biol. 309:737-749(2001).
RN [15]
RP X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 37-207 IN COMPLEX WITH APCS,
RP SUBCELLULAR LOCATION, FUNCTION, AND DISULFIDE BONDS.
RX PubMed=19011614; DOI=10.1038/nature07468;
RA Lu J., Marnell L.L., Marjon K.D., Mold C., Du Clos T.W., Sun P.D.;
RT "Structural recognition and functional activation of FcgammaR by
RT innate pentraxins.";
RL Nature 456:989-992(2008).
RN [16]
RP VARIANT ARG-167.
RX PubMed=8636449; DOI=10.1172/JCI118552;
RA Salmon J.E., Millard S., Schachter L.A., Arnett F.C., Ginzler E.M.,
RA Gourley M.F., Ramsey-Goldman R., Peterson M.G.E., Kimberly R.P.;
RT "Fc gamma RIIA alleles are heritable risk factors for lupus nephritis
RT in African Americans.";
RL J. Clin. Invest. 97:1348-1354(1996).
CC -!- FUNCTION: Binds to the Fc region of immunoglobulins gamma. Low
CC affinity receptor. By binding to IgG it initiates cellular
CC responses against pathogens and soluble antigens. Promotes
CC phagocytosis of opsonized antigens.
CC -!- SUBUNIT: Interacts with INPP5D/SHIP1 and INPPL1/SHIP2, regulating
CC its function. Interacts with APCS and FGR. Interacts with HCK.
CC -!- SUBCELLULAR LOCATION: Cell membrane; Single-pass type I membrane
CC protein.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P12318-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P12318-2; Sequence=VSP_036865;
CC -!- TISSUE SPECIFICITY: Found on monocytes, neutrophils and eosinophil
CC platelets.
CC -!- PTM: Phosphorylated by SRC-type Tyr-kinases such as LYN, BLK, FYN,
CC HCK and SYK.
CC -!- SIMILARITY: Contains 2 Ig-like C2-type (immunoglobulin-like)
CC domains.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAA35932.1; Type=Erroneous initiation;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; Y00644; CAA68672.1; -; mRNA.
DR EMBL; M31932; AAA35827.1; -; mRNA.
DR EMBL; AL590385; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; BC019931; AAH19931.1; -; mRNA.
DR EMBL; BC020823; AAH20823.1; -; mRNA.
DR EMBL; J03619; AAA35932.1; ALT_INIT; mRNA.
DR PIR; JL0118; JL0118.
DR RefSeq; NP_001129691.1; NM_001136219.1.
DR RefSeq; NP_067674.2; NM_021642.3.
DR UniGene; Hs.352642; -.
DR PDB; 1FCG; X-ray; 2.00 A; A=34-207.
DR PDB; 1H9V; X-ray; 3.00 A; A=37-208.
DR PDB; 3D5O; X-ray; 2.80 A; F=37-207.
DR PDB; 3RY4; X-ray; 1.50 A; A=37-206.
DR PDB; 3RY5; X-ray; 2.30 A; A=37-206.
DR PDB; 3RY6; X-ray; 3.80 A; C=40-206.
DR PDBsum; 1FCG; -.
DR PDBsum; 1H9V; -.
DR PDBsum; 3D5O; -.
DR PDBsum; 3RY4; -.
DR PDBsum; 3RY5; -.
DR PDBsum; 3RY6; -.
DR ProteinModelPortal; P12318; -.
DR SMR; P12318; 37-207.
DR IntAct; P12318; 2.
DR MINT; MINT-8013486; -.
DR STRING; 9606.ENSP00000271450; -.
DR BindingDB; P12318; -.
DR ChEMBL; CHEMBL5841; -.
DR DrugBank; DB00054; Abciximab.
DR DrugBank; DB00051; Adalimumab.
DR DrugBank; DB00092; Alefacept.
DR DrugBank; DB00087; Alemtuzumab.
DR DrugBank; DB00074; Basiliximab.
DR DrugBank; DB00112; Bevacizumab.
DR DrugBank; DB00002; Cetuximab.
DR DrugBank; DB00111; Daclizumab.
DR DrugBank; DB00095; Efalizumab.
DR DrugBank; DB00005; Etanercept.
DR DrugBank; DB00056; Gemtuzumab ozogamicin.
DR DrugBank; DB00078; Ibritumomab.
DR DrugBank; DB00028; Immune globulin.
DR DrugBank; DB00075; Muromonab.
DR DrugBank; DB00108; Natalizumab.
DR DrugBank; DB00110; Palivizumab.
DR DrugBank; DB00073; Rituximab.
DR DrugBank; DB00081; Tositumomab.
DR DrugBank; DB00072; Trastuzumab.
DR PhosphoSite; P12318; -.
DR DMDM; 160332371; -.
DR PaxDb; P12318; -.
DR PRIDE; P12318; -.
DR DNASU; 2212; -.
DR Ensembl; ENST00000271450; ENSP00000271450; ENSG00000143226.
DR Ensembl; ENST00000367972; ENSP00000356949; ENSG00000143226.
DR GeneID; 2212; -.
DR KEGG; hsa:2212; -.
DR UCSC; uc001gan.3; human.
DR CTD; 2212; -.
DR GeneCards; GC01P161475; -.
DR H-InvDB; HIX0018571; -.
DR HGNC; HGNC:3616; FCGR2A.
DR HPA; HPA010718; -.
DR MIM; 146790; gene.
DR neXtProt; NX_P12318; -.
DR PharmGKB; PA28063; -.
DR eggNOG; NOG25177; -.
DR HOGENOM; HOG000251632; -.
DR HOVERGEN; HBG051602; -.
DR InParanoid; P12318; -.
DR KO; K06472; -.
DR OMA; DLEPPWI; -.
DR OrthoDB; EOG708W0N; -.
DR Reactome; REACT_6900; Immune System.
DR ChiTaRS; FCGR2A; human.
DR EvolutionaryTrace; P12318; -.
DR GeneWiki; FCGR2A; -.
DR GenomeRNAi; 2212; -.
DR NextBio; 8961; -.
DR PRO; PR:P12318; -.
DR ArrayExpress; P12318; -.
DR Bgee; P12318; -.
DR CleanEx; HS_FCGR2A; -.
DR Genevestigator; P12318; -.
DR GO; GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
DR GO; GO:0005886; C:plasma membrane; TAS:Reactome.
DR GO; GO:0038096; P:Fc-gamma receptor signaling pathway involved in phagocytosis; TAS:Reactome.
DR GO; GO:0045087; P:innate immune response; TAS:Reactome.
DR Gene3D; 2.60.40.10; -; 2.
DR InterPro; IPR007110; Ig-like_dom.
DR InterPro; IPR013783; Ig-like_fold.
DR InterPro; IPR003599; Ig_sub.
DR SMART; SM00409; IG; 2.
DR PROSITE; PS50835; IG_LIKE; 2.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Cell membrane; Complete proteome;
KW Direct protein sequencing; Disulfide bond; Glycoprotein;
KW IgG-binding protein; Immunity; Immunoglobulin domain; Membrane;
KW Phosphoprotein; Polymorphism; Receptor; Reference proteome; Repeat;
KW Signal; Transmembrane; Transmembrane helix.
FT SIGNAL 1 33
FT CHAIN 34 317 Low affinity immunoglobulin gamma Fc
FT region receptor II-a.
FT /FTId=PRO_0000015145.
FT TOPO_DOM 34 217 Extracellular (Potential).
FT TRANSMEM 218 240 Helical; (Potential).
FT TOPO_DOM 241 317 Cytoplasmic (Potential).
FT DOMAIN 39 118 Ig-like C2-type 1.
FT DOMAIN 122 204 Ig-like C2-type 2.
FT MOD_RES 288 288 Phosphotyrosine; by SRC-type Tyr-kinases.
FT MOD_RES 304 304 Phosphotyrosine; by SRC-type Tyr-kinases.
FT CARBOHYD 97 97 N-linked (GlcNAc...).
FT CARBOHYD 178 178 N-linked (GlcNAc...).
FT DISULFID 62 104
FT DISULFID 143 187
FT VAR_SEQ 35 35 Missing (in isoform 2).
FT /FTId=VSP_036865.
FT VARIANT 63 63 Q -> R (in dbSNP:rs9427398).
FT /FTId=VAR_054857.
FT VARIANT 140 140 M -> V (in dbSNP:rs4986941).
FT /FTId=VAR_054858.
FT VARIANT 167 167 H -> R (may be associated with
FT susceptibility to lupus nephritis; does
FT not efficiently recognize IgG2;
FT dbSNP:rs1801274).
FT /FTId=VAR_003955.
FT VARIANT 218 218 I -> V (in dbSNP:rs17851834).
FT /FTId=VAR_054859.
FT CONFLICT 2 2 T -> A (in Ref. 2; AAA35827).
FT STRAND 42 47
FT STRAND 50 53
FT STRAND 57 64
FT STRAND 68 71
FT STRAND 73 77
FT STRAND 80 82
FT STRAND 87 93
FT HELIX 96 98
FT STRAND 100 106
FT STRAND 107 110
FT STRAND 115 120
FT STRAND 123 127
FT STRAND 131 133
FT STRAND 139 145
FT HELIX 146 148
FT STRAND 151 158
FT STRAND 161 168
FT STRAND 171 176
FT HELIX 179 181
FT STRAND 183 191
FT STRAND 194 197
FT STRAND 201 205
SQ SEQUENCE 317 AA; 35001 MW; 07F73F3BB282DFF6 CRC64;
MTMETQMSQN VCPRNLWLLQ PLTVLLLLAS ADSQAAAPPK AVLKLEPPWI NVLQEDSVTL
TCQGARSPES DSIQWFHNGN LIPTHTQPSY RFKANNNDSG EYTCQTGQTS LSDPVHLTVL
SEWLVLQTPH LEFQEGETIM LRCHSWKDKP LVKVTFFQNG KSQKFSHLDP TFSIPQANHS
HSGDYHCTGN IGYTLFSSKP VTITVQVPSM GSSSPMGIIV AVVIATAVAA IVAAVVALIY
CRKKRISANS TDPVKAAQFE PPGRQMIAIR KRQLEETNND YETADGGYMT LNPRAPTDDD
KNIYLTLPPN DHVNSNN
//
MIM
146790
*RECORD*
*FIELD* NO
146790
*FIELD* TI
*146790 Fc FRAGMENT OF IgG, LOW AFFINITY IIa, RECEPTOR FOR; FCGR2A
;;FCG2;;
IMMUNOGLOBULIN G Fc RECEPTOR II; FcGR; IGFR2;;
read moreCDw32;;
CD32
*FIELD* TX
DESCRIPTION
Receptors for the Fc portion of IgG such as FCGR2A play an essential
role in the protection of the organism against foreign antigens by
removing antigen-antibody complexes from the circulation (Hibbs et al.,
1988). Receptors are present on monocytes, macrophages, neutrophils,
natural killer (NK) cells, and T and B lymphocytes, and they participate
in diverse functions such as phagocytosis of immune complexes and
modulation of antibody production by B cells.
CLONING
Hibbs et al. (1988) isolated cDNA clones for the FcGR gene by
cross-species hybridization by probing cDNA libraries with a
low-affinity FcGR beta-1 cDNA clone from mouse, as well as a pool of
oligonucleotides constructed from the nucleotide sequence of this FcGR.
Analysis of the amino acid sequence predicted from cDNA clones indicated
that the human FcGR protein is synthesized with a 34-amino acid leader
and that the mature protein is composed of 281 amino acids. The
extracellular region of this FcGR was divided into 2 domains, which were
very similar to each other and to the corresponding regions of both
mouse alpha and beta FcGRs and showed a clear relationship to
immunoglobulin variable regions.
MAPPING
Grundy et al. (1988) mapped the immunoglobulin Fc receptor II and Fc
receptor III genes (see FCGR3A; 146740) to chromosome 1 by means of
spot-blot analysis of sorted chromosomes. By hybridizing each probe to
human DNA digested with 8 different 'rare-cutting' restriction enzymes
and separated by pulsed field gel electrophoresis, Grundy et al. (1988)
showed that the 2 genes mapped to the same fragment, the smallest of
which was 250 kb long. Peltz et al. (1989) showed physical linkage of
the 2 genes within a maximum distance of 200 kb. The conclusion on the
basis of Southern and in situ data of Grundy et al. (1989) that there
are three 8- to 10-kb Fc-gamma-RII loci per haploid genome was confirmed
by Qiu et al. (1990), who named the genes A, A-prime, and B to reflect
their homology and presumed evolution. Lebo et al. (1991) noted that
occasionally these 3 genes, which lie within a 200-kb region, could be
resolved in individual metaphase chromatids by multicolor fluorescence
in situ hybridization.
By in situ hybridization, Sammartino et al. (1988) assigned the IGFR2
gene to 1q23-q24. In the course of constructing a physical map of human
1q21-q23, Oakey et al. (1992) placed FCGR2A in that region, close to MPP
(159440) and APOA2 (107670). The homologous gene in the mouse, Ly-17,
maps to mouse chromosome 1 (Hibbs et al., 1985). See review by Unkeless
(1989).
BIOCHEMICAL FEATURES
- Crystal Structure
Lu et al. (2008) described the structural mechanism for pentraxin's
binding to Fc-gamma-R and its functional activation of
Fc-gamma-R-mediated phagocytosis and cytokine secretion. The complex
structure between human serum amyloid P component (SAP; 104770) and
Fc-gamma-RIIa shows a diagonally bound receptor on each SAP pentamer
with both D1 and D2 domains of the receptor contacting the ridge helices
from 2 SAP subunits. The 1:1 stoichiometry between SAP and Fc-gamma-RIIa
implies the requirement for multivalent pathogen binding for receptor
aggregation. Mutational and binding studies showed that pentraxins are
diverse in their binding specificity for Fc-gamma-R isoforms but
conserved in their recognition structure. The shared binding site for
SAP and IgG causes competition for Fc-gamma-R binding and the inhibition
of immune complex-mediated phagocytosis by soluble pentraxins. Lu et al.
(2008) concluded that their results established antibody-like functions
for pentraxins in the Fc-gamma-R pathway, suggested an evolutionary
overlap between the innate and adaptive immune systems, and had
therapeutic implications for autoimmune diseases.
EVOLUTION
By determining the nature and rate of copy number variation (CNV)
mutation and investigating the global variation of disease-associated
variation at the FCGR locus, Machado et al. (2012) determined that CNV
of the FCGR3 genes is mediated by recurrent nonallelic homologous
recombination between the 2 segmental duplications that carry FCGR3A and
FCGR3B (610665). They showed that pathogen richness, particularly
helminth pathogens, is likely to have influenced the patterns of
variation in FCGRs in humans. Machado et al. (2012) proposed that
alterations to IgG binding in the context of helminth infection have
driven positive selection in FCGR among different mammalian species,
linking evolutionary pressure of helminth infection with autoimmune
disease via adaptation at the genetic level. This model supports the
'hygiene hypothesis,' which states that in the absence of chronic
helminth infection in modern populations, previously selected alleles
respond to immune system challenges differently and therefore may alter
susceptibility to autoimmune disease.
*FIELD* AV
.0001
LUPUS NEPHRITIS, SUSCEPTIBILITY TO
PSEUDOMONAS AERUGINOSA, SUSCEPTIBILITY TO CHRONIC INFECTION BY, IN
CYSTIC FIBROSIS, INCLUDED;;
MALARIA, SEVERE, SUSCEPTIBILITY TO, INCLUDED
FCGR2A, ARG131HIS
Stein et al. (2000) found that C-reactive protein (CRP; 123260) showed
decreased binding to cells from FCGR2A H131 homozygotes (which bind IgG2
with high affinity). However, interferon-gamma (147570) enhanced FCGR1A
(146760) expression by H131 monocytes and increased CRP binding. FCGR2A
heterozygotes showed intermediate binding. CRP initiated increases in
Ca(2+) in polymorphonuclear leukocytes from R131, but not from H131,
homozygotes. These experiments provided direct genetic evidence for
FCGR2A as a functional, high-affinity CRP receptor on leukocytes, while
emphasizing the reciprocal relationship between IgG and CRP binding
avidities. The counterbalance may affect the contribution of FCGR2A
alleles to host defense and autoimmunity.
Susceptibility to Lupus Nephritis
Allelic variants of the Fc-gamma receptor confer distinct phagocytic
capacities providing a mechanism for heritable susceptibility to immune
complex disease. Salmon et al. (1996) noted that the FCGR2A gene has 2
codominantly expressed alleles, R131 and H131, which differ
substantially in their ability to ligate human IgG2. The 2 alleles
differ by the amino acid, arginine or histidine, at position 131. H131
is the only Fc-gamma receptor that recognizes IgG2 efficiently and
optimal IgG2 handling occurs only in the homozygous state. Since immune
complex clearance is essential in systemic lupus erythematosus (SLE;
152700), Salmon et al. (1996) hypothesized that the FCGR2A genes are
important disease susceptibility factors for SLE, particularly lupus
nephritis. In a 2-stage cross-sectional study, they compared the
distribution of FCGR2A alleles in 43 African Americans with SLE to that
in 39 African American non-SLE controls. A deficiency of H131
homozygotes were found in a preliminary study of SLE patients; 9% of
patients were homozygous for the H131 variant, as compared with 36% of
controls. This was confirmed in a multicenter study of 214 SLE patients
and 100 non-SLE controls. The altered distribution of FCGR2A alleles was
more striking in lupus nephritis, with a highly significant decrease in
H131 as the likelihood for lupus nephritis increased. The results were
considered by the authors as consistent with a protective effect of the
H131 allele against lupus nephritis.
In a collection of 31 African American families with multiple cases of
SLE, Moser et al. (1998) found linkage between the R131H polymorphism of
the FCGR2A gene and the disease.
Susceptibility to Chronic Infection by Pseudomonas Aeruginosa in Cystic
Fibrosis
In 69 Italian patients with cystic fibrosis (CF; 219700) due to
homozygosity for the delF508 mutation in the CFTR gene (602421.0001), De
Rose et al. (2005) found that those who also carried the R131 allele of
FCGR2A had a 4-fold increased risk of acquiring chronic Pseudomonas
aeruginosa infection (p = 0.042). De Rose et al. (2005) suggested that
FCGR2A locus variability contributes to this infection susceptibility in
CF patients.
Susceptibility to Inflammatory Bowel Disease
In a 2-stage genomewide association and replication study involving a
total of 1,384 Japanese patients with ulcerative colitis (UC; see IBD1,
266600) and 3,057 controls, Asano et al. (2009) found significant
association (heterogeneity-corrected p = 1.56 x 10(-12); odds ratio,
0.63) between UC and a nonsynonymous SNP (H131R; dbSNP rs1801274) in the
FCGR2A gene. The authors noted that the H131 variant was the
susceptibility allele for UC, a reversal of previous associations
observed between R131 and other autoimmune diseases.
Susceptibility to Severe Malaria
By studying 2,504 Ghanaian children with severe malaria (611162) and
2,027 healthy matched controls, Schuldt et al. (2010) found that
homozygosity for 131R was positively associated with severe malaria
(odds ratio = 1.20; p = 0.007; p corrected for multiple testing =
0.021), and, after stratification for phenotypes, with severe anemia
(odds ratio = 1.33; p = 0.001; p corrected = 0.009), but not with
cerebral malaria or other malaria complications or with parasitemia
levels. Schuldt et al. (2010) concluded that the CRP-binding variant of
FCGR2A is associated with malarial anemia, suggesting a role for CRP
defense mechanisms in pathogenesis of this condition.
*FIELD* RF
1. Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.;
Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.;
Shimosegawa, T.; Hosokawa, M.; Arimura, Y.; Shinomura, Y.; Kiyohara,
Y.; Tsunoda, T.; Kamatani, N.; Iida, M.; Nakamura, Y.; Kubo, M.:
A genome-wide association study identifies three new susceptibility
loci for ulcerative colitis in the Japanese population. Nature Genet. 41:
1325-1329, 2009.
2. De Rose, V.; Arduino, C.; Cappello, N.; Piana, R.; Salmin, P.;
Bardessono, M.; Goia, M.; Padoan, R.; Bignamini, E.; Costantini, D.;
Pizzamiglio, G.; Bennato, V.; Colombo, C.; Giunta, A.; Piazza, A.
: Fc-gamma receptor IIA genotype and susceptibility to P. aeruginosa
infection in patients with cystic fibrosis. Europ. J. Hum. Genet. 13:
96-101, 2005.
3. Grundy, H. O.; Peltz, G.; Barsh, G.; Moore, K.; Golbus, M. S.;
Lebo, R. V.: Immunoglobulin G Fc receptor II and Fc receptor III
genes map to chromosome 1 by spot-blot chromosome analysis. (Abstract) Am.
J. Hum. Genet. 43: A145, 1988.
4. Grundy, H. O.; Peltz, G.; Moore, K. W.; Golbus, M. S.; Jackson,
L. G.; Lebo, R. V.: The polymorphic Fc-gamma receptor II gene maps
to human chromosome 1q. Immunogenetics 29: 331-339, 1989.
5. Hibbs, M. L.; Bonadonna, L.; Scott, B. M.; McKenzie, I. F. C.;
Hogarth, P. M.: Molecular cloning of a human immunoglobulin G Fc
receptor. Proc. Nat. Acad. Sci. 85: 2240-2244, 1988.
6. Hibbs, M. L.; Hogarth, P. M.; McKenzie, I. F. C.: The mouse Ly-17
locus identifies a polymorphism of the Fc receptor. Immunogenetics 22:
335-348, 1985.
7. Lebo, R. V.; Lynch, E. D.; Wiegant, J.; Moore, K.; Trounstine,
M.; van der Ploeg, M.: Multicolor fluorescence in situ hybridization
and pulsed field electrophoresis dissect CMT1B gene region. Hum.
Genet. 88: 13-20, 1991.
8. Lu, J.; Marnell, L. L.; Marjon, K. D.; Mold, C.; Du Clos, T. W.;
Sun, P. D.: Structural recognition and functional activation of Fc-gamma-R
by innate pentraxins. Nature 456: 989-992, 2008.
9. Machado, L. R.; Hardwick, R. J.; Bowdrey, J.; Bogle, H.; Knowles,
T. J.; Sironi, M.; Hollox, E. J.: Evolutionary history of copy-number-variable
locus for the low-affinity Fc-gamma receptor: mutation rate, autoimmune
disease, and the legacy of helminth infection. Am. J. Hum. Genet. 90:
973-985, 2012.
10. Moser, K. L.; Neas, B. R.; Salmon, J. E.; Yu, H.; Gray-McGuire,
C.; Asundi, N.; Bruner, G. R.; Fox, J.; Kelly, J.; Henshall, S.; Bacino,
D.; Dietz, M.; Hogue, R.; Koelsch, G.; Nightingale, L.; Shaver, T.;
Abdou, N. I.; Albert, D. A.; Carson, C.; Petri, M.; Treadwell, E.
L.; James, J. A.; Harley, J. B.: Genome scan of human systemic lupus
erythematosus: evidence for linkage on chromosome 1q in African-American
pedigrees. Proc. Nat. Acad. Sci. 95: 14869-14874, 1998.
11. Oakey, R. J.; Watson, M. L.; Seldin, M. F.: Construction of a
physical map on mouse and human chromosome 1: comparison of 13 Mb
of mouse and 11 Mb of human DNA. Hum. Molec. Genet. 1: 613-620,
1992.
12. Peltz, G. A.; Grundy, H. O.; Lebo, R. V.; Yssel, H.; Barsh, G.
S.; Moore, K. W.: Human Fc-gamma-RIII: cloning, expression, and identification
of the chromosomal locus of two Fc receptors for IgG. Proc. Nat.
Acad. Sci. 86: 1013-1017, 1989.
13. Qiu, W. Q.; de Bruin, D.; Brownstein, B. H.; Pearse, R.; Ravetch,
J. V.: Organization of the human and mouse low-affinity Fc-gamma-R
genes: duplication and recombination. Science 248: 732-735, 1990.
14. Salmon, J. E.; Millard, S.; Schachter, L. A.; Arnett, F. C.; Ginzler,
E. M.; Gourley, M. F.; Ramsey-Goldman, R.; Peterson, M. G. E.; Kimberly,
R. P.: Fc-gamma-RIIA alleles are heritable risk factors for lupus
nephritis in African Americans. J. Clin. Invest. 97: 1348-1354,
1996.
15. Sammartino, L.; Webber, L. M.; Hogarth, P. M.; McKenzie, I. F.
C.; Garson, O. M.: Assignment of the gene coding for human FcRII
(CD32) to bands q23q24 on chromosome 1. Immunogenetics 28: 380-381,
1988.
16. Schuldt, K.; Esser, C.; Evans, J.; May, J.; Timmann, C.; Ehmen,
C.; Loag, W.; Ansong, D.; Ziegler, A.; Agbenyega, T.; Meyer, C. G.;
Horstmann, R. D.: FCGR2A functional genetic variant associated with
susceptibility to severe malarial anaemia in Ghanaian children. J.
Med. Genet. 47: 471-475, 2010.
17. Stein, M.-P.; Edberg, J. C.; Kimberly, R. P.; Mangan, E. K.; Bharadwaj,
D.; Mold, C.; Du Clos, T. W.: C-reactive protein binding to Fc-gamma-RIIa
on human monocytes and neutrophils is allele-specific. J. Clin. Invest. 105:
369-376, 2000.
18. Unkeless, J. C.: Function and heterogeneity of human Fc receptors
for immunoglobulin G. J. Clin. Invest. 83: 355-361, 1989.
*FIELD* CN
Paul J. Converse - updated: 08/22/2013
Paul J. Converse - updated: 7/26/2012
Marla J. F. O'Neill - updated: 12/15/2009
Ada Hamosh - updated: 2/18/2009
Marla J. F. O'Neill - updated: 4/20/2005
Victor A. McKusick - updated: 2/18/2000
Victor A. McKusick - updated: 12/18/1998
*FIELD* CD
Victor A. McKusick: 4/27/1988
*FIELD* ED
mgross: 08/22/2013
mgross: 7/30/2012
terry: 7/26/2012
alopez: 12/22/2009
terry: 12/15/2009
alopez: 2/23/2009
terry: 2/18/2009
terry: 6/23/2006
wwang: 4/28/2005
wwang: 4/26/2005
terry: 4/20/2005
joanna: 1/5/2001
mcapotos: 3/24/2000
mcapotos: 3/23/2000
terry: 2/18/2000
carol: 12/29/1998
terry: 12/18/1998
mark: 5/2/1996
terry: 4/24/1996
carol: 10/26/1993
carol: 2/9/1993
carol: 6/5/1992
carol: 5/5/1992
supermim: 3/16/1992
carol: 1/7/1992
*RECORD*
*FIELD* NO
146790
*FIELD* TI
*146790 Fc FRAGMENT OF IgG, LOW AFFINITY IIa, RECEPTOR FOR; FCGR2A
;;FCG2;;
IMMUNOGLOBULIN G Fc RECEPTOR II; FcGR; IGFR2;;
read moreCDw32;;
CD32
*FIELD* TX
DESCRIPTION
Receptors for the Fc portion of IgG such as FCGR2A play an essential
role in the protection of the organism against foreign antigens by
removing antigen-antibody complexes from the circulation (Hibbs et al.,
1988). Receptors are present on monocytes, macrophages, neutrophils,
natural killer (NK) cells, and T and B lymphocytes, and they participate
in diverse functions such as phagocytosis of immune complexes and
modulation of antibody production by B cells.
CLONING
Hibbs et al. (1988) isolated cDNA clones for the FcGR gene by
cross-species hybridization by probing cDNA libraries with a
low-affinity FcGR beta-1 cDNA clone from mouse, as well as a pool of
oligonucleotides constructed from the nucleotide sequence of this FcGR.
Analysis of the amino acid sequence predicted from cDNA clones indicated
that the human FcGR protein is synthesized with a 34-amino acid leader
and that the mature protein is composed of 281 amino acids. The
extracellular region of this FcGR was divided into 2 domains, which were
very similar to each other and to the corresponding regions of both
mouse alpha and beta FcGRs and showed a clear relationship to
immunoglobulin variable regions.
MAPPING
Grundy et al. (1988) mapped the immunoglobulin Fc receptor II and Fc
receptor III genes (see FCGR3A; 146740) to chromosome 1 by means of
spot-blot analysis of sorted chromosomes. By hybridizing each probe to
human DNA digested with 8 different 'rare-cutting' restriction enzymes
and separated by pulsed field gel electrophoresis, Grundy et al. (1988)
showed that the 2 genes mapped to the same fragment, the smallest of
which was 250 kb long. Peltz et al. (1989) showed physical linkage of
the 2 genes within a maximum distance of 200 kb. The conclusion on the
basis of Southern and in situ data of Grundy et al. (1989) that there
are three 8- to 10-kb Fc-gamma-RII loci per haploid genome was confirmed
by Qiu et al. (1990), who named the genes A, A-prime, and B to reflect
their homology and presumed evolution. Lebo et al. (1991) noted that
occasionally these 3 genes, which lie within a 200-kb region, could be
resolved in individual metaphase chromatids by multicolor fluorescence
in situ hybridization.
By in situ hybridization, Sammartino et al. (1988) assigned the IGFR2
gene to 1q23-q24. In the course of constructing a physical map of human
1q21-q23, Oakey et al. (1992) placed FCGR2A in that region, close to MPP
(159440) and APOA2 (107670). The homologous gene in the mouse, Ly-17,
maps to mouse chromosome 1 (Hibbs et al., 1985). See review by Unkeless
(1989).
BIOCHEMICAL FEATURES
- Crystal Structure
Lu et al. (2008) described the structural mechanism for pentraxin's
binding to Fc-gamma-R and its functional activation of
Fc-gamma-R-mediated phagocytosis and cytokine secretion. The complex
structure between human serum amyloid P component (SAP; 104770) and
Fc-gamma-RIIa shows a diagonally bound receptor on each SAP pentamer
with both D1 and D2 domains of the receptor contacting the ridge helices
from 2 SAP subunits. The 1:1 stoichiometry between SAP and Fc-gamma-RIIa
implies the requirement for multivalent pathogen binding for receptor
aggregation. Mutational and binding studies showed that pentraxins are
diverse in their binding specificity for Fc-gamma-R isoforms but
conserved in their recognition structure. The shared binding site for
SAP and IgG causes competition for Fc-gamma-R binding and the inhibition
of immune complex-mediated phagocytosis by soluble pentraxins. Lu et al.
(2008) concluded that their results established antibody-like functions
for pentraxins in the Fc-gamma-R pathway, suggested an evolutionary
overlap between the innate and adaptive immune systems, and had
therapeutic implications for autoimmune diseases.
EVOLUTION
By determining the nature and rate of copy number variation (CNV)
mutation and investigating the global variation of disease-associated
variation at the FCGR locus, Machado et al. (2012) determined that CNV
of the FCGR3 genes is mediated by recurrent nonallelic homologous
recombination between the 2 segmental duplications that carry FCGR3A and
FCGR3B (610665). They showed that pathogen richness, particularly
helminth pathogens, is likely to have influenced the patterns of
variation in FCGRs in humans. Machado et al. (2012) proposed that
alterations to IgG binding in the context of helminth infection have
driven positive selection in FCGR among different mammalian species,
linking evolutionary pressure of helminth infection with autoimmune
disease via adaptation at the genetic level. This model supports the
'hygiene hypothesis,' which states that in the absence of chronic
helminth infection in modern populations, previously selected alleles
respond to immune system challenges differently and therefore may alter
susceptibility to autoimmune disease.
*FIELD* AV
.0001
LUPUS NEPHRITIS, SUSCEPTIBILITY TO
PSEUDOMONAS AERUGINOSA, SUSCEPTIBILITY TO CHRONIC INFECTION BY, IN
CYSTIC FIBROSIS, INCLUDED;;
MALARIA, SEVERE, SUSCEPTIBILITY TO, INCLUDED
FCGR2A, ARG131HIS
Stein et al. (2000) found that C-reactive protein (CRP; 123260) showed
decreased binding to cells from FCGR2A H131 homozygotes (which bind IgG2
with high affinity). However, interferon-gamma (147570) enhanced FCGR1A
(146760) expression by H131 monocytes and increased CRP binding. FCGR2A
heterozygotes showed intermediate binding. CRP initiated increases in
Ca(2+) in polymorphonuclear leukocytes from R131, but not from H131,
homozygotes. These experiments provided direct genetic evidence for
FCGR2A as a functional, high-affinity CRP receptor on leukocytes, while
emphasizing the reciprocal relationship between IgG and CRP binding
avidities. The counterbalance may affect the contribution of FCGR2A
alleles to host defense and autoimmunity.
Susceptibility to Lupus Nephritis
Allelic variants of the Fc-gamma receptor confer distinct phagocytic
capacities providing a mechanism for heritable susceptibility to immune
complex disease. Salmon et al. (1996) noted that the FCGR2A gene has 2
codominantly expressed alleles, R131 and H131, which differ
substantially in their ability to ligate human IgG2. The 2 alleles
differ by the amino acid, arginine or histidine, at position 131. H131
is the only Fc-gamma receptor that recognizes IgG2 efficiently and
optimal IgG2 handling occurs only in the homozygous state. Since immune
complex clearance is essential in systemic lupus erythematosus (SLE;
152700), Salmon et al. (1996) hypothesized that the FCGR2A genes are
important disease susceptibility factors for SLE, particularly lupus
nephritis. In a 2-stage cross-sectional study, they compared the
distribution of FCGR2A alleles in 43 African Americans with SLE to that
in 39 African American non-SLE controls. A deficiency of H131
homozygotes were found in a preliminary study of SLE patients; 9% of
patients were homozygous for the H131 variant, as compared with 36% of
controls. This was confirmed in a multicenter study of 214 SLE patients
and 100 non-SLE controls. The altered distribution of FCGR2A alleles was
more striking in lupus nephritis, with a highly significant decrease in
H131 as the likelihood for lupus nephritis increased. The results were
considered by the authors as consistent with a protective effect of the
H131 allele against lupus nephritis.
In a collection of 31 African American families with multiple cases of
SLE, Moser et al. (1998) found linkage between the R131H polymorphism of
the FCGR2A gene and the disease.
Susceptibility to Chronic Infection by Pseudomonas Aeruginosa in Cystic
Fibrosis
In 69 Italian patients with cystic fibrosis (CF; 219700) due to
homozygosity for the delF508 mutation in the CFTR gene (602421.0001), De
Rose et al. (2005) found that those who also carried the R131 allele of
FCGR2A had a 4-fold increased risk of acquiring chronic Pseudomonas
aeruginosa infection (p = 0.042). De Rose et al. (2005) suggested that
FCGR2A locus variability contributes to this infection susceptibility in
CF patients.
Susceptibility to Inflammatory Bowel Disease
In a 2-stage genomewide association and replication study involving a
total of 1,384 Japanese patients with ulcerative colitis (UC; see IBD1,
266600) and 3,057 controls, Asano et al. (2009) found significant
association (heterogeneity-corrected p = 1.56 x 10(-12); odds ratio,
0.63) between UC and a nonsynonymous SNP (H131R; dbSNP rs1801274) in the
FCGR2A gene. The authors noted that the H131 variant was the
susceptibility allele for UC, a reversal of previous associations
observed between R131 and other autoimmune diseases.
Susceptibility to Severe Malaria
By studying 2,504 Ghanaian children with severe malaria (611162) and
2,027 healthy matched controls, Schuldt et al. (2010) found that
homozygosity for 131R was positively associated with severe malaria
(odds ratio = 1.20; p = 0.007; p corrected for multiple testing =
0.021), and, after stratification for phenotypes, with severe anemia
(odds ratio = 1.33; p = 0.001; p corrected = 0.009), but not with
cerebral malaria or other malaria complications or with parasitemia
levels. Schuldt et al. (2010) concluded that the CRP-binding variant of
FCGR2A is associated with malarial anemia, suggesting a role for CRP
defense mechanisms in pathogenesis of this condition.
*FIELD* RF
1. Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.;
Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.;
Shimosegawa, T.; Hosokawa, M.; Arimura, Y.; Shinomura, Y.; Kiyohara,
Y.; Tsunoda, T.; Kamatani, N.; Iida, M.; Nakamura, Y.; Kubo, M.:
A genome-wide association study identifies three new susceptibility
loci for ulcerative colitis in the Japanese population. Nature Genet. 41:
1325-1329, 2009.
2. De Rose, V.; Arduino, C.; Cappello, N.; Piana, R.; Salmin, P.;
Bardessono, M.; Goia, M.; Padoan, R.; Bignamini, E.; Costantini, D.;
Pizzamiglio, G.; Bennato, V.; Colombo, C.; Giunta, A.; Piazza, A.
: Fc-gamma receptor IIA genotype and susceptibility to P. aeruginosa
infection in patients with cystic fibrosis. Europ. J. Hum. Genet. 13:
96-101, 2005.
3. Grundy, H. O.; Peltz, G.; Barsh, G.; Moore, K.; Golbus, M. S.;
Lebo, R. V.: Immunoglobulin G Fc receptor II and Fc receptor III
genes map to chromosome 1 by spot-blot chromosome analysis. (Abstract) Am.
J. Hum. Genet. 43: A145, 1988.
4. Grundy, H. O.; Peltz, G.; Moore, K. W.; Golbus, M. S.; Jackson,
L. G.; Lebo, R. V.: The polymorphic Fc-gamma receptor II gene maps
to human chromosome 1q. Immunogenetics 29: 331-339, 1989.
5. Hibbs, M. L.; Bonadonna, L.; Scott, B. M.; McKenzie, I. F. C.;
Hogarth, P. M.: Molecular cloning of a human immunoglobulin G Fc
receptor. Proc. Nat. Acad. Sci. 85: 2240-2244, 1988.
6. Hibbs, M. L.; Hogarth, P. M.; McKenzie, I. F. C.: The mouse Ly-17
locus identifies a polymorphism of the Fc receptor. Immunogenetics 22:
335-348, 1985.
7. Lebo, R. V.; Lynch, E. D.; Wiegant, J.; Moore, K.; Trounstine,
M.; van der Ploeg, M.: Multicolor fluorescence in situ hybridization
and pulsed field electrophoresis dissect CMT1B gene region. Hum.
Genet. 88: 13-20, 1991.
8. Lu, J.; Marnell, L. L.; Marjon, K. D.; Mold, C.; Du Clos, T. W.;
Sun, P. D.: Structural recognition and functional activation of Fc-gamma-R
by innate pentraxins. Nature 456: 989-992, 2008.
9. Machado, L. R.; Hardwick, R. J.; Bowdrey, J.; Bogle, H.; Knowles,
T. J.; Sironi, M.; Hollox, E. J.: Evolutionary history of copy-number-variable
locus for the low-affinity Fc-gamma receptor: mutation rate, autoimmune
disease, and the legacy of helminth infection. Am. J. Hum. Genet. 90:
973-985, 2012.
10. Moser, K. L.; Neas, B. R.; Salmon, J. E.; Yu, H.; Gray-McGuire,
C.; Asundi, N.; Bruner, G. R.; Fox, J.; Kelly, J.; Henshall, S.; Bacino,
D.; Dietz, M.; Hogue, R.; Koelsch, G.; Nightingale, L.; Shaver, T.;
Abdou, N. I.; Albert, D. A.; Carson, C.; Petri, M.; Treadwell, E.
L.; James, J. A.; Harley, J. B.: Genome scan of human systemic lupus
erythematosus: evidence for linkage on chromosome 1q in African-American
pedigrees. Proc. Nat. Acad. Sci. 95: 14869-14874, 1998.
11. Oakey, R. J.; Watson, M. L.; Seldin, M. F.: Construction of a
physical map on mouse and human chromosome 1: comparison of 13 Mb
of mouse and 11 Mb of human DNA. Hum. Molec. Genet. 1: 613-620,
1992.
12. Peltz, G. A.; Grundy, H. O.; Lebo, R. V.; Yssel, H.; Barsh, G.
S.; Moore, K. W.: Human Fc-gamma-RIII: cloning, expression, and identification
of the chromosomal locus of two Fc receptors for IgG. Proc. Nat.
Acad. Sci. 86: 1013-1017, 1989.
13. Qiu, W. Q.; de Bruin, D.; Brownstein, B. H.; Pearse, R.; Ravetch,
J. V.: Organization of the human and mouse low-affinity Fc-gamma-R
genes: duplication and recombination. Science 248: 732-735, 1990.
14. Salmon, J. E.; Millard, S.; Schachter, L. A.; Arnett, F. C.; Ginzler,
E. M.; Gourley, M. F.; Ramsey-Goldman, R.; Peterson, M. G. E.; Kimberly,
R. P.: Fc-gamma-RIIA alleles are heritable risk factors for lupus
nephritis in African Americans. J. Clin. Invest. 97: 1348-1354,
1996.
15. Sammartino, L.; Webber, L. M.; Hogarth, P. M.; McKenzie, I. F.
C.; Garson, O. M.: Assignment of the gene coding for human FcRII
(CD32) to bands q23q24 on chromosome 1. Immunogenetics 28: 380-381,
1988.
16. Schuldt, K.; Esser, C.; Evans, J.; May, J.; Timmann, C.; Ehmen,
C.; Loag, W.; Ansong, D.; Ziegler, A.; Agbenyega, T.; Meyer, C. G.;
Horstmann, R. D.: FCGR2A functional genetic variant associated with
susceptibility to severe malarial anaemia in Ghanaian children. J.
Med. Genet. 47: 471-475, 2010.
17. Stein, M.-P.; Edberg, J. C.; Kimberly, R. P.; Mangan, E. K.; Bharadwaj,
D.; Mold, C.; Du Clos, T. W.: C-reactive protein binding to Fc-gamma-RIIa
on human monocytes and neutrophils is allele-specific. J. Clin. Invest. 105:
369-376, 2000.
18. Unkeless, J. C.: Function and heterogeneity of human Fc receptors
for immunoglobulin G. J. Clin. Invest. 83: 355-361, 1989.
*FIELD* CN
Paul J. Converse - updated: 08/22/2013
Paul J. Converse - updated: 7/26/2012
Marla J. F. O'Neill - updated: 12/15/2009
Ada Hamosh - updated: 2/18/2009
Marla J. F. O'Neill - updated: 4/20/2005
Victor A. McKusick - updated: 2/18/2000
Victor A. McKusick - updated: 12/18/1998
*FIELD* CD
Victor A. McKusick: 4/27/1988
*FIELD* ED
mgross: 08/22/2013
mgross: 7/30/2012
terry: 7/26/2012
alopez: 12/22/2009
terry: 12/15/2009
alopez: 2/23/2009
terry: 2/18/2009
terry: 6/23/2006
wwang: 4/28/2005
wwang: 4/26/2005
terry: 4/20/2005
joanna: 1/5/2001
mcapotos: 3/24/2000
mcapotos: 3/23/2000
terry: 2/18/2000
carol: 12/29/1998
terry: 12/18/1998
mark: 5/2/1996
terry: 4/24/1996
carol: 10/26/1993
carol: 2/9/1993
carol: 6/5/1992
carol: 5/5/1992
supermim: 3/16/1992
carol: 1/7/1992