Full text data of GAPDH
GAPDH
(GAPD)
[Confidence: high (present in two of the MS resources)]
Glyceraldehyde-3-phosphate dehydrogenase; GAPDH; 1.2.1.12 (Peptidyl-cysteine S-nitrosylase GAPDH; 2.6.99.-)
Glyceraldehyde-3-phosphate dehydrogenase; GAPDH; 1.2.1.12 (Peptidyl-cysteine S-nitrosylase GAPDH; 2.6.99.-)
hRBCD
IPI00383758
IPI00383758 Glyceraldehyde-3-phosphate dehydrogenase, muscle Glyceraldehyde-3-phosphate dehydrogenase, muscle membrane n/a 1 3 1 2 n/a n/a n/a 7 n/a n/a n/a n/a n/a n/a n/a n/a 11 4 n/a cytoplasmic, Glycolisis 2nd phase, 1st step n/a found at its expected molecular weight found at molecular weight
IPI00383758 Glyceraldehyde-3-phosphate dehydrogenase, muscle Glyceraldehyde-3-phosphate dehydrogenase, muscle membrane n/a 1 3 1 2 n/a n/a n/a 7 n/a n/a n/a n/a n/a n/a n/a n/a 11 4 n/a cytoplasmic, Glycolisis 2nd phase, 1st step n/a found at its expected molecular weight found at molecular weight
UniProt
P04406
ID G3P_HUMAN Reviewed; 335 AA.
AC P04406; E7EUT4; P00354; Q53X65;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 188.
DE RecName: Full=Glyceraldehyde-3-phosphate dehydrogenase;
DE Short=GAPDH;
DE EC=1.2.1.12;
DE AltName: Full=Peptidyl-cysteine S-nitrosylase GAPDH;
DE EC=2.6.99.-;
GN Name=GAPDH; Synonyms=GAPD; ORFNames=CDABP0047, OK/SW-cl.12;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=6096136;
RA Hanauer A., Mandel J.-L.;
RT "The glyceraldehyde 3 phosphate dehydrogenase gene family: structure
RT of a human cDNA and of an X chromosome linked pseudogene; amazing
RT complexity of the gene family in mouse.";
RL EMBO J. 3:2627-2633(1984).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=6096821; DOI=10.1093/nar/12.23.9179;
RA Arcari P., Martinelli R., Salvatore F.;
RT "The complete sequence of a full length cDNA for human liver
RT glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA
RT species.";
RL Nucleic Acids Res. 12:9179-9189(1984).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Liver;
RX PubMed=2987855; DOI=10.1093/nar/13.7.2485;
RA Tso J.Y., Sun X.-H., Kao T.-H., Reece K.S., Wu R.;
RT "Isolation and characterization of rat and human glyceraldehyde-3-
RT phosphate dehydrogenase cDNAs: genomic complexity and molecular
RT evolution of the gene.";
RL Nucleic Acids Res. 13:2485-2502(1985).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Lung;
RX PubMed=3664468;
RA Tokunaga K., Nakamura Y., Sakata K., Fujimori K., Ohkubo M.,
RA Sawada K., Sakiyama S.;
RT "Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase
RT gene in human lung cancers.";
RL Cancer Res. 47:5616-5619(1987).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=3027061;
RA Allen R.W., Trach K.A., Hoch J.A.;
RT "Identification of the 37-kDa protein displaying a variable
RT interaction with the erythroid cell membrane as glyceraldehyde-3-
RT phosphate dehydrogenase.";
RL J. Biol. Chem. 262:649-653(1987).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION, AND CATALYTIC ACTIVITY.
RX PubMed=3170585;
RA Ercolani L., Florence B., Denaro M., Alexander M.;
RT "Isolation and complete sequence of a functional human glyceraldehyde-
RT 3-phosphate dehydrogenase gene.";
RL J. Biol. Chem. 263:15335-15341(1988).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Placenta;
RX PubMed=1924305; DOI=10.1073/pnas.88.19.8460;
RA Meyer-Siegler K., Mauro D.J., Seal G., Wurzer J., Deriel J.K.,
RA Sirover M.A.;
RT "A human nuclear uracil DNA glycosylase is the 37-kDa subunit of
RT glyceraldehyde-3-phosphate dehydrogenase.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:8460-8464(1991).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Astrocytoma;
RX PubMed=10944468; DOI=10.1006/bbrc.2000.3282;
RA Ye Z., Connor J.R.;
RT "cDNA cloning by amplification of circularized first strand cDNAs
RT reveals non-IRE-regulated iron-responsive mRNAs.";
RL Biochem. Biophys. Res. Commun. 275:223-227(2000).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Leukemia;
RA Zhou J., Yu W., Tang H., Mei G., Tsang Y.T.M., Bouck J., Gibbs R.A.,
RA Margolin J.F.;
RT "Pediatric leukemia cDNA sequencing project.";
RL Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Colon adenocarcinoma;
RA Shichijo S., Itoh K.;
RT "Identification of immuno-peptidmics that are recognized by tumor-
RT reactive CTL generated from TIL of colon cancer patients.";
RL Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT GLY-22.
RG NIEHS SNPs program;
RL Submitted (JUL-2003) to the EMBL/GenBank/DDBJ databases.
RN [13]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (MAY-2004) to the EMBL/GenBank/DDBJ databases.
RN [14]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16541075; DOI=10.1038/nature04569;
RA Scherer S.E., Muzny D.M., Buhay C.J., Chen R., Cree A., Ding Y.,
RA Dugan-Rocha S., Gill R., Gunaratne P., Harris R.A., Hawes A.C.,
RA Hernandez J., Hodgson A.V., Hume J., Jackson A., Khan Z.M.,
RA Kovar-Smith C., Lewis L.R., Lozado R.J., Metzker M.L.,
RA Milosavljevic A., Miner G.R., Montgomery K.T., Morgan M.B.,
RA Nazareth L.V., Scott G., Sodergren E., Song X.-Z., Steffen D.,
RA Lovering R.C., Wheeler D.A., Worley K.C., Yuan Y., Zhang Z.,
RA Adams C.Q., Ansari-Lari M.A., Ayele M., Brown M.J., Chen G., Chen Z.,
RA Clerc-Blankenburg K.P., Davis C., Delgado O., Dinh H.H., Draper H.,
RA Gonzalez-Garay M.L., Havlak P., Jackson L.R., Jacob L.S., Kelly S.H.,
RA Li L., Li Z., Liu J., Liu W., Lu J., Maheshwari M., Nguyen B.-V.,
RA Okwuonu G.O., Pasternak S., Perez L.M., Plopper F.J.H., Santibanez J.,
RA Shen H., Tabor P.E., Verduzco D., Waldron L., Wang Q., Williams G.A.,
RA Zhang J., Zhou J., Allen C.C., Amin A.G., Anyalebechi V., Bailey M.,
RA Barbaria J.A., Bimage K.E., Bryant N.P., Burch P.E., Burkett C.E.,
RA Burrell K.L., Calderon E., Cardenas V., Carter K., Casias K.,
RA Cavazos I., Cavazos S.R., Ceasar H., Chacko J., Chan S.N., Chavez D.,
RA Christopoulos C., Chu J., Cockrell R., Cox C.D., Dang M.,
RA Dathorne S.R., David R., Davis C.M., Davy-Carroll L., Deshazo D.R.,
RA Donlin J.E., D'Souza L., Eaves K.A., Egan A., Emery-Cohen A.J.,
RA Escotto M., Flagg N., Forbes L.D., Gabisi A.M., Garza M., Hamilton C.,
RA Henderson N., Hernandez O., Hines S., Hogues M.E., Huang M.,
RA Idlebird D.G., Johnson R., Jolivet A., Jones S., Kagan R., King L.M.,
RA Leal B., Lebow H., Lee S., LeVan J.M., Lewis L.C., London P.,
RA Lorensuhewa L.M., Loulseged H., Lovett D.A., Lucier A., Lucier R.L.,
RA Ma J., Madu R.C., Mapua P., Martindale A.D., Martinez E., Massey E.,
RA Mawhiney S., Meador M.G., Mendez S., Mercado C., Mercado I.C.,
RA Merritt C.E., Miner Z.L., Minja E., Mitchell T., Mohabbat F.,
RA Mohabbat K., Montgomery B., Moore N., Morris S., Munidasa M.,
RA Ngo R.N., Nguyen N.B., Nickerson E., Nwaokelemeh O.O., Nwokenkwo S.,
RA Obregon M., Oguh M., Oragunye N., Oviedo R.J., Parish B.J.,
RA Parker D.N., Parrish J., Parks K.L., Paul H.A., Payton B.A., Perez A.,
RA Perrin W., Pickens A., Primus E.L., Pu L.-L., Puazo M., Quiles M.M.,
RA Quiroz J.B., Rabata D., Reeves K., Ruiz S.J., Shao H., Sisson I.,
RA Sonaike T., Sorelle R.P., Sutton A.E., Svatek A.F., Svetz L.A.,
RA Tamerisa K.S., Taylor T.R., Teague B., Thomas N., Thorn R.D.,
RA Trejos Z.Y., Trevino B.K., Ukegbu O.N., Urban J.B., Vasquez L.I.,
RA Vera V.A., Villasana D.M., Wang L., Ward-Moore S., Warren J.T.,
RA Wei X., White F., Williamson A.L., Wleczyk R., Wooden H.S.,
RA Wooden S.H., Yen J., Yoon L., Yoon V., Zorrilla S.E., Nelson D.,
RA Kucherlapati R., Weinstock G., Gibbs R.A.;
RT "The finished DNA sequence of human chromosome 12.";
RL Nature 440:346-351(2006).
RN [15]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [16]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye, Kidney, Lung, Lymph, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [17]
RP PRELIMINARY PROTEIN SEQUENCE OF 2-335.
RC TISSUE=Muscle;
RX PubMed=7030790; DOI=10.1016/0014-5793(81)80587-X;
RA Nowak K., Wolny M., Banas T.;
RT "The complete amino acid sequence of human muscle glyceraldehyde 3-
RT phosphate dehydrogenase.";
RL FEBS Lett. 134:143-146(1981).
RN [18]
RP PROTEIN SEQUENCE OF 2-13.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [19]
RP PROTEIN SEQUENCE OF 2-13; 62-84; 118-139; 198-215; 220-227; 235-248
RP AND 310-335, CLEAVAGE OF INITIATOR METHIONINE, LACK OF N-TERMINAL
RP ACETYLATION, AND MASS SPECTROMETRY.
RC TISSUE=Prostatic carcinoma;
RA Bienvenut W.V., Gao M., Leug H.;
RL Submitted (JUL-2009) to UniProtKB.
RN [20]
RP PROTEIN SEQUENCE OF 67-80; 87-107; 119-139; 146-186; 201-215; 235-248
RP AND 310-334, AND MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [21]
RP PROTEIN SEQUENCE OF 220-226 AND 242-246.
RC TISSUE=Heart;
RX PubMed=7498159; DOI=10.1002/elps.11501601192;
RA Kovalyov L.I., Shishkin S.S., Efimochkin A.S., Kovalyova M.A.,
RA Ershova E.S., Egorov T.A., Musalyamov A.K.;
RT "The major protein expression profile and two-dimensional protein
RT database of human heart.";
RL Electrophoresis 16:1160-1169(1995).
RN [22]
RP PARTIAL PROTEIN SEQUENCE.
RC TISSUE=Muscle;
RX PubMed=1193541;
RA Nowak K., Kuczek M., Ostropolska L., Malarska A., Wolny M.,
RA Branowski T.;
RT "The covalent structure of glyceraldehyde-phosphate dehydrogenase from
RT human muscles. Isolation and amino acid sequences of peptides from
RT tryptic digest.";
RL Hoppe-Seyler's Z. Physiol. Chem. 356:1181-1183(1975).
RN [23]
RP FUNCTION, AND INTERACTION WITH PRKCI.
RX PubMed=11724794; DOI=10.1074/jbc.M109744200;
RA Tisdale E.J.;
RT "Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein
RT kinase Ciota /lambda and plays a role in microtubule dynamics in the
RT early secretory pathway.";
RL J. Biol. Chem. 277:3334-3341(2002).
RN [24]
RP SUBCELLULAR LOCATION.
RX PubMed=12829261; DOI=10.1016/S0304-4165(03)00117-X;
RA Mazzola J.L., Sirover M.A.;
RT "Subcellular localization of human glyceraldehyde-3-phosphate
RT dehydrogenase is independent of its glycolytic function.";
RL Biochim. Biophys. Acta 1622:50-56(2003).
RN [25]
RP IDENTIFICATION IN THE GAIT COMPLEX.
RX PubMed=15479637; DOI=10.1016/j.cell.2004.09.030;
RA Sampath P., Mazumder B., Seshadri V., Gerber C.A., Chavatte L.,
RA Kinter M., Ting S.M., Dignam J.D., Kim S., Driscoll D.M., Fox P.L.;
RT "Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-
RT specific silencing of translation.";
RL Cell 119:195-208(2004).
RN [26]
RP INTERACTION WITH WARS.
RX PubMed=15628863; DOI=10.1021/bi048313k;
RA Wakasugi K., Nakano T., Morishima I.;
RT "Oxidative stress-responsive intracellular regulation specific for the
RT angiostatic form of human tryptophanyl-tRNA synthetase.";
RL Biochemistry 44:225-232(2005).
RN [27]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-42, AND MASS
RP SPECTROMETRY.
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [28]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [29]
RP INTERACTION WITH USP25.
RX PubMed=16501887; DOI=10.1007/s00018-005-5533-1;
RA Bosch-Comas A., Lindsten K., Gonzalez-Duarte R., Masucci M.G.,
RA Marfany G.;
RT "The ubiquitin-specific protease USP25 interacts with three sarcomeric
RT proteins.";
RL Cell. Mol. Life Sci. 63:723-734(2006).
RN [30]
RP ISGYLATION.
RX PubMed=16815975; DOI=10.1073/pnas.0600397103;
RA Wong J.J., Pung Y.F., Sze N.S., Chin K.C.;
RT "HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates
RT type I IFN-induced ISGylation of protein targets.";
RL Proc. Natl. Acad. Sci. U.S.A. 103:10735-10740(2006).
RN [31]
RP PHOSPHORYLATION AT THR-75; SER-122; SER-148; THR-229; THR-237 AND
RP SER-312, DEAMIDATION AT ASN-9; ASN-64; ASN-70; ASN-149; ASN-155;
RP ASN-225 AND ASN-316, AND METHYLATION AT LYS-5; LYS-66; LYS-194;
RP LYS-215; LYS-227; LYS-260; LYS-263 AND LYS-334.
RX PubMed=18183946; DOI=10.1021/pr700657y;
RA Seo J., Jeong J., Kim Y.M., Hwang N., Paek E., Lee K.-J.;
RT "Strategy for comprehensive identification of post-translational
RT modifications in cellular proteins, including low abundant
RT modifications: application to glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL J. Proteome Res. 7:587-602(2008).
RN [32]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83; SER-151 AND THR-184,
RP AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-184; THR-211 AND
RP SER-312, AND MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [35]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-61; LYS-194; LYS-219;
RP LYS-227 AND LYS-254, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [36]
RP INTERACTION WITH EIF1AD.
RX PubMed=20644585; DOI=10.1134/S1068162010030027;
RA Rakitina T.V., Bogatova O.V., Smirnova E.V., Pozdeev V.I.,
RA Kostanian I.A., Lipkin V.M.;
RT "Haponin (eIF1AD) interacts with glyceraldehyde 3-phosphate
RT dehydrogenase in the CHO-K1 cell line.";
RL Bioorg. Khim. 36:312-318(2010).
RN [37]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-75; SER-83 AND THR-184,
RP AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [38]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [39]
RP MALONYLATION AT LYS-194 AND LYS-215.
RX PubMed=21908771; DOI=10.1074/mcp.M111.012658;
RA Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., Zhang Y.,
RA He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D., He T.C.,
RA Dai J., Verdin E., Ye Y., Zhao Y.;
RT "The first identification of lysine malonylation substrates and its
RT regulatory enzyme.";
RL Mol. Cell. Proteomics 10:M111.012658.01-M111.012658.12(2011).
RN [40]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [41]
RP FUNCTION, AND RECONSTITUTION OF THE GAIT COMPLEX.
RX PubMed=23071094; DOI=10.1128/MCB.01168-12;
RA Arif A., Chatterjee P., Moodt R.A., Fox P.L.;
RT "Heterotrimeric GAIT complex drives transcript-selective translation
RT inhibition in murine macrophages.";
RL Mol. Cell. Biol. 32:5046-5055(2012).
RN [42]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [43]
RP X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS).
RX PubMed=957435; DOI=10.1016/0022-2836(76)90013-9;
RA Mercer W.D., Winn S.I., Watson H.C.;
RT "Twinning in crystals of human skeletal muscle D-glyceraldehyde-3-
RT phosphate dehydrogenase.";
RL J. Mol. Biol. 104:277-283(1976).
RN [44]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) IN COMPLEX WITH NAD, AND
RP SUBUNIT.
RX PubMed=16239728; DOI=10.1107/S0907444905026740;
RA Ismail S.A., Park H.W.;
RT "Structural analysis of human liver glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL Acta Crystallogr. D 61:1508-1513(2005).
RN [45]
RP X-RAY CRYSTALLOGRAPHY (1.75 ANGSTROMS) IN COMPLEX WITH NAD, AND
RP SUBUNIT.
RX PubMed=16510976; DOI=10.1107/S0907444905042289;
RA Jenkins J.L., Tanner J.J.;
RT "High-resolution structure of human D-glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL Acta Crystallogr. D 62:290-301(2006).
CC -!- FUNCTION: Has both glyceraldehyde-3-phosphate dehydrogenase and
CC nitrosylase activities, thereby playing a role in glycolysis and
CC nuclear functions, respectively. Participates in nuclear events
CC including transcription, RNA transport, DNA replication and
CC apoptosis. Nuclear functions are probably due to the nitrosylase
CC activity that mediates cysteine S-nitrosylation of nuclear target
CC proteins such as SIRT1, HDAC2 and PRKDC. Modulates the
CC organization and assembly of the cytoskeleton. Facilitates the
CC CHP1-dependent microtubule and membrane associations through its
CC ability to stimulate the binding of CHP1 to microtubules (By
CC similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key
CC enzyme in glycolysis that catalyzes the first step of the pathway
CC by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-
CC glyceroyl phosphate. Component of the GAIT (gamma interferon-
CC activated inhibitor of translation) complex which mediates
CC interferon-gamma-induced transcript-selective translation
CC inhibition in inflammation processes. Upon interferon-gamma
CC treatment assembles into the GAIT complex which binds to stem
CC loop-containing GAIT elements in the 3'-UTR of diverse
CC inflammatory mRNAs (such as ceruplasmin) and suppresses their
CC translation.
CC -!- CATALYTIC ACTIVITY: D-glyceraldehyde 3-phosphate + phosphate +
CC NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH.
CC -!- PATHWAY: Carbohydrate degradation; glycolysis; pyruvate from D-
CC glyceraldehyde 3-phosphate: step 1/5.
CC -!- SUBUNIT: Homotetramer. Interacts with TPPP; the interaction is
CC direct. Interacts (when S-nitrosylated) with SIAH1; leading to
CC nuclear translocation. Interacts with RILPL1/GOSPEL, leading to
CC prevent the interaction between GAPDH and SIAH1 and prevent
CC nuclear translocation. Interacts with CHP1; the interaction
CC increases the binding of CHP1 with microtubules. Associates with
CC microtubules (By similarity). Interacts with EIF1AD, USP25, PRKCI
CC and WARS. Component of the GAIT complex.
CC -!- INTERACTION:
CC Self; NbExp=2; IntAct=EBI-354056, EBI-354056;
CC P00533:EGFR; NbExp=4; IntAct=EBI-354056, EBI-297353;
CC P12004:PCNA; NbExp=3; IntAct=EBI-354056, EBI-358311;
CC P00558:PGK1; NbExp=2; IntAct=EBI-354056, EBI-709599;
CC P15927:RPA2; NbExp=2; IntAct=EBI-354056, EBI-621404;
CC -!- SUBCELLULAR LOCATION: Cytoplasm, cytosol. Nucleus (By similarity).
CC Cytoplasm, perinuclear region. Membrane. Cytoplasm, cytoskeleton
CC (By similarity). Note=Translocates to the nucleus following S-
CC nitrosylation and interaction with SIAH1, which contains a nuclear
CC localization signal (By similarity). Postnuclear and Perinuclear
CC regions.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P04406-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P04406-2; Sequence=VSP_047289;
CC Note=No experimental confirmation available. Gene prediction
CC based on EST data;
CC -!- PTM: S-nitrosylation of Cys-152 leads to interaction with SIAH1,
CC followed by translocation to the nucleus (By similarity).
CC -!- PTM: ISGylated (Probable).
CC -!- PTM: Sulfhydration at Cys-152 increases catalytic activity (By
CC similarity).
CC -!- SIMILARITY: Belongs to the glyceraldehyde-3-phosphate
CC dehydrogenase family.
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/gapd/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Glyceraldehyde 3-phosphate
CC dehydrogenase entry;
CC URL="http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X01677; CAA25833.1; -; mRNA.
DR EMBL; M17851; AAA86283.1; -; mRNA.
DR EMBL; M33197; AAA52518.1; -; mRNA.
DR EMBL; J02642; AAA52496.1; -; mRNA.
DR EMBL; J04038; AAA53191.1; -; Genomic_DNA.
DR EMBL; X53778; CAA37794.1; -; mRNA.
DR EMBL; AF261085; AAF99678.1; -; mRNA.
DR EMBL; AY007133; AAG01996.1; -; mRNA.
DR EMBL; AB062273; BAB93466.1; -; mRNA.
DR EMBL; BT006893; AAP35539.1; -; mRNA.
DR EMBL; AY340484; AAP88932.1; -; Genomic_DNA.
DR EMBL; CR407671; CAG28599.1; -; mRNA.
DR EMBL; AC006064; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471116; EAW88787.1; -; Genomic_DNA.
DR EMBL; BC001601; AAH01601.1; -; mRNA.
DR EMBL; BC004109; AAH04109.1; -; mRNA.
DR EMBL; BC009081; AAH09081.1; -; mRNA.
DR EMBL; BC013310; AAH13310.1; -; mRNA.
DR EMBL; BC023632; AAH23632.1; -; mRNA.
DR EMBL; BC025925; AAH25925.1; -; mRNA.
DR EMBL; BC026907; AAH26907.1; -; mRNA.
DR EMBL; BC029618; AAH29618.1; -; mRNA.
DR EMBL; BC083511; AAH83511.1; -; mRNA.
DR PIR; A31988; DEHUG3.
DR RefSeq; NP_001243728.1; NM_001256799.1.
DR RefSeq; NP_002037.2; NM_002046.4.
DR UniGene; Hs.544577; -.
DR UniGene; Hs.592355; -.
DR UniGene; Hs.598320; -.
DR PDB; 1U8F; X-ray; 1.75 A; O/P/Q/R=1-335.
DR PDB; 1ZNQ; X-ray; 2.50 A; O/P/Q/R=1-335.
DR PDB; 2FEH; Model; -; O/P/Q/R=1-335.
DR PDB; 3GPD; X-ray; 3.50 A; G/R=2-335.
DR PDBsum; 1U8F; -.
DR PDBsum; 1ZNQ; -.
DR PDBsum; 2FEH; -.
DR PDBsum; 3GPD; -.
DR ProteinModelPortal; P04406; -.
DR SMR; P04406; 3-335.
DR DIP; DIP-32521N; -.
DR IntAct; P04406; 66.
DR MINT; MINT-1150338; -.
DR STRING; 9606.ENSP00000229239; -.
DR BindingDB; P04406; -.
DR ChEMBL; CHEMBL2284; -.
DR DrugBank; DB00157; NADH.
DR PhosphoSite; P04406; -.
DR DMDM; 120649; -.
DR DOSAC-COBS-2DPAGE; P04406; -.
DR OGP; P04406; -.
DR REPRODUCTION-2DPAGE; IPI00219018; -.
DR REPRODUCTION-2DPAGE; P04406; -.
DR SWISS-2DPAGE; P04406; -.
DR UCD-2DPAGE; P04406; -.
DR PaxDb; P04406; -.
DR PRIDE; P04406; -.
DR DNASU; 2597; -.
DR Ensembl; ENST00000229239; ENSP00000229239; ENSG00000111640.
DR Ensembl; ENST00000396858; ENSP00000380067; ENSG00000111640.
DR Ensembl; ENST00000396859; ENSP00000380068; ENSG00000111640.
DR Ensembl; ENST00000396861; ENSP00000380070; ENSG00000111640.
DR GeneID; 2597; -.
DR KEGG; hsa:2597; -.
DR UCSC; uc001qop.2; human.
DR CTD; 2597; -.
DR GeneCards; GC12P006643; -.
DR H-InvDB; HIX0000949; -.
DR H-InvDB; HIX0024996; -.
DR HGNC; HGNC:4141; GAPDH.
DR HPA; CAB005197; -.
DR HPA; CAB016392; -.
DR HPA; HPA040067; -.
DR MIM; 138400; gene.
DR neXtProt; NX_P04406; -.
DR PharmGKB; PA28554; -.
DR eggNOG; COG0057; -.
DR HOGENOM; HOG000071678; -.
DR HOVERGEN; HBG000227; -.
DR InParanoid; P04406; -.
DR KO; K00134; -.
DR OMA; FTLENMV; -.
DR OrthoDB; EOG7Q5HDF; -.
DR PhylomeDB; P04406; -.
DR BioCyc; MetaCyc:HS03433-MONOMER; -.
DR BRENDA; 1.2.1.12; 2681.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P04406; -.
DR UniPathway; UPA00109; UER00184.
DR ChiTaRS; GAPDH; human.
DR EvolutionaryTrace; P04406; -.
DR GeneWiki; Glyceraldehyde_3-phosphate_dehydrogenase; -.
DR GenomeRNAi; 2597; -.
DR NextBio; 10271; -.
DR PRO; PR:P04406; -.
DR ArrayExpress; P04406; -.
DR Bgee; P04406; -.
DR CleanEx; HS_GAPDH; -.
DR Genevestigator; P04406; -.
DR GO; GO:0005829; C:cytosol; ISS:UniProtKB.
DR GO; GO:0070062; C:extracellular vesicular exosome; IDA:UniProtKB.
DR GO; GO:0097452; C:GAIT complex; IDA:UniProtKB.
DR GO; GO:0005811; C:lipid particle; IDA:UniProtKB.
DR GO; GO:0015630; C:microtubule cytoskeleton; ISS:UniProtKB.
DR GO; GO:0005634; C:nucleus; ISS:UniProtKB.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IEA:UniProtKB-SubCell.
DR GO; GO:0005886; C:plasma membrane; IDA:HPA.
DR GO; GO:0030529; C:ribonucleoprotein complex; IDA:UniProtKB.
DR GO; GO:0004365; F:glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity; ISS:UniProtKB.
DR GO; GO:0008017; F:microtubule binding; ISS:UniProtKB.
DR GO; GO:0051287; F:NAD binding; IEA:InterPro.
DR GO; GO:0050661; F:NADP binding; IEA:InterPro.
DR GO; GO:0035605; F:peptidyl-cysteine S-nitrosylase activity; ISS:UniProtKB.
DR GO; GO:0071346; P:cellular response to interferon-gamma; IDA:UniProtKB.
DR GO; GO:0006094; P:gluconeogenesis; TAS:Reactome.
DR GO; GO:0006096; P:glycolysis; NAS:UniProtKB.
DR GO; GO:0000226; P:microtubule cytoskeleton organization; ISS:UniProtKB.
DR GO; GO:0017148; P:negative regulation of translation; IDA:UniProtKB.
DR GO; GO:0051402; P:neuron apoptotic process; ISS:UniProtKB.
DR GO; GO:0035606; P:peptidyl-cysteine S-trans-nitrosylation; ISS:UniProtKB.
DR GO; GO:0050821; P:protein stabilization; ISS:UniProtKB.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR Gene3D; 3.40.50.720; -; 1.
DR InterPro; IPR020831; GlycerAld/Erythrose_P_DH.
DR InterPro; IPR020830; GlycerAld_3-P_DH_AS.
DR InterPro; IPR020829; GlycerAld_3-P_DH_cat.
DR InterPro; IPR020828; GlycerAld_3-P_DH_NAD(P)-bd.
DR InterPro; IPR006424; Glyceraldehyde-3-P_DH_1.
DR InterPro; IPR016040; NAD(P)-bd_dom.
DR PANTHER; PTHR10836; PTHR10836; 1.
DR Pfam; PF02800; Gp_dh_C; 1.
DR Pfam; PF00044; Gp_dh_N; 1.
DR PIRSF; PIRSF000149; GAP_DH; 1.
DR PRINTS; PR00078; G3PDHDRGNASE.
DR SMART; SM00846; Gp_dh_N; 1.
DR TIGRFAMs; TIGR01534; GAPDH-I; 1.
DR PROSITE; PS00071; GAPDH; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; ADP-ribosylation; Alternative splicing;
KW Apoptosis; Complete proteome; Cytoplasm; Cytoskeleton;
KW Direct protein sequencing; Glycolysis; Membrane; Methylation; NAD;
KW Nucleus; Oxidoreductase; Phosphoprotein; Polymorphism;
KW Reference proteome; S-nitrosylation; Transferase;
KW Translation regulation; Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 335 Glyceraldehyde-3-phosphate dehydrogenase.
FT /FTId=PRO_0000145486.
FT NP_BIND 13 14 NAD.
FT REGION 2 148 Interaction with WARS.
FT REGION 151 153 Glyceraldehyde 3-phosphate binding (By
FT similarity).
FT REGION 211 212 Glyceraldehyde 3-phosphate binding (By
FT similarity).
FT ACT_SITE 152 152 Nucleophile.
FT BINDING 35 35 NAD.
FT BINDING 80 80 NAD; via carbonyl oxygen.
FT BINDING 122 122 NAD.
FT BINDING 182 182 Glyceraldehyde 3-phosphate (By
FT similarity).
FT BINDING 234 234 Glyceraldehyde 3-phosphate (By
FT similarity).
FT BINDING 316 316 NAD.
FT SITE 2 2 Not acetylated.
FT SITE 179 179 Activates thiol group during catalysis.
FT MOD_RES 5 5 N6,N6-dimethyllysine.
FT MOD_RES 9 9 Deamidated asparagine.
FT MOD_RES 42 42 Phosphotyrosine.
FT MOD_RES 61 61 N6-acetyllysine.
FT MOD_RES 64 64 Deamidated asparagine.
FT MOD_RES 66 66 N6,N6-dimethyllysine.
FT MOD_RES 70 70 Deamidated asparagine.
FT MOD_RES 75 75 Phosphothreonine.
FT MOD_RES 83 83 Phosphoserine.
FT MOD_RES 122 122 Phosphoserine.
FT MOD_RES 148 148 Phosphoserine.
FT MOD_RES 149 149 Deamidated asparagine.
FT MOD_RES 151 151 Phosphoserine.
FT MOD_RES 152 152 ADP-ribosylcysteine; by autocatalysis; in
FT irreversibly inhibited form (By
FT similarity).
FT MOD_RES 152 152 Cysteine persulfide (By similarity).
FT MOD_RES 152 152 S-nitrosocysteine; in reversibly
FT inhibited form (By similarity).
FT MOD_RES 155 155 Deamidated asparagine.
FT MOD_RES 184 184 Phosphothreonine.
FT MOD_RES 194 194 N6,N6-dimethyllysine; alternate.
FT MOD_RES 194 194 N6-acetyllysine; alternate.
FT MOD_RES 194 194 N6-malonyllysine; alternate.
FT MOD_RES 211 211 Phosphothreonine.
FT MOD_RES 215 215 N6,N6-dimethyllysine; alternate.
FT MOD_RES 215 215 N6-malonyllysine; alternate.
FT MOD_RES 219 219 N6-acetyllysine.
FT MOD_RES 225 225 Deamidated asparagine.
FT MOD_RES 227 227 N6,N6-dimethyllysine; alternate.
FT MOD_RES 227 227 N6-acetyllysine; alternate.
FT MOD_RES 229 229 Phosphothreonine.
FT MOD_RES 237 237 Phosphothreonine.
FT MOD_RES 254 254 N6-acetyllysine.
FT MOD_RES 260 260 N6,N6-dimethyllysine.
FT MOD_RES 263 263 N6,N6-dimethyllysine.
FT MOD_RES 312 312 Phosphoserine.
FT MOD_RES 316 316 Deamidated asparagine.
FT MOD_RES 334 334 N6,N6-dimethyllysine.
FT VAR_SEQ 1 42 Missing (in isoform 2).
FT /FTId=VSP_047289.
FT VARIANT 22 22 A -> G (in dbSNP:rs45541435).
FT /FTId=VAR_018889.
FT VARIANT 251 251 K -> N (in dbSNP:rs1062429).
FT /FTId=VAR_049218.
FT CONFLICT 225 225 N -> D (in Ref. 2; CAA25833).
FT STRAND 5 9
FT HELIX 13 25
FT STRAND 27 34
FT STRAND 36 38
FT HELIX 40 48
FT TURN 51 53
FT STRAND 60 63
FT STRAND 66 69
FT STRAND 72 77
FT HELIX 82 84
FT TURN 87 91
FT STRAND 94 97
FT STRAND 99 101
FT HELIX 105 108
FT HELIX 109 114
FT STRAND 117 123
FT STRAND 126 128
FT TURN 133 135
FT HELIX 137 139
FT STRAND 145 148
FT HELIX 152 168
FT STRAND 170 180
FT STRAND 185 189
FT HELIX 196 199
FT TURN 202 204
FT STRAND 207 210
FT TURN 213 216
FT HELIX 217 220
FT HELIX 222 224
FT STRAND 227 236
FT STRAND 241 251
FT HELIX 255 267
FT TURN 268 273
FT STRAND 274 277
FT HELIX 283 286
FT STRAND 292 296
FT TURN 297 299
FT STRAND 301 304
FT STRAND 307 314
FT HELIX 318 333
SQ SEQUENCE 335 AA; 36053 MW; C9C135E8AE3E8744 CRC64;
MGKVKVGVNG FGRIGRLVTR AAFNSGKVDI VAINDPFIDL NYMVYMFQYD STHGKFHGTV
KAENGKLVIN GNPITIFQER DPSKIKWGDA GAEYVVESTG VFTTMEKAGA HLQGGAKRVI
ISAPSADAPM FVMGVNHEKY DNSLKIISNA SCTTNCLAPL AKVIHDNFGI VEGLMTTVHA
ITATQKTVDG PSGKLWRDGR GALQNIIPAS TGAAKAVGKV IPELNGKLTG MAFRVPTANV
SVVDLTCRLE KPAKYDDIKK VVKQASEGPL KGILGYTEHQ VVSSDFNSDT HSSTFDAGAG
IALNDHFVKL ISWYDNEFGY SNRVVDLMAH MASKE
//
ID G3P_HUMAN Reviewed; 335 AA.
AC P04406; E7EUT4; P00354; Q53X65;
DT 21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
read moreDT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 188.
DE RecName: Full=Glyceraldehyde-3-phosphate dehydrogenase;
DE Short=GAPDH;
DE EC=1.2.1.12;
DE AltName: Full=Peptidyl-cysteine S-nitrosylase GAPDH;
DE EC=2.6.99.-;
GN Name=GAPDH; Synonyms=GAPD; ORFNames=CDABP0047, OK/SW-cl.12;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=6096136;
RA Hanauer A., Mandel J.-L.;
RT "The glyceraldehyde 3 phosphate dehydrogenase gene family: structure
RT of a human cDNA and of an X chromosome linked pseudogene; amazing
RT complexity of the gene family in mouse.";
RL EMBO J. 3:2627-2633(1984).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=6096821; DOI=10.1093/nar/12.23.9179;
RA Arcari P., Martinelli R., Salvatore F.;
RT "The complete sequence of a full length cDNA for human liver
RT glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA
RT species.";
RL Nucleic Acids Res. 12:9179-9189(1984).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Liver;
RX PubMed=2987855; DOI=10.1093/nar/13.7.2485;
RA Tso J.Y., Sun X.-H., Kao T.-H., Reece K.S., Wu R.;
RT "Isolation and characterization of rat and human glyceraldehyde-3-
RT phosphate dehydrogenase cDNAs: genomic complexity and molecular
RT evolution of the gene.";
RL Nucleic Acids Res. 13:2485-2502(1985).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Lung;
RX PubMed=3664468;
RA Tokunaga K., Nakamura Y., Sakata K., Fujimori K., Ohkubo M.,
RA Sawada K., Sakiyama S.;
RT "Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase
RT gene in human lung cancers.";
RL Cancer Res. 47:5616-5619(1987).
RN [5]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=3027061;
RA Allen R.W., Trach K.A., Hoch J.A.;
RT "Identification of the 37-kDa protein displaying a variable
RT interaction with the erythroid cell membrane as glyceraldehyde-3-
RT phosphate dehydrogenase.";
RL J. Biol. Chem. 262:649-653(1987).
RN [6]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION, AND CATALYTIC ACTIVITY.
RX PubMed=3170585;
RA Ercolani L., Florence B., Denaro M., Alexander M.;
RT "Isolation and complete sequence of a functional human glyceraldehyde-
RT 3-phosphate dehydrogenase gene.";
RL J. Biol. Chem. 263:15335-15341(1988).
RN [7]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Placenta;
RX PubMed=1924305; DOI=10.1073/pnas.88.19.8460;
RA Meyer-Siegler K., Mauro D.J., Seal G., Wurzer J., Deriel J.K.,
RA Sirover M.A.;
RT "A human nuclear uracil DNA glycosylase is the 37-kDa subunit of
RT glyceraldehyde-3-phosphate dehydrogenase.";
RL Proc. Natl. Acad. Sci. U.S.A. 88:8460-8464(1991).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Astrocytoma;
RX PubMed=10944468; DOI=10.1006/bbrc.2000.3282;
RA Ye Z., Connor J.R.;
RT "cDNA cloning by amplification of circularized first strand cDNAs
RT reveals non-IRE-regulated iron-responsive mRNAs.";
RL Biochem. Biophys. Res. Commun. 275:223-227(2000).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Leukemia;
RA Zhou J., Yu W., Tang H., Mei G., Tsang Y.T.M., Bouck J., Gibbs R.A.,
RA Margolin J.F.;
RT "Pediatric leukemia cDNA sequencing project.";
RL Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Colon adenocarcinoma;
RA Shichijo S., Itoh K.;
RT "Identification of immuno-peptidmics that are recognized by tumor-
RT reactive CTL generated from TIL of colon cancer patients.";
RL Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT GLY-22.
RG NIEHS SNPs program;
RL Submitted (JUL-2003) to the EMBL/GenBank/DDBJ databases.
RN [13]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.;
RT "Cloning of human full open reading frames in Gateway(TM) system entry
RT vector (pDONR201).";
RL Submitted (MAY-2004) to the EMBL/GenBank/DDBJ databases.
RN [14]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=16541075; DOI=10.1038/nature04569;
RA Scherer S.E., Muzny D.M., Buhay C.J., Chen R., Cree A., Ding Y.,
RA Dugan-Rocha S., Gill R., Gunaratne P., Harris R.A., Hawes A.C.,
RA Hernandez J., Hodgson A.V., Hume J., Jackson A., Khan Z.M.,
RA Kovar-Smith C., Lewis L.R., Lozado R.J., Metzker M.L.,
RA Milosavljevic A., Miner G.R., Montgomery K.T., Morgan M.B.,
RA Nazareth L.V., Scott G., Sodergren E., Song X.-Z., Steffen D.,
RA Lovering R.C., Wheeler D.A., Worley K.C., Yuan Y., Zhang Z.,
RA Adams C.Q., Ansari-Lari M.A., Ayele M., Brown M.J., Chen G., Chen Z.,
RA Clerc-Blankenburg K.P., Davis C., Delgado O., Dinh H.H., Draper H.,
RA Gonzalez-Garay M.L., Havlak P., Jackson L.R., Jacob L.S., Kelly S.H.,
RA Li L., Li Z., Liu J., Liu W., Lu J., Maheshwari M., Nguyen B.-V.,
RA Okwuonu G.O., Pasternak S., Perez L.M., Plopper F.J.H., Santibanez J.,
RA Shen H., Tabor P.E., Verduzco D., Waldron L., Wang Q., Williams G.A.,
RA Zhang J., Zhou J., Allen C.C., Amin A.G., Anyalebechi V., Bailey M.,
RA Barbaria J.A., Bimage K.E., Bryant N.P., Burch P.E., Burkett C.E.,
RA Burrell K.L., Calderon E., Cardenas V., Carter K., Casias K.,
RA Cavazos I., Cavazos S.R., Ceasar H., Chacko J., Chan S.N., Chavez D.,
RA Christopoulos C., Chu J., Cockrell R., Cox C.D., Dang M.,
RA Dathorne S.R., David R., Davis C.M., Davy-Carroll L., Deshazo D.R.,
RA Donlin J.E., D'Souza L., Eaves K.A., Egan A., Emery-Cohen A.J.,
RA Escotto M., Flagg N., Forbes L.D., Gabisi A.M., Garza M., Hamilton C.,
RA Henderson N., Hernandez O., Hines S., Hogues M.E., Huang M.,
RA Idlebird D.G., Johnson R., Jolivet A., Jones S., Kagan R., King L.M.,
RA Leal B., Lebow H., Lee S., LeVan J.M., Lewis L.C., London P.,
RA Lorensuhewa L.M., Loulseged H., Lovett D.A., Lucier A., Lucier R.L.,
RA Ma J., Madu R.C., Mapua P., Martindale A.D., Martinez E., Massey E.,
RA Mawhiney S., Meador M.G., Mendez S., Mercado C., Mercado I.C.,
RA Merritt C.E., Miner Z.L., Minja E., Mitchell T., Mohabbat F.,
RA Mohabbat K., Montgomery B., Moore N., Morris S., Munidasa M.,
RA Ngo R.N., Nguyen N.B., Nickerson E., Nwaokelemeh O.O., Nwokenkwo S.,
RA Obregon M., Oguh M., Oragunye N., Oviedo R.J., Parish B.J.,
RA Parker D.N., Parrish J., Parks K.L., Paul H.A., Payton B.A., Perez A.,
RA Perrin W., Pickens A., Primus E.L., Pu L.-L., Puazo M., Quiles M.M.,
RA Quiroz J.B., Rabata D., Reeves K., Ruiz S.J., Shao H., Sisson I.,
RA Sonaike T., Sorelle R.P., Sutton A.E., Svatek A.F., Svetz L.A.,
RA Tamerisa K.S., Taylor T.R., Teague B., Thomas N., Thorn R.D.,
RA Trejos Z.Y., Trevino B.K., Ukegbu O.N., Urban J.B., Vasquez L.I.,
RA Vera V.A., Villasana D.M., Wang L., Ward-Moore S., Warren J.T.,
RA Wei X., White F., Williamson A.L., Wleczyk R., Wooden H.S.,
RA Wooden S.H., Yen J., Yoon L., Yoon V., Zorrilla S.E., Nelson D.,
RA Kucherlapati R., Weinstock G., Gibbs R.A.;
RT "The finished DNA sequence of human chromosome 12.";
RL Nature 440:346-351(2006).
RN [15]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [16]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Eye, Kidney, Lung, Lymph, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [17]
RP PRELIMINARY PROTEIN SEQUENCE OF 2-335.
RC TISSUE=Muscle;
RX PubMed=7030790; DOI=10.1016/0014-5793(81)80587-X;
RA Nowak K., Wolny M., Banas T.;
RT "The complete amino acid sequence of human muscle glyceraldehyde 3-
RT phosphate dehydrogenase.";
RL FEBS Lett. 134:143-146(1981).
RN [18]
RP PROTEIN SEQUENCE OF 2-13.
RC TISSUE=Platelet;
RX PubMed=12665801; DOI=10.1038/nbt810;
RA Gevaert K., Goethals M., Martens L., Van Damme J., Staes A.,
RA Thomas G.R., Vandekerckhove J.;
RT "Exploring proteomes and analyzing protein processing by mass
RT spectrometric identification of sorted N-terminal peptides.";
RL Nat. Biotechnol. 21:566-569(2003).
RN [19]
RP PROTEIN SEQUENCE OF 2-13; 62-84; 118-139; 198-215; 220-227; 235-248
RP AND 310-335, CLEAVAGE OF INITIATOR METHIONINE, LACK OF N-TERMINAL
RP ACETYLATION, AND MASS SPECTROMETRY.
RC TISSUE=Prostatic carcinoma;
RA Bienvenut W.V., Gao M., Leug H.;
RL Submitted (JUL-2009) to UniProtKB.
RN [20]
RP PROTEIN SEQUENCE OF 67-80; 87-107; 119-139; 146-186; 201-215; 235-248
RP AND 310-334, AND MASS SPECTROMETRY.
RC TISSUE=Brain, Cajal-Retzius cell, and Fetal brain cortex;
RA Lubec G., Vishwanath V., Chen W.-Q., Sun Y.;
RL Submitted (DEC-2008) to UniProtKB.
RN [21]
RP PROTEIN SEQUENCE OF 220-226 AND 242-246.
RC TISSUE=Heart;
RX PubMed=7498159; DOI=10.1002/elps.11501601192;
RA Kovalyov L.I., Shishkin S.S., Efimochkin A.S., Kovalyova M.A.,
RA Ershova E.S., Egorov T.A., Musalyamov A.K.;
RT "The major protein expression profile and two-dimensional protein
RT database of human heart.";
RL Electrophoresis 16:1160-1169(1995).
RN [22]
RP PARTIAL PROTEIN SEQUENCE.
RC TISSUE=Muscle;
RX PubMed=1193541;
RA Nowak K., Kuczek M., Ostropolska L., Malarska A., Wolny M.,
RA Branowski T.;
RT "The covalent structure of glyceraldehyde-phosphate dehydrogenase from
RT human muscles. Isolation and amino acid sequences of peptides from
RT tryptic digest.";
RL Hoppe-Seyler's Z. Physiol. Chem. 356:1181-1183(1975).
RN [23]
RP FUNCTION, AND INTERACTION WITH PRKCI.
RX PubMed=11724794; DOI=10.1074/jbc.M109744200;
RA Tisdale E.J.;
RT "Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein
RT kinase Ciota /lambda and plays a role in microtubule dynamics in the
RT early secretory pathway.";
RL J. Biol. Chem. 277:3334-3341(2002).
RN [24]
RP SUBCELLULAR LOCATION.
RX PubMed=12829261; DOI=10.1016/S0304-4165(03)00117-X;
RA Mazzola J.L., Sirover M.A.;
RT "Subcellular localization of human glyceraldehyde-3-phosphate
RT dehydrogenase is independent of its glycolytic function.";
RL Biochim. Biophys. Acta 1622:50-56(2003).
RN [25]
RP IDENTIFICATION IN THE GAIT COMPLEX.
RX PubMed=15479637; DOI=10.1016/j.cell.2004.09.030;
RA Sampath P., Mazumder B., Seshadri V., Gerber C.A., Chavatte L.,
RA Kinter M., Ting S.M., Dignam J.D., Kim S., Driscoll D.M., Fox P.L.;
RT "Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-
RT specific silencing of translation.";
RL Cell 119:195-208(2004).
RN [26]
RP INTERACTION WITH WARS.
RX PubMed=15628863; DOI=10.1021/bi048313k;
RA Wakasugi K., Nakano T., Morishima I.;
RT "Oxidative stress-responsive intracellular regulation specific for the
RT angiostatic form of human tryptophanyl-tRNA synthetase.";
RL Biochemistry 44:225-232(2005).
RN [27]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-42, AND MASS
RP SPECTROMETRY.
RX PubMed=15592455; DOI=10.1038/nbt1046;
RA Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,
RA Zha X.-M., Polakiewicz R.D., Comb M.J.;
RT "Immunoaffinity profiling of tyrosine phosphorylation in cancer
RT cells.";
RL Nat. Biotechnol. 23:94-101(2005).
RN [28]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [29]
RP INTERACTION WITH USP25.
RX PubMed=16501887; DOI=10.1007/s00018-005-5533-1;
RA Bosch-Comas A., Lindsten K., Gonzalez-Duarte R., Masucci M.G.,
RA Marfany G.;
RT "The ubiquitin-specific protease USP25 interacts with three sarcomeric
RT proteins.";
RL Cell. Mol. Life Sci. 63:723-734(2006).
RN [30]
RP ISGYLATION.
RX PubMed=16815975; DOI=10.1073/pnas.0600397103;
RA Wong J.J., Pung Y.F., Sze N.S., Chin K.C.;
RT "HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates
RT type I IFN-induced ISGylation of protein targets.";
RL Proc. Natl. Acad. Sci. U.S.A. 103:10735-10740(2006).
RN [31]
RP PHOSPHORYLATION AT THR-75; SER-122; SER-148; THR-229; THR-237 AND
RP SER-312, DEAMIDATION AT ASN-9; ASN-64; ASN-70; ASN-149; ASN-155;
RP ASN-225 AND ASN-316, AND METHYLATION AT LYS-5; LYS-66; LYS-194;
RP LYS-215; LYS-227; LYS-260; LYS-263 AND LYS-334.
RX PubMed=18183946; DOI=10.1021/pr700657y;
RA Seo J., Jeong J., Kim Y.M., Hwang N., Paek E., Lee K.-J.;
RT "Strategy for comprehensive identification of post-translational
RT modifications in cellular proteins, including low abundant
RT modifications: application to glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL J. Proteome Res. 7:587-602(2008).
RN [32]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83; SER-151 AND THR-184,
RP AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [34]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-184; THR-211 AND
RP SER-312, AND MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [35]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-61; LYS-194; LYS-219;
RP LYS-227 AND LYS-254, AND MASS SPECTROMETRY.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [36]
RP INTERACTION WITH EIF1AD.
RX PubMed=20644585; DOI=10.1134/S1068162010030027;
RA Rakitina T.V., Bogatova O.V., Smirnova E.V., Pozdeev V.I.,
RA Kostanian I.A., Lipkin V.M.;
RT "Haponin (eIF1AD) interacts with glyceraldehyde 3-phosphate
RT dehydrogenase in the CHO-K1 cell line.";
RL Bioorg. Khim. 36:312-318(2010).
RN [37]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-75; SER-83 AND THR-184,
RP AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [38]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [39]
RP MALONYLATION AT LYS-194 AND LYS-215.
RX PubMed=21908771; DOI=10.1074/mcp.M111.012658;
RA Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., Zhang Y.,
RA He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D., He T.C.,
RA Dai J., Verdin E., Ye Y., Zhao Y.;
RT "The first identification of lysine malonylation substrates and its
RT regulatory enzyme.";
RL Mol. Cell. Proteomics 10:M111.012658.01-M111.012658.12(2011).
RN [40]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83, AND MASS
RP SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [41]
RP FUNCTION, AND RECONSTITUTION OF THE GAIT COMPLEX.
RX PubMed=23071094; DOI=10.1128/MCB.01168-12;
RA Arif A., Chatterjee P., Moodt R.A., Fox P.L.;
RT "Heterotrimeric GAIT complex drives transcript-selective translation
RT inhibition in murine macrophages.";
RL Mol. Cell. Biol. 32:5046-5055(2012).
RN [42]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [43]
RP X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS).
RX PubMed=957435; DOI=10.1016/0022-2836(76)90013-9;
RA Mercer W.D., Winn S.I., Watson H.C.;
RT "Twinning in crystals of human skeletal muscle D-glyceraldehyde-3-
RT phosphate dehydrogenase.";
RL J. Mol. Biol. 104:277-283(1976).
RN [44]
RP X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) IN COMPLEX WITH NAD, AND
RP SUBUNIT.
RX PubMed=16239728; DOI=10.1107/S0907444905026740;
RA Ismail S.A., Park H.W.;
RT "Structural analysis of human liver glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL Acta Crystallogr. D 61:1508-1513(2005).
RN [45]
RP X-RAY CRYSTALLOGRAPHY (1.75 ANGSTROMS) IN COMPLEX WITH NAD, AND
RP SUBUNIT.
RX PubMed=16510976; DOI=10.1107/S0907444905042289;
RA Jenkins J.L., Tanner J.J.;
RT "High-resolution structure of human D-glyceraldehyde-3-phosphate
RT dehydrogenase.";
RL Acta Crystallogr. D 62:290-301(2006).
CC -!- FUNCTION: Has both glyceraldehyde-3-phosphate dehydrogenase and
CC nitrosylase activities, thereby playing a role in glycolysis and
CC nuclear functions, respectively. Participates in nuclear events
CC including transcription, RNA transport, DNA replication and
CC apoptosis. Nuclear functions are probably due to the nitrosylase
CC activity that mediates cysteine S-nitrosylation of nuclear target
CC proteins such as SIRT1, HDAC2 and PRKDC. Modulates the
CC organization and assembly of the cytoskeleton. Facilitates the
CC CHP1-dependent microtubule and membrane associations through its
CC ability to stimulate the binding of CHP1 to microtubules (By
CC similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key
CC enzyme in glycolysis that catalyzes the first step of the pathway
CC by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-
CC glyceroyl phosphate. Component of the GAIT (gamma interferon-
CC activated inhibitor of translation) complex which mediates
CC interferon-gamma-induced transcript-selective translation
CC inhibition in inflammation processes. Upon interferon-gamma
CC treatment assembles into the GAIT complex which binds to stem
CC loop-containing GAIT elements in the 3'-UTR of diverse
CC inflammatory mRNAs (such as ceruplasmin) and suppresses their
CC translation.
CC -!- CATALYTIC ACTIVITY: D-glyceraldehyde 3-phosphate + phosphate +
CC NAD(+) = 3-phospho-D-glyceroyl phosphate + NADH.
CC -!- PATHWAY: Carbohydrate degradation; glycolysis; pyruvate from D-
CC glyceraldehyde 3-phosphate: step 1/5.
CC -!- SUBUNIT: Homotetramer. Interacts with TPPP; the interaction is
CC direct. Interacts (when S-nitrosylated) with SIAH1; leading to
CC nuclear translocation. Interacts with RILPL1/GOSPEL, leading to
CC prevent the interaction between GAPDH and SIAH1 and prevent
CC nuclear translocation. Interacts with CHP1; the interaction
CC increases the binding of CHP1 with microtubules. Associates with
CC microtubules (By similarity). Interacts with EIF1AD, USP25, PRKCI
CC and WARS. Component of the GAIT complex.
CC -!- INTERACTION:
CC Self; NbExp=2; IntAct=EBI-354056, EBI-354056;
CC P00533:EGFR; NbExp=4; IntAct=EBI-354056, EBI-297353;
CC P12004:PCNA; NbExp=3; IntAct=EBI-354056, EBI-358311;
CC P00558:PGK1; NbExp=2; IntAct=EBI-354056, EBI-709599;
CC P15927:RPA2; NbExp=2; IntAct=EBI-354056, EBI-621404;
CC -!- SUBCELLULAR LOCATION: Cytoplasm, cytosol. Nucleus (By similarity).
CC Cytoplasm, perinuclear region. Membrane. Cytoplasm, cytoskeleton
CC (By similarity). Note=Translocates to the nucleus following S-
CC nitrosylation and interaction with SIAH1, which contains a nuclear
CC localization signal (By similarity). Postnuclear and Perinuclear
CC regions.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=P04406-1; Sequence=Displayed;
CC Name=2;
CC IsoId=P04406-2; Sequence=VSP_047289;
CC Note=No experimental confirmation available. Gene prediction
CC based on EST data;
CC -!- PTM: S-nitrosylation of Cys-152 leads to interaction with SIAH1,
CC followed by translocation to the nucleus (By similarity).
CC -!- PTM: ISGylated (Probable).
CC -!- PTM: Sulfhydration at Cys-152 increases catalytic activity (By
CC similarity).
CC -!- SIMILARITY: Belongs to the glyceraldehyde-3-phosphate
CC dehydrogenase family.
CC -!- WEB RESOURCE: Name=NIEHS-SNPs;
CC URL="http://egp.gs.washington.edu/data/gapd/";
CC -!- WEB RESOURCE: Name=Wikipedia; Note=Glyceraldehyde 3-phosphate
CC dehydrogenase entry;
CC URL="http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase";
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X01677; CAA25833.1; -; mRNA.
DR EMBL; M17851; AAA86283.1; -; mRNA.
DR EMBL; M33197; AAA52518.1; -; mRNA.
DR EMBL; J02642; AAA52496.1; -; mRNA.
DR EMBL; J04038; AAA53191.1; -; Genomic_DNA.
DR EMBL; X53778; CAA37794.1; -; mRNA.
DR EMBL; AF261085; AAF99678.1; -; mRNA.
DR EMBL; AY007133; AAG01996.1; -; mRNA.
DR EMBL; AB062273; BAB93466.1; -; mRNA.
DR EMBL; BT006893; AAP35539.1; -; mRNA.
DR EMBL; AY340484; AAP88932.1; -; Genomic_DNA.
DR EMBL; CR407671; CAG28599.1; -; mRNA.
DR EMBL; AC006064; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; CH471116; EAW88787.1; -; Genomic_DNA.
DR EMBL; BC001601; AAH01601.1; -; mRNA.
DR EMBL; BC004109; AAH04109.1; -; mRNA.
DR EMBL; BC009081; AAH09081.1; -; mRNA.
DR EMBL; BC013310; AAH13310.1; -; mRNA.
DR EMBL; BC023632; AAH23632.1; -; mRNA.
DR EMBL; BC025925; AAH25925.1; -; mRNA.
DR EMBL; BC026907; AAH26907.1; -; mRNA.
DR EMBL; BC029618; AAH29618.1; -; mRNA.
DR EMBL; BC083511; AAH83511.1; -; mRNA.
DR PIR; A31988; DEHUG3.
DR RefSeq; NP_001243728.1; NM_001256799.1.
DR RefSeq; NP_002037.2; NM_002046.4.
DR UniGene; Hs.544577; -.
DR UniGene; Hs.592355; -.
DR UniGene; Hs.598320; -.
DR PDB; 1U8F; X-ray; 1.75 A; O/P/Q/R=1-335.
DR PDB; 1ZNQ; X-ray; 2.50 A; O/P/Q/R=1-335.
DR PDB; 2FEH; Model; -; O/P/Q/R=1-335.
DR PDB; 3GPD; X-ray; 3.50 A; G/R=2-335.
DR PDBsum; 1U8F; -.
DR PDBsum; 1ZNQ; -.
DR PDBsum; 2FEH; -.
DR PDBsum; 3GPD; -.
DR ProteinModelPortal; P04406; -.
DR SMR; P04406; 3-335.
DR DIP; DIP-32521N; -.
DR IntAct; P04406; 66.
DR MINT; MINT-1150338; -.
DR STRING; 9606.ENSP00000229239; -.
DR BindingDB; P04406; -.
DR ChEMBL; CHEMBL2284; -.
DR DrugBank; DB00157; NADH.
DR PhosphoSite; P04406; -.
DR DMDM; 120649; -.
DR DOSAC-COBS-2DPAGE; P04406; -.
DR OGP; P04406; -.
DR REPRODUCTION-2DPAGE; IPI00219018; -.
DR REPRODUCTION-2DPAGE; P04406; -.
DR SWISS-2DPAGE; P04406; -.
DR UCD-2DPAGE; P04406; -.
DR PaxDb; P04406; -.
DR PRIDE; P04406; -.
DR DNASU; 2597; -.
DR Ensembl; ENST00000229239; ENSP00000229239; ENSG00000111640.
DR Ensembl; ENST00000396858; ENSP00000380067; ENSG00000111640.
DR Ensembl; ENST00000396859; ENSP00000380068; ENSG00000111640.
DR Ensembl; ENST00000396861; ENSP00000380070; ENSG00000111640.
DR GeneID; 2597; -.
DR KEGG; hsa:2597; -.
DR UCSC; uc001qop.2; human.
DR CTD; 2597; -.
DR GeneCards; GC12P006643; -.
DR H-InvDB; HIX0000949; -.
DR H-InvDB; HIX0024996; -.
DR HGNC; HGNC:4141; GAPDH.
DR HPA; CAB005197; -.
DR HPA; CAB016392; -.
DR HPA; HPA040067; -.
DR MIM; 138400; gene.
DR neXtProt; NX_P04406; -.
DR PharmGKB; PA28554; -.
DR eggNOG; COG0057; -.
DR HOGENOM; HOG000071678; -.
DR HOVERGEN; HBG000227; -.
DR InParanoid; P04406; -.
DR KO; K00134; -.
DR OMA; FTLENMV; -.
DR OrthoDB; EOG7Q5HDF; -.
DR PhylomeDB; P04406; -.
DR BioCyc; MetaCyc:HS03433-MONOMER; -.
DR BRENDA; 1.2.1.12; 2681.
DR Reactome; REACT_111217; Metabolism.
DR SABIO-RK; P04406; -.
DR UniPathway; UPA00109; UER00184.
DR ChiTaRS; GAPDH; human.
DR EvolutionaryTrace; P04406; -.
DR GeneWiki; Glyceraldehyde_3-phosphate_dehydrogenase; -.
DR GenomeRNAi; 2597; -.
DR NextBio; 10271; -.
DR PRO; PR:P04406; -.
DR ArrayExpress; P04406; -.
DR Bgee; P04406; -.
DR CleanEx; HS_GAPDH; -.
DR Genevestigator; P04406; -.
DR GO; GO:0005829; C:cytosol; ISS:UniProtKB.
DR GO; GO:0070062; C:extracellular vesicular exosome; IDA:UniProtKB.
DR GO; GO:0097452; C:GAIT complex; IDA:UniProtKB.
DR GO; GO:0005811; C:lipid particle; IDA:UniProtKB.
DR GO; GO:0015630; C:microtubule cytoskeleton; ISS:UniProtKB.
DR GO; GO:0005634; C:nucleus; ISS:UniProtKB.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IEA:UniProtKB-SubCell.
DR GO; GO:0005886; C:plasma membrane; IDA:HPA.
DR GO; GO:0030529; C:ribonucleoprotein complex; IDA:UniProtKB.
DR GO; GO:0004365; F:glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity; ISS:UniProtKB.
DR GO; GO:0008017; F:microtubule binding; ISS:UniProtKB.
DR GO; GO:0051287; F:NAD binding; IEA:InterPro.
DR GO; GO:0050661; F:NADP binding; IEA:InterPro.
DR GO; GO:0035605; F:peptidyl-cysteine S-nitrosylase activity; ISS:UniProtKB.
DR GO; GO:0071346; P:cellular response to interferon-gamma; IDA:UniProtKB.
DR GO; GO:0006094; P:gluconeogenesis; TAS:Reactome.
DR GO; GO:0006096; P:glycolysis; NAS:UniProtKB.
DR GO; GO:0000226; P:microtubule cytoskeleton organization; ISS:UniProtKB.
DR GO; GO:0017148; P:negative regulation of translation; IDA:UniProtKB.
DR GO; GO:0051402; P:neuron apoptotic process; ISS:UniProtKB.
DR GO; GO:0035606; P:peptidyl-cysteine S-trans-nitrosylation; ISS:UniProtKB.
DR GO; GO:0050821; P:protein stabilization; ISS:UniProtKB.
DR GO; GO:0044281; P:small molecule metabolic process; TAS:Reactome.
DR Gene3D; 3.40.50.720; -; 1.
DR InterPro; IPR020831; GlycerAld/Erythrose_P_DH.
DR InterPro; IPR020830; GlycerAld_3-P_DH_AS.
DR InterPro; IPR020829; GlycerAld_3-P_DH_cat.
DR InterPro; IPR020828; GlycerAld_3-P_DH_NAD(P)-bd.
DR InterPro; IPR006424; Glyceraldehyde-3-P_DH_1.
DR InterPro; IPR016040; NAD(P)-bd_dom.
DR PANTHER; PTHR10836; PTHR10836; 1.
DR Pfam; PF02800; Gp_dh_C; 1.
DR Pfam; PF00044; Gp_dh_N; 1.
DR PIRSF; PIRSF000149; GAP_DH; 1.
DR PRINTS; PR00078; G3PDHDRGNASE.
DR SMART; SM00846; Gp_dh_N; 1.
DR TIGRFAMs; TIGR01534; GAPDH-I; 1.
DR PROSITE; PS00071; GAPDH; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; ADP-ribosylation; Alternative splicing;
KW Apoptosis; Complete proteome; Cytoplasm; Cytoskeleton;
KW Direct protein sequencing; Glycolysis; Membrane; Methylation; NAD;
KW Nucleus; Oxidoreductase; Phosphoprotein; Polymorphism;
KW Reference proteome; S-nitrosylation; Transferase;
KW Translation regulation; Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 335 Glyceraldehyde-3-phosphate dehydrogenase.
FT /FTId=PRO_0000145486.
FT NP_BIND 13 14 NAD.
FT REGION 2 148 Interaction with WARS.
FT REGION 151 153 Glyceraldehyde 3-phosphate binding (By
FT similarity).
FT REGION 211 212 Glyceraldehyde 3-phosphate binding (By
FT similarity).
FT ACT_SITE 152 152 Nucleophile.
FT BINDING 35 35 NAD.
FT BINDING 80 80 NAD; via carbonyl oxygen.
FT BINDING 122 122 NAD.
FT BINDING 182 182 Glyceraldehyde 3-phosphate (By
FT similarity).
FT BINDING 234 234 Glyceraldehyde 3-phosphate (By
FT similarity).
FT BINDING 316 316 NAD.
FT SITE 2 2 Not acetylated.
FT SITE 179 179 Activates thiol group during catalysis.
FT MOD_RES 5 5 N6,N6-dimethyllysine.
FT MOD_RES 9 9 Deamidated asparagine.
FT MOD_RES 42 42 Phosphotyrosine.
FT MOD_RES 61 61 N6-acetyllysine.
FT MOD_RES 64 64 Deamidated asparagine.
FT MOD_RES 66 66 N6,N6-dimethyllysine.
FT MOD_RES 70 70 Deamidated asparagine.
FT MOD_RES 75 75 Phosphothreonine.
FT MOD_RES 83 83 Phosphoserine.
FT MOD_RES 122 122 Phosphoserine.
FT MOD_RES 148 148 Phosphoserine.
FT MOD_RES 149 149 Deamidated asparagine.
FT MOD_RES 151 151 Phosphoserine.
FT MOD_RES 152 152 ADP-ribosylcysteine; by autocatalysis; in
FT irreversibly inhibited form (By
FT similarity).
FT MOD_RES 152 152 Cysteine persulfide (By similarity).
FT MOD_RES 152 152 S-nitrosocysteine; in reversibly
FT inhibited form (By similarity).
FT MOD_RES 155 155 Deamidated asparagine.
FT MOD_RES 184 184 Phosphothreonine.
FT MOD_RES 194 194 N6,N6-dimethyllysine; alternate.
FT MOD_RES 194 194 N6-acetyllysine; alternate.
FT MOD_RES 194 194 N6-malonyllysine; alternate.
FT MOD_RES 211 211 Phosphothreonine.
FT MOD_RES 215 215 N6,N6-dimethyllysine; alternate.
FT MOD_RES 215 215 N6-malonyllysine; alternate.
FT MOD_RES 219 219 N6-acetyllysine.
FT MOD_RES 225 225 Deamidated asparagine.
FT MOD_RES 227 227 N6,N6-dimethyllysine; alternate.
FT MOD_RES 227 227 N6-acetyllysine; alternate.
FT MOD_RES 229 229 Phosphothreonine.
FT MOD_RES 237 237 Phosphothreonine.
FT MOD_RES 254 254 N6-acetyllysine.
FT MOD_RES 260 260 N6,N6-dimethyllysine.
FT MOD_RES 263 263 N6,N6-dimethyllysine.
FT MOD_RES 312 312 Phosphoserine.
FT MOD_RES 316 316 Deamidated asparagine.
FT MOD_RES 334 334 N6,N6-dimethyllysine.
FT VAR_SEQ 1 42 Missing (in isoform 2).
FT /FTId=VSP_047289.
FT VARIANT 22 22 A -> G (in dbSNP:rs45541435).
FT /FTId=VAR_018889.
FT VARIANT 251 251 K -> N (in dbSNP:rs1062429).
FT /FTId=VAR_049218.
FT CONFLICT 225 225 N -> D (in Ref. 2; CAA25833).
FT STRAND 5 9
FT HELIX 13 25
FT STRAND 27 34
FT STRAND 36 38
FT HELIX 40 48
FT TURN 51 53
FT STRAND 60 63
FT STRAND 66 69
FT STRAND 72 77
FT HELIX 82 84
FT TURN 87 91
FT STRAND 94 97
FT STRAND 99 101
FT HELIX 105 108
FT HELIX 109 114
FT STRAND 117 123
FT STRAND 126 128
FT TURN 133 135
FT HELIX 137 139
FT STRAND 145 148
FT HELIX 152 168
FT STRAND 170 180
FT STRAND 185 189
FT HELIX 196 199
FT TURN 202 204
FT STRAND 207 210
FT TURN 213 216
FT HELIX 217 220
FT HELIX 222 224
FT STRAND 227 236
FT STRAND 241 251
FT HELIX 255 267
FT TURN 268 273
FT STRAND 274 277
FT HELIX 283 286
FT STRAND 292 296
FT TURN 297 299
FT STRAND 301 304
FT STRAND 307 314
FT HELIX 318 333
SQ SEQUENCE 335 AA; 36053 MW; C9C135E8AE3E8744 CRC64;
MGKVKVGVNG FGRIGRLVTR AAFNSGKVDI VAINDPFIDL NYMVYMFQYD STHGKFHGTV
KAENGKLVIN GNPITIFQER DPSKIKWGDA GAEYVVESTG VFTTMEKAGA HLQGGAKRVI
ISAPSADAPM FVMGVNHEKY DNSLKIISNA SCTTNCLAPL AKVIHDNFGI VEGLMTTVHA
ITATQKTVDG PSGKLWRDGR GALQNIIPAS TGAAKAVGKV IPELNGKLTG MAFRVPTANV
SVVDLTCRLE KPAKYDDIKK VVKQASEGPL KGILGYTEHQ VVSSDFNSDT HSSTFDAGAG
IALNDHFVKL ISWYDNEFGY SNRVVDLMAH MASKE
//
MIM
138400
*RECORD*
*FIELD* NO
138400
*FIELD* TI
*138400 GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; GAPDH
;;GAPD; G3PD;;
OCT1 COACTIVATOR IN S PHASE, 38-KD COMPONENT;;
read moreOCAS, p38 COMPONENT
*FIELD* TX
DESCRIPTION
Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) catalyzes an
important energy-yielding step in carbohydrate metabolism, the
reversible oxidative phosphorylation of glyceraldehyde-3-phosphate in
the presence of inorganic phosphate and nicotinamide adenine
dinucleotide (NAD) (Dayhoff, 1972).
CLONING
Sequence data for GAPD were published in the atlas of Dayhoff (1972).
The enzyme is present in such widely separated forms as man, lobster,
and E. coli. Its rate of evolutionary change is one of the slowest
known. In the cytoplasm GAPDH exists primarily as a tetrameric isoform
composed of 4 identical 37-kD subunits. GAPDH is also found in the
particulate fractions, such as the nucleus, the mitochondria, and the
small vesicular fractions (review by Tristan et al., 2011).
Variants have been found in a number of phyletically diverse organisms
(Lebherz and Rutter, 1967). as in lactic acid dehydrogenase. Variants
were found in man by Charlesworth (1972).
GENE FUNCTION
Burke et al. (1996) demonstrated that synthetic polyglutamine peptides,
DRPLA protein (607462) and huntingtin (HTT; 613004) from unaffected
individuals with normal-sized polyglutamine tracts bind to GAPD. They
noted that GAPD has also been shown to bind to RNA, ATP, calcyclin
(114110), actin (see 102610), tubulin (see 191130) and amyloid precursor
protein (104760). On the basis of their findings, Burke et al.(1996)
postulated that the diseases characterized by the presence of an
expanded CAG repeat may share a common metabolic pathogenesis involving
GAPD as a functional component. Roses (1996) and Barinaga (1996)
reviewed the findings.
Using human embryonic kidney and mouse neuroblastoma cell lines, Bae et
al. (2006) showed that nuclear translocation and associated
neurotoxicity of mutant huntingtin was mediated by a ternary complex of
huntingtin, GAPDH, and SIAH1 (602212), a ubiquitin E3 ligase that
provided the nuclear translocation signal. Overexpression of GAPDH or
SIAH1 enhanced nuclear translocation of mutant huntingtin and
cytotoxicity, whereas GAPDH mutants unable to bind SIAH1 prevented
translocation. Depletion of GAPDH or SIAH1 by RNA interference
diminished nuclear translocation of mutant huntingtin.
Zheng et al. (2003) isolated and functionally characterized a
multicomponent OCT1 (164175) coactivator, OCAS, that is essential for S
phase-dependent histone H2B (see 609904) transcription. The p38
component of OCAS, which the authors identified as GADPH, bound directly
to OCT1, exhibited potent transactivation potential, was selectively
recruited to the H2B promoter in S phase, and was essential for S
phase-specific H2B transcription in vivo and in vitro. Binding to OCT1,
as well as OCAS function, was stimulated by NAD+, but inhibited by NADH.
OCAS also interacted with NPAT (601448), a cyclin E (123837)/CDK2
(116953) substrate broadly involved in histone gene transcription. These
studies linked the H2B transcriptional machinery to cell cycle
regulators, and possibly to cellular metabolic state (redox status), and
set the stage for studies of the underlying mechanisms and the basis for
coordinated histone gene expression and coupling to DNA replication.
Meyer-Siegler et al. (1991) isolated a cDNA for uracil-DNA glycosylase
(see UNG; 191525) that, to their surprise, was completely homologous to
the 37-kD subunit of GAPD. They showed that the 37-kD subunit of
commercially obtained erythrocyte GAPD possessed uracil-DNA glycosylase
activity comparable to that seen for the purified human placental
enzyme. However, Caradonna et al. (1996) were unable to replicate the
work of Meyer-Siegler et al. (1991). They found that commercially
available human erythrocyte GAPDH showed no uracil-DNA glycosylase
activity.
Laschet et al. (2007) showed that GAPDH also acts as a kinase involved
in the glycolysis-dependent endogenous phosphorylation of the alpha-1
subunit of the GABA-A receptor (GABRA1; 137160), a mechanism that is
necessary for maintaining GABA-A receptor function.
In apoptotic cells, mitochondrial outer membrane permeabilization (MOMP)
is followed by caspase activation promoted by released cytochrome c (see
CYCS; 123970). Caspase inhibition is usually not sufficient for survival
after MOMP, and instead cells undergo caspase-independent cell death
(CICD). Colell et al. (2007) found that GAPDH-expressing cells preserved
their clonogenic potential following MOMP if caspase activation was also
blocked. GAPDH-mediated protection from CICD was accompanied by elevated
glycolysis and an increase in ATG12 (609608) expression. Electron and
confocal microscopy and flow cytometric analysis demonstrated that
protection from CICD was associated with an increase in and dependence
on autophagy, as well as a transient decrease in mitochondrial mass.
Colell et al. (2007) concluded that GAPDH mediates an elevation in
glycolysis and enhanced autophagy that cooperate to protect cells from
CICD.
Using proteomic techniques, ELISA, and Western blot analysis, Mookherjee
et al. (2009) identified GAPDH as a direct binding partner for LL37
(CAMP; 600474), a cationic host defense peptide, in human monocytes.
Enzyme kinetics and mobility shift studies also showed that LL37 and its
synthetic counterpart, IDR1, bound to GAPDH. Silencing of GAPDH impaired
p38 MAPK (MAPK14; 600289) signaling and p38 MAPK-dependent chemokine and
cytokine responses. Mookherjee et al. (2009) concluded that GAPDH is a
mononuclear cell receptor for LL37 and is involved in the functioning of
cationic host defense peptides.
N-methyl-D-aspartate (NMDA) stimulation of rodent cerebellar granule
neurons elicits nitric oxide generation, followed by S-nitrosylation of
Gapdh, binding between Gapdh and Siah, Siah-mediated nuclear
translocation of Gapdh, and neurotoxicity. Sen et al. (2009) found that
rat Gospel (RILPL1; 614092) bound the N-terminal region of Gapdh and
competed with Siah for Gapdh binding, thereby preventing Gapdh nuclear
translocation. S-nitrosylation of Gospel was required for binding to
Gapdh, as a Gospel mutant unable to be S-nitrosylated was not
neuroprotective. Overexpression of Gospel reduced nuclear accumulation
of Gapdh in HEK293 and mouse cortical neuron cultures and reduced
NMDA-glutamate neuronal excitotoxicity. Conversely, depletion of Gospel
by RNA interference enhanced Gapdh nuclear accumulation and cell death
in primary neuron cultures.
MOLECULAR GENETICS
Several groups, including Myers et al. (2002), have reported linkage on
chromosome 12 in late-onset Alzheimer disease (LOAD; 104300) families.
To follow up on these results, Li et al. (2004) genotyped 282
single-nucleotide polymorphisms (SNPs) under the linkage peak which
their group had previously identified, studying a multiple case-control
series totaling 1,089 AD subjects and 1,196 non-demented controls. A
strong association was observed in a small region chromosome 12 that
includes the GAPD gene, which led them to examine this gene and its
paralogs on other chromosomes. These studies showed association with 2
other paralogs: GAPD2 on chromosome 19 (609169), and a GAPD pseudogene
on chromosome 12q. A significant association between LOAD and a compound
genotype of 3 GAPD genes was observed in all 3 sample sets. Individually
these SNPs made differential contributions to disease risk in each of
the case-control series, suggesting that variants in functionally
similar genes may account for series-to-series heterogeneity of disease
risk. In general, the observations raised the possibility that the GAPD
genes are AD risk factors, a hypothesis that is consistent with the role
of GAPD in neuronal apoptosis.
Lin et al. (2006) found no association between 12 SNPs in the GAPD gene
and its paralogs and family-based Alzheimer disease among 235 AD
families.
MAPPING
By study of somatic cell hybrids, Bruns and Gerald (1976) showed that a
gene specifying GAPD is syntenic with the genes specifying TPI (190450)
and LDHB (150100) and therefore is on chromosome 12. Hence, 3 genes
specifying enzymes involved in the Embden-Meyerhof glycolytic pathway
are on the same chromosome. Six other enzymes of the pathway have been
assigned to other chromosomes. Edwards et al. (1976) discussed the
inconclusive evidence for more than one locus for GAPD. Studying the
level of enzyme in 2 cases of partial trisomy and in one of partial
monosomy of the short arm of chromosome 12, Rethore et al. (1976)
concluded that GAPD is located on the distal part of 12p between 12p12.2
and 12pter, and that the LDHB locus is on the middle third between
12p12.1 and 12p12.2. The results for TPI were similar to those for GAPD,
suggesting the same distal localization.
By gene dosage effects, Serville et al. (1978) assigned TPI and GAPD to
the distal end of 12p (12p13). Law and Kao (1978) summarized data
suggesting the order 12pter--TPI--GAPD--SHMT on chromosome 12. SHMT lies
on the proximal part of 12q between the centromere and PEPB. By dosage
effect in a case of deletion, Rivas et al. (1985) narrowed the
assignment to 12p13.1-12p13.31. Benham and Povey (1989) confirmed the
presence of a single expressed locus for this major glycolytic enzyme on
12p13. They also confirmed the existence of a pseudogene mapping to
Xp21-p11 and identified 15 GAPD-like loci by use of reduced stringency.
- PSEUDOGENES
Like GLUDP1 (see 138130), the first probe isolated for
glyceraldehyde-3-phosphate dehydrogenase (symbolized GAPDP1) represented
a pseudogene on the X chromosome. The functional gene, GAPD, is located
in band 12p13. At HGM8, the pseudogene was assigned to Xp21-p11 on the
basis of in situ hybridization studies in several laboratories
(Goodfellow et al., 1985).
Li et al. (2004) located a GAPD pseudogene on chromosome 12q.
*FIELD* SA
Galland et al. (1990); Piechaczyk et al. (1984); Tso et al. (1985)
*FIELD* RF
1. Bae, B.-I.; Hara, M. R.; Cascio, M. B.; Wellington, C. L.; Hayden,
M. R.; Ross, C. A.; Ha, H. C.; Li, X.-J.; Snyder, S. H.; Sawa, A.
: Mutant Huntingtin: nuclear translocation and cytotoxicity mediated
by GAPDH. Proc. Nat. Acad. Sci. 103: 3405-3409, 2006.
2. Barinaga, M.: An intriguing new lead on Huntington's disease. Science 271:
1233-1234, 1996.
3. Benham, F. J.; Povey, S.: Members of the human glyceraldehyde-3-phosphate
dehydrogenase-related gene family map to dispersed chromosomal locations. Genomics 5:
209-214, 1989.
4. Bruns, G. A. P.; Gerald, P. S.: Human glyceraldehyde-3-phosphate
dehydrogenase in man-rodent somatic cell hybrids. Science 192: 54-56,
1976.
5. Burke, J. R.; Enghild, J. J.; Martin, M. E.; Jou, Y.-S.; Myers,
R. M.; Roses, A. D.; Vance, J. M.; Strittmatter, W. J.: Huntingtin
and DRPLA proteins selectively interact with the enzyme GAPDH. Nature
Med. 2: 347-350, 1996.
6. Caradonna, S.; Ladner, R.; Hansbury, M.; Kosciuk, M.; Lynch, F.;
Muller, S.: Affinity purification and comparative analysis of two
distinct human uracil-DNA glycosylases. Exp. Cell Res. 222: 345-359,
1996.
7. Charlesworth, D.: Starch-gel electrophoresis of four enzymes from
human red blood cells: glyceraldehyde-3-phosphate dehydrogenase, fructoaldolase,
glyoxalase II and sorbitol dehydrogenase. Ann. Hum. Genet. 35: 477-484,
1972.
8. Colell, A.; Ricci, J.-E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes,
L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N. J.; Li, C. W.;
Mari, B.; Barbry, P.; Newmeyer, D. D.; Beere, H. M.; Green, D. R.
: GAPDH and autophagy preserve survival after apoptotic cytochrome
c release in the absence of caspase activation. Cell 129: 983-997,
2007. Note: Erratum: Cell 130: 385 only, 2007.
9. Dayhoff, M. O.: Atlas of Protein Sequence and Structure. Dehydrogenases.
Washington: National Biomedical Research Foundation (pub.) 5: 1972.
Pp. D141-D144.
10. Edwards, Y. H.; Clark, P.; Harris, H.: Isozymes of glyceraldehyde-3-phosphate
dehydrogenase in man and other mammals. Ann. Hum. Genet. 40: 67-77,
1976.
11. Galland, F.; Stefanova, M.; Pirisi, V.; Birnbaum, D.: Characterization
of a murine glyceraldehyde-3-phosphate dehydrogenase pseudogene. Biochimie 72:
759-762, 1990.
12. Goodfellow, P. N.; Davies, K. E.; Ropers, H.-H.: Report of the
committee on the genetic constitution of the X and Y chromosomes. Cytogenet.
Cell Genet. 40: 296-352, 1985.
13. Laschet, J. J.; Kurcewicz, I.; Minier, F.; Trottier, S.; Khallou-Laschet,
J.; Louvel, J.; Gigout, S.; Turak, B.; Biraben, A.; Scarabin, J.-M.;
Devaux, B.; Chauvel, P.; Pumain, R.: Dysfunction of GABA-A receptor
glycolysis-dependent modulation in human partial epilepsy. Proc.
Nat. Acad. Sci. 104: 3472-3477, 2007.
14. Law, M. L.; Kao, F.-T.: Induced segregation of human syntenic
genes by 5-bromodeoxyuridine plus near-visible light. Somat. Cell
Genet. 4: 465-476, 1978.
15. Lebherz, H. G.; Rutter, W. J.: Glyceraldehyde-3-phosphate dehydrogenase
variants in phyletically diverse organisms. Science 157: 1198-1199,
1967.
16. Li, Y.; Nowotny, P.; Holmans, P.; Smemo, S.; Kauwe, J. S. K.;
Hinrichs, A. L.; Tacey, K.; Doil, L.; van Luchene, R.; Garcia, V.;
Rowland, C.; Schrodi, S.; and 20 others: Association of late-onset
Alzheimer's disease with genetic variation in multiple members of
the GAPD gene family. Proc. Nat. Acad. Sci. 101: 15688-15693, 2004.
Note: Erratum: Proc. Nat. Acad. Sci. 103: 6411 only, 2006.
17. Lin, P. I.; Martin, E. R.; Bronson, P. G.; Browning-Large, C.;
Small, G. W.; Schmechel. D. E.; Welsh-Bohmer, K. A.; Haines, J. L.;
Gilbert, J. R.; Pericak-Vance, M. A.: Exploring the association of
glyceraldehyde-3-phosphate dehydrogenase gene and Alzheimer disease. Neurology 67:
64-68, 2006.
18. Meyer-Siegler, K.; Mauro, D. J.; Seal, G.; Wurzer, J.; deRiel,
J. K.; Sirover, M. A.: A human nuclear uracil DNA glycosylase is
the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc.
Nat. Acad. Sci. 88: 8460-8464, 1991.
19. Mookherjee, N.; Lippert, D. N. D.; Hamill, P.; Falsafi, R.; Nijnik,
A.; Kindrachuk, J.; Pistolic, J.; Gardy, J.; Miri, P.; Naseer, M.;
Foster, L. J.; Hancock, R. E. W.: Intracellular receptor for human
host defense peptide LL-37 in monocytes. J. Immun. 183: 2688-2696,
2009.
20. Myers, A.; Wavrant De-Vrieze, F.; Holmans, P.; Hamshere, M.; Crook,
R.; Compton, D.; Marshall, H.; Meyer, D.; Shears, S.; Booth, J.; Ramic,
D.; Knowles, H.; and 16 others: Full genome screen for Alzheimer
disease: stage II analysis. Am. J. Med. Genet. 114: 235-244, 2002.
21. Piechaczyk, M.; Blanchard, J. M.; Riaad-el Sabouty, S.; Dani,
C.; Marty, L.; Jeanteur, P.: Unusual abundance of glyceraldehyde
3-phosphate dehydrogenase pseudogenes in vertebrate genomes. Nature 312:
469-471, 1984.
22. Rethore, M.-O.; Junien, C.; Malpuech, G.; Baccichetti, C.; Tenconi,
R.; Kaplan, J.-C.; de Romeuf, J.; Lejeune, J.: Localisation du gene
de la glyceraldehyde-3-phosphate dehydrogenase (G3PD) sur le segment
distal du bras court de chromosome 12. Ann. Genet. 19: 140-142,
1976.
23. Rivas, F.; Vaca, G.; Zuniga, G.; Gonzalez, R. M.; Ruiz, C.; Rivera,
H.; Moller, M.; Cantu, J. M.: 46,XX,-12,+der(12),rcp(3;12)(p25.1;p13.31)pat
karyotype in a girl: probably subregional assignment of glyceraldehyde-3-phosphate
dehydrogenase locus to 12p13.1-p13.31 by exclusion. Ann. Genet. 28:
189-192, 1985.
24. Roses, A. D.: From genes to mechanisms to therapies: lessons
to be learned from neurological disorders. Nature Med. 2: 267-269,
1996.
25. Sen, N.; Hara, M. R.; Ahmad, A. S.; Cascio, M. B.; Kamiya, A.;
Ehmsen, J. T.; Agrawal, N.; Hester, L.; Dore, S.; Snyder, S. H.; Sawa,
A.: GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:
81-91, 2009. Note: Erratum: Neuron 63: 709 only, 2009.
26. Serville, F.; Junien, C.; Kaplan, J. C.; Gachet, M.; Cadoux, J.;
Broustet, A.: Gene dosage effect for human triosephosphate isomerase
and glyceraldehyde-3-phosphate dehydrogenase in partial trisomy 12p13
and trisomy 18p. Hum. Genet. 45: 63-69, 1978.
27. Tristan, C.; Shahani, N.; Sedlak, T. W.; Sawa, A.: The diverse
functions of GAPDH: views from different subcellular compartments. Cell.
Signal. 23: 317-323, 2011.
28. Tso, J. Y.; Sun, X.-H.; Kao, T.; Reece, K. S.; Wu, R.: Isolation
and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase
cDNAs: genomic complexity and molecular evolution of the gene. Nucleic
Acids Res. 13: 2485-2502, 1985.
29. Zheng, L.; Roeder, R. G.; Luo, Y.: S phase activation of the
histone H2B promoter by OCA-S, a coactivator complex that contains
GAPDH as a key component. Cell 114: 255-266, 2003.
*FIELD* CN
Patricia A. Hartz - updated: 7/15/2011
Paul J. Converse - updated: 11/15/2010
Paul J. Converse - updated: 3/5/2009
Cassandra L. Kniffin - updated: 9/10/2007
Cassandra L. Kniffin - updated: 3/15/2007
Patricia A. Hartz - updated: 12/5/2006
Patricia A. Hartz - updated: 3/23/2006
Victor A. McKusick - updated: 1/4/2005
Stylianos E. Antonarakis - updated: 5/25/2004
Victor A. McKusick - edited: 3/13/1997
Moyra Smith - updated: 3/19/1996
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
carol: 06/20/2013
mgross: 1/29/2013
terry: 7/27/2012
terry: 7/3/2012
mgross: 7/15/2011
mgross: 11/15/2010
terry: 11/15/2010
terry: 5/11/2010
carol: 9/15/2009
mgross: 3/6/2009
terry: 3/5/2009
wwang: 9/12/2007
ckniffin: 9/10/2007
wwang: 3/30/2007
ckniffin: 3/15/2007
mgross: 12/5/2006
carol: 6/2/2006
mgross: 3/29/2006
terry: 3/23/2006
carol: 5/23/2005
alopez: 1/28/2005
alopez: 1/21/2005
wwang: 1/10/2005
wwang: 1/7/2005
terry: 1/4/2005
mgross: 5/25/2004
carol: 1/30/2003
carol: 1/24/2003
terry: 1/2/2001
alopez: 7/14/1998
mark: 3/13/1997
mark: 3/19/1996
terry: 3/19/1996
mark: 3/19/1996
davew: 8/5/1994
mimadm: 4/18/1994
warfield: 4/4/1994
pfoster: 2/18/1994
supermim: 3/16/1992
carol: 11/4/1991
*RECORD*
*FIELD* NO
138400
*FIELD* TI
*138400 GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; GAPDH
;;GAPD; G3PD;;
OCT1 COACTIVATOR IN S PHASE, 38-KD COMPONENT;;
read moreOCAS, p38 COMPONENT
*FIELD* TX
DESCRIPTION
Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) catalyzes an
important energy-yielding step in carbohydrate metabolism, the
reversible oxidative phosphorylation of glyceraldehyde-3-phosphate in
the presence of inorganic phosphate and nicotinamide adenine
dinucleotide (NAD) (Dayhoff, 1972).
CLONING
Sequence data for GAPD were published in the atlas of Dayhoff (1972).
The enzyme is present in such widely separated forms as man, lobster,
and E. coli. Its rate of evolutionary change is one of the slowest
known. In the cytoplasm GAPDH exists primarily as a tetrameric isoform
composed of 4 identical 37-kD subunits. GAPDH is also found in the
particulate fractions, such as the nucleus, the mitochondria, and the
small vesicular fractions (review by Tristan et al., 2011).
Variants have been found in a number of phyletically diverse organisms
(Lebherz and Rutter, 1967). as in lactic acid dehydrogenase. Variants
were found in man by Charlesworth (1972).
GENE FUNCTION
Burke et al. (1996) demonstrated that synthetic polyglutamine peptides,
DRPLA protein (607462) and huntingtin (HTT; 613004) from unaffected
individuals with normal-sized polyglutamine tracts bind to GAPD. They
noted that GAPD has also been shown to bind to RNA, ATP, calcyclin
(114110), actin (see 102610), tubulin (see 191130) and amyloid precursor
protein (104760). On the basis of their findings, Burke et al.(1996)
postulated that the diseases characterized by the presence of an
expanded CAG repeat may share a common metabolic pathogenesis involving
GAPD as a functional component. Roses (1996) and Barinaga (1996)
reviewed the findings.
Using human embryonic kidney and mouse neuroblastoma cell lines, Bae et
al. (2006) showed that nuclear translocation and associated
neurotoxicity of mutant huntingtin was mediated by a ternary complex of
huntingtin, GAPDH, and SIAH1 (602212), a ubiquitin E3 ligase that
provided the nuclear translocation signal. Overexpression of GAPDH or
SIAH1 enhanced nuclear translocation of mutant huntingtin and
cytotoxicity, whereas GAPDH mutants unable to bind SIAH1 prevented
translocation. Depletion of GAPDH or SIAH1 by RNA interference
diminished nuclear translocation of mutant huntingtin.
Zheng et al. (2003) isolated and functionally characterized a
multicomponent OCT1 (164175) coactivator, OCAS, that is essential for S
phase-dependent histone H2B (see 609904) transcription. The p38
component of OCAS, which the authors identified as GADPH, bound directly
to OCT1, exhibited potent transactivation potential, was selectively
recruited to the H2B promoter in S phase, and was essential for S
phase-specific H2B transcription in vivo and in vitro. Binding to OCT1,
as well as OCAS function, was stimulated by NAD+, but inhibited by NADH.
OCAS also interacted with NPAT (601448), a cyclin E (123837)/CDK2
(116953) substrate broadly involved in histone gene transcription. These
studies linked the H2B transcriptional machinery to cell cycle
regulators, and possibly to cellular metabolic state (redox status), and
set the stage for studies of the underlying mechanisms and the basis for
coordinated histone gene expression and coupling to DNA replication.
Meyer-Siegler et al. (1991) isolated a cDNA for uracil-DNA glycosylase
(see UNG; 191525) that, to their surprise, was completely homologous to
the 37-kD subunit of GAPD. They showed that the 37-kD subunit of
commercially obtained erythrocyte GAPD possessed uracil-DNA glycosylase
activity comparable to that seen for the purified human placental
enzyme. However, Caradonna et al. (1996) were unable to replicate the
work of Meyer-Siegler et al. (1991). They found that commercially
available human erythrocyte GAPDH showed no uracil-DNA glycosylase
activity.
Laschet et al. (2007) showed that GAPDH also acts as a kinase involved
in the glycolysis-dependent endogenous phosphorylation of the alpha-1
subunit of the GABA-A receptor (GABRA1; 137160), a mechanism that is
necessary for maintaining GABA-A receptor function.
In apoptotic cells, mitochondrial outer membrane permeabilization (MOMP)
is followed by caspase activation promoted by released cytochrome c (see
CYCS; 123970). Caspase inhibition is usually not sufficient for survival
after MOMP, and instead cells undergo caspase-independent cell death
(CICD). Colell et al. (2007) found that GAPDH-expressing cells preserved
their clonogenic potential following MOMP if caspase activation was also
blocked. GAPDH-mediated protection from CICD was accompanied by elevated
glycolysis and an increase in ATG12 (609608) expression. Electron and
confocal microscopy and flow cytometric analysis demonstrated that
protection from CICD was associated with an increase in and dependence
on autophagy, as well as a transient decrease in mitochondrial mass.
Colell et al. (2007) concluded that GAPDH mediates an elevation in
glycolysis and enhanced autophagy that cooperate to protect cells from
CICD.
Using proteomic techniques, ELISA, and Western blot analysis, Mookherjee
et al. (2009) identified GAPDH as a direct binding partner for LL37
(CAMP; 600474), a cationic host defense peptide, in human monocytes.
Enzyme kinetics and mobility shift studies also showed that LL37 and its
synthetic counterpart, IDR1, bound to GAPDH. Silencing of GAPDH impaired
p38 MAPK (MAPK14; 600289) signaling and p38 MAPK-dependent chemokine and
cytokine responses. Mookherjee et al. (2009) concluded that GAPDH is a
mononuclear cell receptor for LL37 and is involved in the functioning of
cationic host defense peptides.
N-methyl-D-aspartate (NMDA) stimulation of rodent cerebellar granule
neurons elicits nitric oxide generation, followed by S-nitrosylation of
Gapdh, binding between Gapdh and Siah, Siah-mediated nuclear
translocation of Gapdh, and neurotoxicity. Sen et al. (2009) found that
rat Gospel (RILPL1; 614092) bound the N-terminal region of Gapdh and
competed with Siah for Gapdh binding, thereby preventing Gapdh nuclear
translocation. S-nitrosylation of Gospel was required for binding to
Gapdh, as a Gospel mutant unable to be S-nitrosylated was not
neuroprotective. Overexpression of Gospel reduced nuclear accumulation
of Gapdh in HEK293 and mouse cortical neuron cultures and reduced
NMDA-glutamate neuronal excitotoxicity. Conversely, depletion of Gospel
by RNA interference enhanced Gapdh nuclear accumulation and cell death
in primary neuron cultures.
MOLECULAR GENETICS
Several groups, including Myers et al. (2002), have reported linkage on
chromosome 12 in late-onset Alzheimer disease (LOAD; 104300) families.
To follow up on these results, Li et al. (2004) genotyped 282
single-nucleotide polymorphisms (SNPs) under the linkage peak which
their group had previously identified, studying a multiple case-control
series totaling 1,089 AD subjects and 1,196 non-demented controls. A
strong association was observed in a small region chromosome 12 that
includes the GAPD gene, which led them to examine this gene and its
paralogs on other chromosomes. These studies showed association with 2
other paralogs: GAPD2 on chromosome 19 (609169), and a GAPD pseudogene
on chromosome 12q. A significant association between LOAD and a compound
genotype of 3 GAPD genes was observed in all 3 sample sets. Individually
these SNPs made differential contributions to disease risk in each of
the case-control series, suggesting that variants in functionally
similar genes may account for series-to-series heterogeneity of disease
risk. In general, the observations raised the possibility that the GAPD
genes are AD risk factors, a hypothesis that is consistent with the role
of GAPD in neuronal apoptosis.
Lin et al. (2006) found no association between 12 SNPs in the GAPD gene
and its paralogs and family-based Alzheimer disease among 235 AD
families.
MAPPING
By study of somatic cell hybrids, Bruns and Gerald (1976) showed that a
gene specifying GAPD is syntenic with the genes specifying TPI (190450)
and LDHB (150100) and therefore is on chromosome 12. Hence, 3 genes
specifying enzymes involved in the Embden-Meyerhof glycolytic pathway
are on the same chromosome. Six other enzymes of the pathway have been
assigned to other chromosomes. Edwards et al. (1976) discussed the
inconclusive evidence for more than one locus for GAPD. Studying the
level of enzyme in 2 cases of partial trisomy and in one of partial
monosomy of the short arm of chromosome 12, Rethore et al. (1976)
concluded that GAPD is located on the distal part of 12p between 12p12.2
and 12pter, and that the LDHB locus is on the middle third between
12p12.1 and 12p12.2. The results for TPI were similar to those for GAPD,
suggesting the same distal localization.
By gene dosage effects, Serville et al. (1978) assigned TPI and GAPD to
the distal end of 12p (12p13). Law and Kao (1978) summarized data
suggesting the order 12pter--TPI--GAPD--SHMT on chromosome 12. SHMT lies
on the proximal part of 12q between the centromere and PEPB. By dosage
effect in a case of deletion, Rivas et al. (1985) narrowed the
assignment to 12p13.1-12p13.31. Benham and Povey (1989) confirmed the
presence of a single expressed locus for this major glycolytic enzyme on
12p13. They also confirmed the existence of a pseudogene mapping to
Xp21-p11 and identified 15 GAPD-like loci by use of reduced stringency.
- PSEUDOGENES
Like GLUDP1 (see 138130), the first probe isolated for
glyceraldehyde-3-phosphate dehydrogenase (symbolized GAPDP1) represented
a pseudogene on the X chromosome. The functional gene, GAPD, is located
in band 12p13. At HGM8, the pseudogene was assigned to Xp21-p11 on the
basis of in situ hybridization studies in several laboratories
(Goodfellow et al., 1985).
Li et al. (2004) located a GAPD pseudogene on chromosome 12q.
*FIELD* SA
Galland et al. (1990); Piechaczyk et al. (1984); Tso et al. (1985)
*FIELD* RF
1. Bae, B.-I.; Hara, M. R.; Cascio, M. B.; Wellington, C. L.; Hayden,
M. R.; Ross, C. A.; Ha, H. C.; Li, X.-J.; Snyder, S. H.; Sawa, A.
: Mutant Huntingtin: nuclear translocation and cytotoxicity mediated
by GAPDH. Proc. Nat. Acad. Sci. 103: 3405-3409, 2006.
2. Barinaga, M.: An intriguing new lead on Huntington's disease. Science 271:
1233-1234, 1996.
3. Benham, F. J.; Povey, S.: Members of the human glyceraldehyde-3-phosphate
dehydrogenase-related gene family map to dispersed chromosomal locations. Genomics 5:
209-214, 1989.
4. Bruns, G. A. P.; Gerald, P. S.: Human glyceraldehyde-3-phosphate
dehydrogenase in man-rodent somatic cell hybrids. Science 192: 54-56,
1976.
5. Burke, J. R.; Enghild, J. J.; Martin, M. E.; Jou, Y.-S.; Myers,
R. M.; Roses, A. D.; Vance, J. M.; Strittmatter, W. J.: Huntingtin
and DRPLA proteins selectively interact with the enzyme GAPDH. Nature
Med. 2: 347-350, 1996.
6. Caradonna, S.; Ladner, R.; Hansbury, M.; Kosciuk, M.; Lynch, F.;
Muller, S.: Affinity purification and comparative analysis of two
distinct human uracil-DNA glycosylases. Exp. Cell Res. 222: 345-359,
1996.
7. Charlesworth, D.: Starch-gel electrophoresis of four enzymes from
human red blood cells: glyceraldehyde-3-phosphate dehydrogenase, fructoaldolase,
glyoxalase II and sorbitol dehydrogenase. Ann. Hum. Genet. 35: 477-484,
1972.
8. Colell, A.; Ricci, J.-E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes,
L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N. J.; Li, C. W.;
Mari, B.; Barbry, P.; Newmeyer, D. D.; Beere, H. M.; Green, D. R.
: GAPDH and autophagy preserve survival after apoptotic cytochrome
c release in the absence of caspase activation. Cell 129: 983-997,
2007. Note: Erratum: Cell 130: 385 only, 2007.
9. Dayhoff, M. O.: Atlas of Protein Sequence and Structure. Dehydrogenases.
Washington: National Biomedical Research Foundation (pub.) 5: 1972.
Pp. D141-D144.
10. Edwards, Y. H.; Clark, P.; Harris, H.: Isozymes of glyceraldehyde-3-phosphate
dehydrogenase in man and other mammals. Ann. Hum. Genet. 40: 67-77,
1976.
11. Galland, F.; Stefanova, M.; Pirisi, V.; Birnbaum, D.: Characterization
of a murine glyceraldehyde-3-phosphate dehydrogenase pseudogene. Biochimie 72:
759-762, 1990.
12. Goodfellow, P. N.; Davies, K. E.; Ropers, H.-H.: Report of the
committee on the genetic constitution of the X and Y chromosomes. Cytogenet.
Cell Genet. 40: 296-352, 1985.
13. Laschet, J. J.; Kurcewicz, I.; Minier, F.; Trottier, S.; Khallou-Laschet,
J.; Louvel, J.; Gigout, S.; Turak, B.; Biraben, A.; Scarabin, J.-M.;
Devaux, B.; Chauvel, P.; Pumain, R.: Dysfunction of GABA-A receptor
glycolysis-dependent modulation in human partial epilepsy. Proc.
Nat. Acad. Sci. 104: 3472-3477, 2007.
14. Law, M. L.; Kao, F.-T.: Induced segregation of human syntenic
genes by 5-bromodeoxyuridine plus near-visible light. Somat. Cell
Genet. 4: 465-476, 1978.
15. Lebherz, H. G.; Rutter, W. J.: Glyceraldehyde-3-phosphate dehydrogenase
variants in phyletically diverse organisms. Science 157: 1198-1199,
1967.
16. Li, Y.; Nowotny, P.; Holmans, P.; Smemo, S.; Kauwe, J. S. K.;
Hinrichs, A. L.; Tacey, K.; Doil, L.; van Luchene, R.; Garcia, V.;
Rowland, C.; Schrodi, S.; and 20 others: Association of late-onset
Alzheimer's disease with genetic variation in multiple members of
the GAPD gene family. Proc. Nat. Acad. Sci. 101: 15688-15693, 2004.
Note: Erratum: Proc. Nat. Acad. Sci. 103: 6411 only, 2006.
17. Lin, P. I.; Martin, E. R.; Bronson, P. G.; Browning-Large, C.;
Small, G. W.; Schmechel. D. E.; Welsh-Bohmer, K. A.; Haines, J. L.;
Gilbert, J. R.; Pericak-Vance, M. A.: Exploring the association of
glyceraldehyde-3-phosphate dehydrogenase gene and Alzheimer disease. Neurology 67:
64-68, 2006.
18. Meyer-Siegler, K.; Mauro, D. J.; Seal, G.; Wurzer, J.; deRiel,
J. K.; Sirover, M. A.: A human nuclear uracil DNA glycosylase is
the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc.
Nat. Acad. Sci. 88: 8460-8464, 1991.
19. Mookherjee, N.; Lippert, D. N. D.; Hamill, P.; Falsafi, R.; Nijnik,
A.; Kindrachuk, J.; Pistolic, J.; Gardy, J.; Miri, P.; Naseer, M.;
Foster, L. J.; Hancock, R. E. W.: Intracellular receptor for human
host defense peptide LL-37 in monocytes. J. Immun. 183: 2688-2696,
2009.
20. Myers, A.; Wavrant De-Vrieze, F.; Holmans, P.; Hamshere, M.; Crook,
R.; Compton, D.; Marshall, H.; Meyer, D.; Shears, S.; Booth, J.; Ramic,
D.; Knowles, H.; and 16 others: Full genome screen for Alzheimer
disease: stage II analysis. Am. J. Med. Genet. 114: 235-244, 2002.
21. Piechaczyk, M.; Blanchard, J. M.; Riaad-el Sabouty, S.; Dani,
C.; Marty, L.; Jeanteur, P.: Unusual abundance of glyceraldehyde
3-phosphate dehydrogenase pseudogenes in vertebrate genomes. Nature 312:
469-471, 1984.
22. Rethore, M.-O.; Junien, C.; Malpuech, G.; Baccichetti, C.; Tenconi,
R.; Kaplan, J.-C.; de Romeuf, J.; Lejeune, J.: Localisation du gene
de la glyceraldehyde-3-phosphate dehydrogenase (G3PD) sur le segment
distal du bras court de chromosome 12. Ann. Genet. 19: 140-142,
1976.
23. Rivas, F.; Vaca, G.; Zuniga, G.; Gonzalez, R. M.; Ruiz, C.; Rivera,
H.; Moller, M.; Cantu, J. M.: 46,XX,-12,+der(12),rcp(3;12)(p25.1;p13.31)pat
karyotype in a girl: probably subregional assignment of glyceraldehyde-3-phosphate
dehydrogenase locus to 12p13.1-p13.31 by exclusion. Ann. Genet. 28:
189-192, 1985.
24. Roses, A. D.: From genes to mechanisms to therapies: lessons
to be learned from neurological disorders. Nature Med. 2: 267-269,
1996.
25. Sen, N.; Hara, M. R.; Ahmad, A. S.; Cascio, M. B.; Kamiya, A.;
Ehmsen, J. T.; Agrawal, N.; Hester, L.; Dore, S.; Snyder, S. H.; Sawa,
A.: GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:
81-91, 2009. Note: Erratum: Neuron 63: 709 only, 2009.
26. Serville, F.; Junien, C.; Kaplan, J. C.; Gachet, M.; Cadoux, J.;
Broustet, A.: Gene dosage effect for human triosephosphate isomerase
and glyceraldehyde-3-phosphate dehydrogenase in partial trisomy 12p13
and trisomy 18p. Hum. Genet. 45: 63-69, 1978.
27. Tristan, C.; Shahani, N.; Sedlak, T. W.; Sawa, A.: The diverse
functions of GAPDH: views from different subcellular compartments. Cell.
Signal. 23: 317-323, 2011.
28. Tso, J. Y.; Sun, X.-H.; Kao, T.; Reece, K. S.; Wu, R.: Isolation
and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase
cDNAs: genomic complexity and molecular evolution of the gene. Nucleic
Acids Res. 13: 2485-2502, 1985.
29. Zheng, L.; Roeder, R. G.; Luo, Y.: S phase activation of the
histone H2B promoter by OCA-S, a coactivator complex that contains
GAPDH as a key component. Cell 114: 255-266, 2003.
*FIELD* CN
Patricia A. Hartz - updated: 7/15/2011
Paul J. Converse - updated: 11/15/2010
Paul J. Converse - updated: 3/5/2009
Cassandra L. Kniffin - updated: 9/10/2007
Cassandra L. Kniffin - updated: 3/15/2007
Patricia A. Hartz - updated: 12/5/2006
Patricia A. Hartz - updated: 3/23/2006
Victor A. McKusick - updated: 1/4/2005
Stylianos E. Antonarakis - updated: 5/25/2004
Victor A. McKusick - edited: 3/13/1997
Moyra Smith - updated: 3/19/1996
*FIELD* CD
Victor A. McKusick: 6/4/1986
*FIELD* ED
carol: 06/20/2013
mgross: 1/29/2013
terry: 7/27/2012
terry: 7/3/2012
mgross: 7/15/2011
mgross: 11/15/2010
terry: 11/15/2010
terry: 5/11/2010
carol: 9/15/2009
mgross: 3/6/2009
terry: 3/5/2009
wwang: 9/12/2007
ckniffin: 9/10/2007
wwang: 3/30/2007
ckniffin: 3/15/2007
mgross: 12/5/2006
carol: 6/2/2006
mgross: 3/29/2006
terry: 3/23/2006
carol: 5/23/2005
alopez: 1/28/2005
alopez: 1/21/2005
wwang: 1/10/2005
wwang: 1/7/2005
terry: 1/4/2005
mgross: 5/25/2004
carol: 1/30/2003
carol: 1/24/2003
terry: 1/2/2001
alopez: 7/14/1998
mark: 3/13/1997
mark: 3/19/1996
terry: 3/19/1996
mark: 3/19/1996
davew: 8/5/1994
mimadm: 4/18/1994
warfield: 4/4/1994
pfoster: 2/18/1994
supermim: 3/16/1992
carol: 11/4/1991