Full text data of MYO18A
MYO18A
(KIAA0216, MYSPDZ)
[Confidence: low (only semi-automatic identification from reviews)]
Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus; MAJN; Myosin containing a PDZ domain)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus; MAJN; Myosin containing a PDZ domain)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
UniProt
Q92614
ID MY18A_HUMAN Reviewed; 2054 AA.
AC Q92614; Q5H9U3; Q5W9F9; Q5W9G1; Q8IXP8;
DT 25-JUL-2003, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-JUL-2003, sequence version 3.
DT 22-JAN-2014, entry version 139.
DE RecName: Full=Unconventional myosin-XVIIIa;
DE AltName: Full=Molecule associated with JAK3 N-terminus;
DE Short=MAJN;
DE AltName: Full=Myosin containing a PDZ domain;
GN Name=MYO18A; Synonyms=KIAA0216, MYSPDZ;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 5), AND NUCLEOTIDE SEQUENCE [MRNA]
RP OF 9-2054 (ISOFORM 1).
RC TISSUE=Brain;
RX PubMed=15491607; DOI=10.1016/j.jmb.2004.09.028;
RA Homma K., Kikuno R.F., Nagase T., Ohara O., Nishikawa K.;
RT "Alternative splice variants encoding unstable protein domains exist
RT in the human brain.";
RL J. Mol. Biol. 343:1207-1220(2004).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP VAL-958.
RC TISSUE=Brain;
RX PubMed=9039502; DOI=10.1093/dnares/3.5.321;
RA Nagase T., Seki N., Ishikawa K., Ohira M., Kawarabayasi Y., Ohara O.,
RA Tanaka A., Kotani H., Miyajima N., Nomura N.;
RT "Prediction of the coding sequences of unidentified human genes. VI.
RT The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by
RT analysis of cDNA clones from cell line KG-1 and brain.";
RL DNA Res. 3:321-329(1996).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
RC TISSUE=Amygdala;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3), AND VARIANT
RP VAL-958.
RC TISSUE=Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP INTERACTION WITH JAK3.
RX PubMed=10733938; DOI=10.1006/bbrc.2000.2413;
RA Ji H., Zhai Q., Zhu J., Yan M., Sun L., Liu X., Zheng Z.;
RT "A novel protein MAJN binds to Jak3 and inhibits apoptosis induced by
RT IL-2 deprival.";
RL Biochem. Biophys. Res. Commun. 270:267-271(2000).
RN [6]
RP ALTERNATIVE SPLICING (ISOFORMS 1 AND 2).
RX PubMed=12761286; DOI=10.1093/jb/mvg053;
RA Mori K., Furusawa T., Okubo T., Inoue T., Ikawa S., Yanai N.,
RA Mori K.J., Obinata M.;
RT "Genome structure and differential expression of two isoforms of a
RT novel PDZ-containing myosin (MysPDZ) (Myo18A).";
RL J. Biochem. 133:405-413(2003).
RN [7]
RP SUBCELLULAR LOCATION, HOMODIMERIZATION, INTERACTION WITH ACTIN, AND
RP MUTAGENESIS OF 114-ARG-GLY-115 AND 117-VAL-LEU-118.
RX PubMed=15835906; DOI=10.1021/bi0475931;
RA Isogawa Y., Kon T., Inoue T., Ohkura R., Yamakawa H., Ohara O.,
RA Sutoh K.;
RT "The N-terminal domain of MYO18A has an ATP-insensitive actin-binding
RT site.";
RL Biochemistry 44:6190-6196(2005).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1970 AND SER-1974, AND
RP MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH
RP LURAP1 AND CDC42BPA/CDC42BPB.
RX PubMed=18854160; DOI=10.1016/j.cell.2008.09.018;
RA Tan I., Yong J., Dong J.M., Lim L., Leung T.;
RT "A tripartite complex containing MRCK modulates lamellar actomyosin
RT retrograde flow.";
RL Cell 135:123-136(2008).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18220336; DOI=10.1021/pr0705441;
RA Cantin G.T., Yi W., Lu B., Park S.K., Xu T., Lee J.-D.,
RA Yates J.R. III;
RT "Combining protein-based IMAC, peptide-based IMAC, and MudPIT for
RT efficient phosphoproteomic analysis.";
RL J. Proteome Res. 7:1346-1351(2008).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2020, AND MASS
RP SPECTROMETRY.
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [12]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1070; SER-1998;
RP SER-2002; SER-2020; SER-2041; SER-2043 AND THR-2045, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1970 AND SER-1974, AND
RP MASS SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=18318008; DOI=10.1002/pmic.200700884;
RA Han G., Ye M., Zhou H., Jiang X., Feng S., Jiang X., Tian R., Wan D.,
RA Zou H., Gu J.;
RT "Large-scale phosphoproteome analysis of human liver tissue by
RT enrichment and fractionation of phosphopeptides with strong anion
RT exchange chromatography.";
RL Proteomics 8:1346-1361(2008).
RN [14]
RP FUNCTION IN GOLGI MEMBRANE BUDDING, INTERACTION WITH GOLPH3, AND
RP SUBCELLULAR LOCATION.
RX PubMed=19837035; DOI=10.1016/j.cell.2009.07.052;
RA Dippold H.C., Ng M.M., Farber-Katz S.E., Lee S.K., Kerr M.L.,
RA Peterman M.C., Sim R., Wiharto P.A., Galbraith K.A., Madhavarapu S.,
RA Fuchs G.J., Meerloo T., Farquhar M.G., Zhou H., Field S.J.;
RT "GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to
RT stretch and shape the Golgi to promote budding.";
RL Cell 139:337-351(2009).
RN [15]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2041 AND SER-2043, AND
RP MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [16]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83; SER-140; SER-2041
RP AND SER-2043, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-140; SER-1970; SER-2007;
RP SER-2041 AND SER-2043, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [19]
RP INTERACTION WITH GOLPH3, F-ACTIN-BINDING, NUCLEOTIDE-BINDING, AND
RP DOMAIN.
RX PubMed=23990465; DOI=10.1074/jbc.M113.497180;
RA Taft M.H., Behrmann E., Munske-Weidemann L.C., Thiel C., Raunser S.,
RA Manstein D.J.;
RT "Functional Characterization of Human Myosin-18A and its Interaction
RT with F-actin and GOLPH3.";
RL J. Biol. Chem. 288:30029-30041(2013).
RN [20]
RP FUNCTION, AND INTERACTION WITH GOLPH3.
RX PubMed=23345592; DOI=10.1091/mbc.E12-07-0525;
RA Ng M.M., Dippold H.C., Buschman M.D., Noakes C.J., Field S.J.;
RT "GOLPH3L antagonizes GOLPH3 to determine Golgi morphology.";
RL Mol. Biol. Cell 24:796-808(2013).
CC -!- FUNCTION: May link Golgi membranes to the cytoskeleton and
CC participate in the tensile force required for vesicle budding from
CC the Golgi. Thereby, may play a role in Golgi membrane trafficking
CC and could indirectly give its flattened shape to the Golgi
CC apparatus. Alternatively, in concert with LURAP1 and
CC CDC42BPA/CDC42BPB, has been involved in modulating lamellar
CC actomyosin retrograde flow that is crucial to cell protrusion and
CC migration. May be involved in the maintenance of the stromal cell
CC architectures required for cell to cell contact.
CC -!- SUBUNIT: Homodimer. Forms a tripartite complex with
CC CDC42BPA/CDC42BPB and LURAP1 with the latter acting as an adapter
CC connecting CDC42BPA/CDC42BPB and MYO18A. Binds F-actin; regulated
CC by ADP and GOLPH3. Interacts with GOLPH3; the interaction is
CC direct and may link Golgi membranes to the actin cytoskeleton.
CC Interacts with JAK3.
CC -!- INTERACTION:
CC Q9H4A6:GOLPH3; NbExp=4; IntAct=EBI-949059, EBI-2465479;
CC -!- SUBCELLULAR LOCATION: Isoform 1: Endoplasmic reticulum-Golgi
CC intermediate compartment (By similarity). Cytoplasm, cytoskeleton.
CC Note=Colocalizes with actin.
CC -!- SUBCELLULAR LOCATION: Isoform 2: Cytoplasm. Note=Lacks the PDZ
CC domain. Diffusely localized in the cytoplasm.
CC -!- SUBCELLULAR LOCATION: Golgi apparatus. Golgi apparatus, trans-
CC Golgi network. Note=Recruited to the Golgi apparatus by GOLPH3.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=5;
CC Name=1; Synonyms=Alpha;
CC IsoId=Q92614-1; Sequence=Displayed;
CC Name=2; Synonyms=Beta;
CC IsoId=Q92614-2; Sequence=VSP_007869, VSP_007870;
CC Name=3;
CC IsoId=Q92614-3; Sequence=VSP_007871, VSP_007872;
CC Note=No experimental confirmation available;
CC Name=4;
CC IsoId=Q92614-4; Sequence=VSP_007872;
CC Note=No experimental confirmation available;
CC Name=5;
CC IsoId=Q92614-5; Sequence=VSP_023058, VSP_007872;
CC -!- DOMAIN: The myosin head-like domain binds ADP and ATP but has no
CC intrinsic ATPase activity. Mediates ADP-dependent binding to actin
CC (PubMed:23990465).
CC -!- SIMILARITY: Contains 1 IQ domain.
CC -!- SIMILARITY: Contains 1 myosin head-like domain.
CC -!- SIMILARITY: Contains 1 PDZ (DHR) domain.
CC -!- CAUTION: The TIAF1 protein is coded in the 3'-UTR region of
CC MYO18A.
CC -!- SEQUENCE CAUTION:
CC Sequence=BAA13206.2; Type=Erroneous initiation;
CC Sequence=BAD66838.1; Type=Erroneous initiation;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AB177858; BAD66836.1; -; mRNA.
DR EMBL; AB177860; BAD66838.1; ALT_INIT; mRNA.
DR EMBL; D86970; BAA13206.2; ALT_INIT; mRNA.
DR EMBL; CR933614; CAI45931.1; -; mRNA.
DR EMBL; BC039612; AAH39612.1; -; mRNA.
DR RefSeq; NP_510880.2; NM_078471.3.
DR RefSeq; NP_976063.1; NM_203318.1.
DR UniGene; Hs.462590; -.
DR ProteinModelPortal; Q92614; -.
DR SMR; Q92614; 223-307, 342-1247.
DR IntAct; Q92614; 17.
DR STRING; 9606.ENSP00000346291; -.
DR PhosphoSite; Q92614; -.
DR DMDM; 33301318; -.
DR PaxDb; Q92614; -.
DR PRIDE; Q92614; -.
DR Ensembl; ENST00000527372; ENSP00000437073; ENSG00000196535.
DR Ensembl; ENST00000531253; ENSP00000434228; ENSG00000196535.
DR Ensembl; ENST00000533112; ENSP00000435932; ENSG00000196535.
DR GeneID; 399687; -.
DR KEGG; hsa:399687; -.
DR UCSC; uc002hdt.1; human.
DR CTD; 399687; -.
DR GeneCards; GC17M027400; -.
DR HGNC; HGNC:31104; MYO18A.
DR HPA; HPA019646; -.
DR HPA; HPA021121; -.
DR MIM; 609517; gene.
DR MIM; 610067; gene.
DR neXtProt; NX_Q92614; -.
DR PharmGKB; PA134978348; -.
DR eggNOG; COG5022; -.
DR HOGENOM; HOG000113701; -.
DR HOVERGEN; HBG052543; -.
DR InParanoid; Q92614; -.
DR KO; K10362; -.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; MYO18A; human.
DR GeneWiki; MYO18A; -.
DR GenomeRNAi; 399687; -.
DR NextBio; 105494; -.
DR PRO; PR:Q92614; -.
DR ArrayExpress; Q92614; -.
DR Bgee; Q92614; -.
DR CleanEx; HS_MYO18A; -.
DR Genevestigator; Q92614; -.
DR GO; GO:0042641; C:actomyosin; IDA:UniProtKB.
DR GO; GO:0005793; C:endoplasmic reticulum-Golgi intermediate compartment; IEA:UniProtKB-SubCell.
DR GO; GO:0005794; C:Golgi apparatus; IEA:UniProtKB-SubCell.
DR GO; GO:0016459; C:myosin complex; IEA:UniProtKB-KW.
DR GO; GO:0005802; C:trans-Golgi network; IDA:UniProtKB.
DR GO; GO:0051015; F:actin filament binding; IDA:UniProtKB.
DR GO; GO:0043531; F:ADP binding; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IDA:UniProtKB.
DR GO; GO:0003677; F:DNA binding; IEA:InterPro.
DR GO; GO:0003774; F:motor activity; IEA:InterPro.
DR GO; GO:0031032; P:actomyosin structure organization; IMP:UniProtKB.
DR GO; GO:0016477; P:cell migration; IMP:UniProtKB.
DR GO; GO:0006259; P:DNA metabolic process; IEA:InterPro.
DR GO; GO:0007030; P:Golgi organization; IMP:UniProtKB.
DR GO; GO:0048194; P:Golgi vesicle budding; IMP:UniProtKB.
DR GO; GO:0043066; P:negative regulation of apoptotic process; TAS:ProtInc.
DR GO; GO:0050714; P:positive regulation of protein secretion; IMP:UniProtKB.
DR Gene3D; 4.10.270.10; -; 1.
DR InterPro; IPR000048; IQ_motif_EF-hand-BS.
DR InterPro; IPR028561; MYO18A/B.
DR InterPro; IPR027401; Myosin-like_IQ_dom.
DR InterPro; IPR001609; Myosin_head_motor_dom.
DR InterPro; IPR002928; Myosin_tail.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR001478; PDZ.
DR InterPro; IPR020587; RecA_monomer-monomer_interface.
DR PANTHER; PTHR13140:SF14; PTHR13140:SF14; 1.
DR Pfam; PF00063; Myosin_head; 2.
DR Pfam; PF01576; Myosin_tail_1; 1.
DR Pfam; PF00595; PDZ; 1.
DR PRINTS; PR00193; MYOSINHEAVY.
DR SMART; SM00015; IQ; 1.
DR SMART; SM00242; MYSc; 1.
DR SMART; SM00228; PDZ; 1.
DR SUPFAM; SSF50156; SSF50156; 1.
DR SUPFAM; SSF52540; SSF52540; 3.
DR PROSITE; PS50096; IQ; 1.
DR PROSITE; PS50106; PDZ; 1.
PE 1: Evidence at protein level;
KW Alternative splicing; ATP-binding; Coiled coil; Complete proteome;
KW Cytoplasm; Cytoskeleton; Golgi apparatus; Motor protein; Myosin;
KW Nucleotide-binding; Phosphoprotein; Polymorphism; Reference proteome.
FT CHAIN 1 2054 Unconventional myosin-XVIIIa.
FT /FTId=PRO_0000123476.
FT DOMAIN 220 311 PDZ.
FT DOMAIN 420 1186 Myosin head-like.
FT DOMAIN 1188 1217 IQ.
FT NP_BIND 498 505 ATP (Potential).
FT REGION 1 398 Mediates nucleotide-independent binding
FT to F-actin and interaction with GOLPH3.
FT COILED 1246 1971 Potential.
FT MOTIF 114 118 Interaction with actin.
FT COMPBIAS 6 25 Lys-rich.
FT MOD_RES 72 72 Phosphoserine (By similarity).
FT MOD_RES 83 83 Phosphoserine.
FT MOD_RES 140 140 Phosphoserine.
FT MOD_RES 164 164 Phosphoserine (By similarity).
FT MOD_RES 1070 1070 Phosphoserine.
FT MOD_RES 1970 1970 Phosphoserine.
FT MOD_RES 1974 1974 Phosphoserine.
FT MOD_RES 1998 1998 Phosphoserine.
FT MOD_RES 2002 2002 Phosphoserine.
FT MOD_RES 2007 2007 Phosphoserine.
FT MOD_RES 2020 2020 Phosphoserine.
FT MOD_RES 2041 2041 Phosphoserine.
FT MOD_RES 2043 2043 Phosphoserine.
FT MOD_RES 2045 2045 Phosphothreonine.
FT VAR_SEQ 1 458 Missing (in isoform 5).
FT /FTId=VSP_023058.
FT VAR_SEQ 1 331 Missing (in isoform 2).
FT /FTId=VSP_007869.
FT VAR_SEQ 332 333 SD -> MR (in isoform 2).
FT /FTId=VSP_007870.
FT VAR_SEQ 1571 1607 Missing (in isoform 3).
FT /FTId=VSP_007871.
FT VAR_SEQ 1952 1966 Missing (in isoform 3, isoform 4 and
FT isoform 5).
FT /FTId=VSP_007872.
FT VARIANT 958 958 A -> V (in dbSNP:rs8076604).
FT /FTId=VAR_030585.
FT MUTAGEN 114 115 RG->AA: No effect on interaction with
FT actin.
FT MUTAGEN 117 118 VL->AA: Abolishes interaction with actin.
FT CONFLICT 1014 1014 A -> V (in Ref. 1; BAD66838).
FT CONFLICT 1020 1020 S -> P (in Ref. 3; CAI45931).
FT CONFLICT 1757 1757 E -> K (in Ref. 3; CAI45931).
FT CONFLICT 1889 1889 E -> G (in Ref. 3; CAI45931).
SQ SEQUENCE 2054 AA; 233115 MW; 52BFA0AA273E18F7 CRC64;
MFNLMKKDKD KDGGRKEKKE KKEKKERMSA AELRSLEEMS LRRGFFNLNR SSKRESKTRL
EISNPIPIKV ASGSDLHLTD IDSDSNRGSV ILDSGHLSTA SSSDDLKGEE GSFRGSVLQR
AAKFGSLAKQ NSQMIVKRFS FSQRSRDESA SETSTPSEHS AAPSPQVEVR TLEGQLVQHP
GPGIPRPGHR SRAPELVTKK FPVDLRLPPV VPLPPPTLRE LELQRRPTGD FGFSLRRTTM
LDRGPEGQAC RRVVHFAEPG AGTKDLALGL VPGDRLVEIN GHNVESKSRD EIVEMIRQSG
DSVRLKVQPI PELSELSRSW LRSGEGPRRE PSDAKTEEQI AAEEAWNETE KVWLVHRDGF
SLASQLKSEE LNLPEGKVRV KLDHDGAILD VDEDDVEKAN APSCDRLEDL ASLVYLNESS
VLHTLRQRYG ASLLHTYAGP SLLVLGPRGA PAVYSEKVMH MFKGCRREDM APHIYAVAQT
AYRAMLMSRQ DQSIILLGSS GSGKTTSCQH LVQYLATIAG ISGNKVFSVE KWQALYTLLE
AFGNSPTIIN GNATRFSQIL SLDFDQAGQV ASASIQTMLL EKLRVARRPA SEATFNVFYY
LLACGDGTLR TELHLNHLAE NNVFGIVPLA KPEEKQKAAQ QFSKLQAAMK VLGISPDEQK
ACWFILAAIY HLGAAGATKE AAEAGRKQFA RHEWAQKAAY LLGCSLEELS SAIFKHQHKG
GTLQRSTSFR QGPEESGLGD GTGPKLSALE CLEGMAAGLY SELFTLLVSL VNRALKSSQH
SLCSMMIVDT PGFQNPEQGG SARGASFEEL CHNYTQDRLQ RLFHERTFVQ ELERYKEENI
ELAFDDLEPP TDDSVAAVDQ ASHQSLVRSL ARTDEARGLL WLLEEEALVP GASEDTLLER
LFSYYGPQEG DKKGQSPLLH SSKPHHFLLG HSHGTNWVEY NVTGWLNYTK QNPATQNAPR
LLQDSQKKII SNLFLGRAGS ATVLSGSIAG LEGGSQLALR RATSMRKTFT TGMAAVKKKS
LCIQMKLQVD ALIDTIKKSK LHFVHCFLPV AEGWAGEPRS ASSRRVSSSS ELDLPSGDHC
EAGLLQLDVP LLRTQLRGSR LLDAMRMYRQ GYPDHMVFSE FRRRFDVLAP HLTKKHGRNY
IVVDERRAVE ELLECLDLEK SSCCMGLSRV FFRAGTLARL EEQRDEQTSR NLTLFQAACR
GYLARQHFKK RKIQDLAIRC VQKNIKKNKG VKDWPWWKLF TTVRPLIEVQ LSEEQIRNKD
EEIQQLRSKL EKAEKERNEL RLNSDRLESR ISELTSELTD ERNTGESASQ LLDAETAERL
RAEKEMKELQ TQYDALKKQM EVMEMEVMEA RLIRAAEING EVDDDDAGGE WRLKYERAVR
EVDFTKKRLQ QEFEDKLEVE QQNKRQLERR LGDLQADSEE SQRALQQLKK KCQRLTAELQ
DTKLHLEGQQ VRNHELEKKQ RRFDSELSQA HEEAQREKLQ REKLQREKDM LLAEAFSLKQ
QLEEKDMDIA GFTQKVVSLE AELQDISSQE SKDEASLAKV KKQLRDLEAK VKDQEEELDE
QAGTIQMLEQ AKLRLEMEME RMRQTHSKEM ESRDEEVEEA RQSCQKKLKQ MEVQLEEEYE
DKQKVLREKR ELEGKLATLS DQVNRRDFES EKRLRKDLKR TKALLADAQL MLDHLKNSAP
SKREIAQLKN QLEESEFTCA AAVKARKAME VEIEDLHLQI DDIAKAKTAL EEQLSRLQRE
KNEIQNRLEE DQEDMNELMK KHKAAVAQAS RDLAQINDLQ AQLEEANKEK QELQEKLQAL
QSQVEFLEQS MVDKSLVSRQ EAKIRELETR LEFERTQVKR LESLASRLKE NMEKLTEERD
QRIAAENREK EQNKRLQRQL RDTKEEMGEL ARKEAEASRK KHELEMDLES LEAANQSLQA
DLKLAFKRIG DLQAAIEDEM ESDENEDLIN SLQDMVTKYQ KRKNKLEGDS DVDSELEDRV
DGVKSWLSKN KGPSKAASDD GSLKSSSPTS YWKSLAPDRS DDEHDPLDNT SRPRYSHSYL
SDSDTEAKLT ETNA
//
ID MY18A_HUMAN Reviewed; 2054 AA.
AC Q92614; Q5H9U3; Q5W9F9; Q5W9G1; Q8IXP8;
DT 25-JUL-2003, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-JUL-2003, sequence version 3.
DT 22-JAN-2014, entry version 139.
DE RecName: Full=Unconventional myosin-XVIIIa;
DE AltName: Full=Molecule associated with JAK3 N-terminus;
DE Short=MAJN;
DE AltName: Full=Myosin containing a PDZ domain;
GN Name=MYO18A; Synonyms=KIAA0216, MYSPDZ;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 5), AND NUCLEOTIDE SEQUENCE [MRNA]
RP OF 9-2054 (ISOFORM 1).
RC TISSUE=Brain;
RX PubMed=15491607; DOI=10.1016/j.jmb.2004.09.028;
RA Homma K., Kikuno R.F., Nagase T., Ohara O., Nishikawa K.;
RT "Alternative splice variants encoding unstable protein domains exist
RT in the human brain.";
RL J. Mol. Biol. 343:1207-1220(2004).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), AND VARIANT
RP VAL-958.
RC TISSUE=Brain;
RX PubMed=9039502; DOI=10.1093/dnares/3.5.321;
RA Nagase T., Seki N., Ishikawa K., Ohira M., Kawarabayasi Y., Ohara O.,
RA Tanaka A., Kotani H., Miyajima N., Nomura N.;
RT "Prediction of the coding sequences of unidentified human genes. VI.
RT The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by
RT analysis of cDNA clones from cell line KG-1 and brain.";
RL DNA Res. 3:321-329(1996).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
RC TISSUE=Amygdala;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3), AND VARIANT
RP VAL-958.
RC TISSUE=Testis;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP INTERACTION WITH JAK3.
RX PubMed=10733938; DOI=10.1006/bbrc.2000.2413;
RA Ji H., Zhai Q., Zhu J., Yan M., Sun L., Liu X., Zheng Z.;
RT "A novel protein MAJN binds to Jak3 and inhibits apoptosis induced by
RT IL-2 deprival.";
RL Biochem. Biophys. Res. Commun. 270:267-271(2000).
RN [6]
RP ALTERNATIVE SPLICING (ISOFORMS 1 AND 2).
RX PubMed=12761286; DOI=10.1093/jb/mvg053;
RA Mori K., Furusawa T., Okubo T., Inoue T., Ikawa S., Yanai N.,
RA Mori K.J., Obinata M.;
RT "Genome structure and differential expression of two isoforms of a
RT novel PDZ-containing myosin (MysPDZ) (Myo18A).";
RL J. Biochem. 133:405-413(2003).
RN [7]
RP SUBCELLULAR LOCATION, HOMODIMERIZATION, INTERACTION WITH ACTIN, AND
RP MUTAGENESIS OF 114-ARG-GLY-115 AND 117-VAL-LEU-118.
RX PubMed=15835906; DOI=10.1021/bi0475931;
RA Isogawa Y., Kon T., Inoue T., Ohkura R., Yamakawa H., Ohara O.,
RA Sutoh K.;
RT "The N-terminal domain of MYO18A has an ATP-insensitive actin-binding
RT site.";
RL Biochemistry 44:6190-6196(2005).
RN [8]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1970 AND SER-1974, AND
RP MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, AND INTERACTION WITH
RP LURAP1 AND CDC42BPA/CDC42BPB.
RX PubMed=18854160; DOI=10.1016/j.cell.2008.09.018;
RA Tan I., Yong J., Dong J.M., Lim L., Leung T.;
RT "A tripartite complex containing MRCK modulates lamellar actomyosin
RT retrograde flow.";
RL Cell 135:123-136(2008).
RN [10]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RC TISSUE=Cervix carcinoma;
RX PubMed=18220336; DOI=10.1021/pr0705441;
RA Cantin G.T., Yi W., Lu B., Park S.K., Xu T., Lee J.-D.,
RA Yates J.R. III;
RT "Combining protein-based IMAC, peptide-based IMAC, and MudPIT for
RT efficient phosphoproteomic analysis.";
RL J. Proteome Res. 7:1346-1351(2008).
RN [11]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2020, AND MASS
RP SPECTROMETRY.
RC TISSUE=Platelet;
RX PubMed=18088087; DOI=10.1021/pr0704130;
RA Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,
RA Schuetz C., Walter U., Gambaryan S., Sickmann A.;
RT "Phosphoproteome of resting human platelets.";
RL J. Proteome Res. 7:526-534(2008).
RN [12]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1070; SER-1998;
RP SER-2002; SER-2020; SER-2041; SER-2043 AND THR-2045, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=18669648; DOI=10.1073/pnas.0805139105;
RA Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,
RA Elledge S.J., Gygi S.P.;
RT "A quantitative atlas of mitotic phosphorylation.";
RL Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1970 AND SER-1974, AND
RP MASS SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=18318008; DOI=10.1002/pmic.200700884;
RA Han G., Ye M., Zhou H., Jiang X., Feng S., Jiang X., Tian R., Wan D.,
RA Zou H., Gu J.;
RT "Large-scale phosphoproteome analysis of human liver tissue by
RT enrichment and fractionation of phosphopeptides with strong anion
RT exchange chromatography.";
RL Proteomics 8:1346-1361(2008).
RN [14]
RP FUNCTION IN GOLGI MEMBRANE BUDDING, INTERACTION WITH GOLPH3, AND
RP SUBCELLULAR LOCATION.
RX PubMed=19837035; DOI=10.1016/j.cell.2009.07.052;
RA Dippold H.C., Ng M.M., Farber-Katz S.E., Lee S.K., Kerr M.L.,
RA Peterman M.C., Sim R., Wiharto P.A., Galbraith K.A., Madhavarapu S.,
RA Fuchs G.J., Meerloo T., Farquhar M.G., Zhou H., Field S.J.;
RT "GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to
RT stretch and shape the Golgi to promote budding.";
RL Cell 139:337-351(2009).
RN [15]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2041 AND SER-2043, AND
RP MASS SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [16]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-83; SER-140; SER-2041
RP AND SER-2043, AND MASS SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=20068231; DOI=10.1126/scisignal.2000475;
RA Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L.,
RA Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S.,
RA Mann M.;
RT "Quantitative phosphoproteomics reveals widespread full
RT phosphorylation site occupancy during mitosis.";
RL Sci. Signal. 3:RA3-RA3(2010).
RN [17]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-140; SER-1970; SER-2007;
RP SER-2041 AND SER-2043, AND MASS SPECTROMETRY.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [19]
RP INTERACTION WITH GOLPH3, F-ACTIN-BINDING, NUCLEOTIDE-BINDING, AND
RP DOMAIN.
RX PubMed=23990465; DOI=10.1074/jbc.M113.497180;
RA Taft M.H., Behrmann E., Munske-Weidemann L.C., Thiel C., Raunser S.,
RA Manstein D.J.;
RT "Functional Characterization of Human Myosin-18A and its Interaction
RT with F-actin and GOLPH3.";
RL J. Biol. Chem. 288:30029-30041(2013).
RN [20]
RP FUNCTION, AND INTERACTION WITH GOLPH3.
RX PubMed=23345592; DOI=10.1091/mbc.E12-07-0525;
RA Ng M.M., Dippold H.C., Buschman M.D., Noakes C.J., Field S.J.;
RT "GOLPH3L antagonizes GOLPH3 to determine Golgi morphology.";
RL Mol. Biol. Cell 24:796-808(2013).
CC -!- FUNCTION: May link Golgi membranes to the cytoskeleton and
CC participate in the tensile force required for vesicle budding from
CC the Golgi. Thereby, may play a role in Golgi membrane trafficking
CC and could indirectly give its flattened shape to the Golgi
CC apparatus. Alternatively, in concert with LURAP1 and
CC CDC42BPA/CDC42BPB, has been involved in modulating lamellar
CC actomyosin retrograde flow that is crucial to cell protrusion and
CC migration. May be involved in the maintenance of the stromal cell
CC architectures required for cell to cell contact.
CC -!- SUBUNIT: Homodimer. Forms a tripartite complex with
CC CDC42BPA/CDC42BPB and LURAP1 with the latter acting as an adapter
CC connecting CDC42BPA/CDC42BPB and MYO18A. Binds F-actin; regulated
CC by ADP and GOLPH3. Interacts with GOLPH3; the interaction is
CC direct and may link Golgi membranes to the actin cytoskeleton.
CC Interacts with JAK3.
CC -!- INTERACTION:
CC Q9H4A6:GOLPH3; NbExp=4; IntAct=EBI-949059, EBI-2465479;
CC -!- SUBCELLULAR LOCATION: Isoform 1: Endoplasmic reticulum-Golgi
CC intermediate compartment (By similarity). Cytoplasm, cytoskeleton.
CC Note=Colocalizes with actin.
CC -!- SUBCELLULAR LOCATION: Isoform 2: Cytoplasm. Note=Lacks the PDZ
CC domain. Diffusely localized in the cytoplasm.
CC -!- SUBCELLULAR LOCATION: Golgi apparatus. Golgi apparatus, trans-
CC Golgi network. Note=Recruited to the Golgi apparatus by GOLPH3.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=5;
CC Name=1; Synonyms=Alpha;
CC IsoId=Q92614-1; Sequence=Displayed;
CC Name=2; Synonyms=Beta;
CC IsoId=Q92614-2; Sequence=VSP_007869, VSP_007870;
CC Name=3;
CC IsoId=Q92614-3; Sequence=VSP_007871, VSP_007872;
CC Note=No experimental confirmation available;
CC Name=4;
CC IsoId=Q92614-4; Sequence=VSP_007872;
CC Note=No experimental confirmation available;
CC Name=5;
CC IsoId=Q92614-5; Sequence=VSP_023058, VSP_007872;
CC -!- DOMAIN: The myosin head-like domain binds ADP and ATP but has no
CC intrinsic ATPase activity. Mediates ADP-dependent binding to actin
CC (PubMed:23990465).
CC -!- SIMILARITY: Contains 1 IQ domain.
CC -!- SIMILARITY: Contains 1 myosin head-like domain.
CC -!- SIMILARITY: Contains 1 PDZ (DHR) domain.
CC -!- CAUTION: The TIAF1 protein is coded in the 3'-UTR region of
CC MYO18A.
CC -!- SEQUENCE CAUTION:
CC Sequence=BAA13206.2; Type=Erroneous initiation;
CC Sequence=BAD66838.1; Type=Erroneous initiation;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AB177858; BAD66836.1; -; mRNA.
DR EMBL; AB177860; BAD66838.1; ALT_INIT; mRNA.
DR EMBL; D86970; BAA13206.2; ALT_INIT; mRNA.
DR EMBL; CR933614; CAI45931.1; -; mRNA.
DR EMBL; BC039612; AAH39612.1; -; mRNA.
DR RefSeq; NP_510880.2; NM_078471.3.
DR RefSeq; NP_976063.1; NM_203318.1.
DR UniGene; Hs.462590; -.
DR ProteinModelPortal; Q92614; -.
DR SMR; Q92614; 223-307, 342-1247.
DR IntAct; Q92614; 17.
DR STRING; 9606.ENSP00000346291; -.
DR PhosphoSite; Q92614; -.
DR DMDM; 33301318; -.
DR PaxDb; Q92614; -.
DR PRIDE; Q92614; -.
DR Ensembl; ENST00000527372; ENSP00000437073; ENSG00000196535.
DR Ensembl; ENST00000531253; ENSP00000434228; ENSG00000196535.
DR Ensembl; ENST00000533112; ENSP00000435932; ENSG00000196535.
DR GeneID; 399687; -.
DR KEGG; hsa:399687; -.
DR UCSC; uc002hdt.1; human.
DR CTD; 399687; -.
DR GeneCards; GC17M027400; -.
DR HGNC; HGNC:31104; MYO18A.
DR HPA; HPA019646; -.
DR HPA; HPA021121; -.
DR MIM; 609517; gene.
DR MIM; 610067; gene.
DR neXtProt; NX_Q92614; -.
DR PharmGKB; PA134978348; -.
DR eggNOG; COG5022; -.
DR HOGENOM; HOG000113701; -.
DR HOVERGEN; HBG052543; -.
DR InParanoid; Q92614; -.
DR KO; K10362; -.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; MYO18A; human.
DR GeneWiki; MYO18A; -.
DR GenomeRNAi; 399687; -.
DR NextBio; 105494; -.
DR PRO; PR:Q92614; -.
DR ArrayExpress; Q92614; -.
DR Bgee; Q92614; -.
DR CleanEx; HS_MYO18A; -.
DR Genevestigator; Q92614; -.
DR GO; GO:0042641; C:actomyosin; IDA:UniProtKB.
DR GO; GO:0005793; C:endoplasmic reticulum-Golgi intermediate compartment; IEA:UniProtKB-SubCell.
DR GO; GO:0005794; C:Golgi apparatus; IEA:UniProtKB-SubCell.
DR GO; GO:0016459; C:myosin complex; IEA:UniProtKB-KW.
DR GO; GO:0005802; C:trans-Golgi network; IDA:UniProtKB.
DR GO; GO:0051015; F:actin filament binding; IDA:UniProtKB.
DR GO; GO:0043531; F:ADP binding; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IDA:UniProtKB.
DR GO; GO:0003677; F:DNA binding; IEA:InterPro.
DR GO; GO:0003774; F:motor activity; IEA:InterPro.
DR GO; GO:0031032; P:actomyosin structure organization; IMP:UniProtKB.
DR GO; GO:0016477; P:cell migration; IMP:UniProtKB.
DR GO; GO:0006259; P:DNA metabolic process; IEA:InterPro.
DR GO; GO:0007030; P:Golgi organization; IMP:UniProtKB.
DR GO; GO:0048194; P:Golgi vesicle budding; IMP:UniProtKB.
DR GO; GO:0043066; P:negative regulation of apoptotic process; TAS:ProtInc.
DR GO; GO:0050714; P:positive regulation of protein secretion; IMP:UniProtKB.
DR Gene3D; 4.10.270.10; -; 1.
DR InterPro; IPR000048; IQ_motif_EF-hand-BS.
DR InterPro; IPR028561; MYO18A/B.
DR InterPro; IPR027401; Myosin-like_IQ_dom.
DR InterPro; IPR001609; Myosin_head_motor_dom.
DR InterPro; IPR002928; Myosin_tail.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR001478; PDZ.
DR InterPro; IPR020587; RecA_monomer-monomer_interface.
DR PANTHER; PTHR13140:SF14; PTHR13140:SF14; 1.
DR Pfam; PF00063; Myosin_head; 2.
DR Pfam; PF01576; Myosin_tail_1; 1.
DR Pfam; PF00595; PDZ; 1.
DR PRINTS; PR00193; MYOSINHEAVY.
DR SMART; SM00015; IQ; 1.
DR SMART; SM00242; MYSc; 1.
DR SMART; SM00228; PDZ; 1.
DR SUPFAM; SSF50156; SSF50156; 1.
DR SUPFAM; SSF52540; SSF52540; 3.
DR PROSITE; PS50096; IQ; 1.
DR PROSITE; PS50106; PDZ; 1.
PE 1: Evidence at protein level;
KW Alternative splicing; ATP-binding; Coiled coil; Complete proteome;
KW Cytoplasm; Cytoskeleton; Golgi apparatus; Motor protein; Myosin;
KW Nucleotide-binding; Phosphoprotein; Polymorphism; Reference proteome.
FT CHAIN 1 2054 Unconventional myosin-XVIIIa.
FT /FTId=PRO_0000123476.
FT DOMAIN 220 311 PDZ.
FT DOMAIN 420 1186 Myosin head-like.
FT DOMAIN 1188 1217 IQ.
FT NP_BIND 498 505 ATP (Potential).
FT REGION 1 398 Mediates nucleotide-independent binding
FT to F-actin and interaction with GOLPH3.
FT COILED 1246 1971 Potential.
FT MOTIF 114 118 Interaction with actin.
FT COMPBIAS 6 25 Lys-rich.
FT MOD_RES 72 72 Phosphoserine (By similarity).
FT MOD_RES 83 83 Phosphoserine.
FT MOD_RES 140 140 Phosphoserine.
FT MOD_RES 164 164 Phosphoserine (By similarity).
FT MOD_RES 1070 1070 Phosphoserine.
FT MOD_RES 1970 1970 Phosphoserine.
FT MOD_RES 1974 1974 Phosphoserine.
FT MOD_RES 1998 1998 Phosphoserine.
FT MOD_RES 2002 2002 Phosphoserine.
FT MOD_RES 2007 2007 Phosphoserine.
FT MOD_RES 2020 2020 Phosphoserine.
FT MOD_RES 2041 2041 Phosphoserine.
FT MOD_RES 2043 2043 Phosphoserine.
FT MOD_RES 2045 2045 Phosphothreonine.
FT VAR_SEQ 1 458 Missing (in isoform 5).
FT /FTId=VSP_023058.
FT VAR_SEQ 1 331 Missing (in isoform 2).
FT /FTId=VSP_007869.
FT VAR_SEQ 332 333 SD -> MR (in isoform 2).
FT /FTId=VSP_007870.
FT VAR_SEQ 1571 1607 Missing (in isoform 3).
FT /FTId=VSP_007871.
FT VAR_SEQ 1952 1966 Missing (in isoform 3, isoform 4 and
FT isoform 5).
FT /FTId=VSP_007872.
FT VARIANT 958 958 A -> V (in dbSNP:rs8076604).
FT /FTId=VAR_030585.
FT MUTAGEN 114 115 RG->AA: No effect on interaction with
FT actin.
FT MUTAGEN 117 118 VL->AA: Abolishes interaction with actin.
FT CONFLICT 1014 1014 A -> V (in Ref. 1; BAD66838).
FT CONFLICT 1020 1020 S -> P (in Ref. 3; CAI45931).
FT CONFLICT 1757 1757 E -> K (in Ref. 3; CAI45931).
FT CONFLICT 1889 1889 E -> G (in Ref. 3; CAI45931).
SQ SEQUENCE 2054 AA; 233115 MW; 52BFA0AA273E18F7 CRC64;
MFNLMKKDKD KDGGRKEKKE KKEKKERMSA AELRSLEEMS LRRGFFNLNR SSKRESKTRL
EISNPIPIKV ASGSDLHLTD IDSDSNRGSV ILDSGHLSTA SSSDDLKGEE GSFRGSVLQR
AAKFGSLAKQ NSQMIVKRFS FSQRSRDESA SETSTPSEHS AAPSPQVEVR TLEGQLVQHP
GPGIPRPGHR SRAPELVTKK FPVDLRLPPV VPLPPPTLRE LELQRRPTGD FGFSLRRTTM
LDRGPEGQAC RRVVHFAEPG AGTKDLALGL VPGDRLVEIN GHNVESKSRD EIVEMIRQSG
DSVRLKVQPI PELSELSRSW LRSGEGPRRE PSDAKTEEQI AAEEAWNETE KVWLVHRDGF
SLASQLKSEE LNLPEGKVRV KLDHDGAILD VDEDDVEKAN APSCDRLEDL ASLVYLNESS
VLHTLRQRYG ASLLHTYAGP SLLVLGPRGA PAVYSEKVMH MFKGCRREDM APHIYAVAQT
AYRAMLMSRQ DQSIILLGSS GSGKTTSCQH LVQYLATIAG ISGNKVFSVE KWQALYTLLE
AFGNSPTIIN GNATRFSQIL SLDFDQAGQV ASASIQTMLL EKLRVARRPA SEATFNVFYY
LLACGDGTLR TELHLNHLAE NNVFGIVPLA KPEEKQKAAQ QFSKLQAAMK VLGISPDEQK
ACWFILAAIY HLGAAGATKE AAEAGRKQFA RHEWAQKAAY LLGCSLEELS SAIFKHQHKG
GTLQRSTSFR QGPEESGLGD GTGPKLSALE CLEGMAAGLY SELFTLLVSL VNRALKSSQH
SLCSMMIVDT PGFQNPEQGG SARGASFEEL CHNYTQDRLQ RLFHERTFVQ ELERYKEENI
ELAFDDLEPP TDDSVAAVDQ ASHQSLVRSL ARTDEARGLL WLLEEEALVP GASEDTLLER
LFSYYGPQEG DKKGQSPLLH SSKPHHFLLG HSHGTNWVEY NVTGWLNYTK QNPATQNAPR
LLQDSQKKII SNLFLGRAGS ATVLSGSIAG LEGGSQLALR RATSMRKTFT TGMAAVKKKS
LCIQMKLQVD ALIDTIKKSK LHFVHCFLPV AEGWAGEPRS ASSRRVSSSS ELDLPSGDHC
EAGLLQLDVP LLRTQLRGSR LLDAMRMYRQ GYPDHMVFSE FRRRFDVLAP HLTKKHGRNY
IVVDERRAVE ELLECLDLEK SSCCMGLSRV FFRAGTLARL EEQRDEQTSR NLTLFQAACR
GYLARQHFKK RKIQDLAIRC VQKNIKKNKG VKDWPWWKLF TTVRPLIEVQ LSEEQIRNKD
EEIQQLRSKL EKAEKERNEL RLNSDRLESR ISELTSELTD ERNTGESASQ LLDAETAERL
RAEKEMKELQ TQYDALKKQM EVMEMEVMEA RLIRAAEING EVDDDDAGGE WRLKYERAVR
EVDFTKKRLQ QEFEDKLEVE QQNKRQLERR LGDLQADSEE SQRALQQLKK KCQRLTAELQ
DTKLHLEGQQ VRNHELEKKQ RRFDSELSQA HEEAQREKLQ REKLQREKDM LLAEAFSLKQ
QLEEKDMDIA GFTQKVVSLE AELQDISSQE SKDEASLAKV KKQLRDLEAK VKDQEEELDE
QAGTIQMLEQ AKLRLEMEME RMRQTHSKEM ESRDEEVEEA RQSCQKKLKQ MEVQLEEEYE
DKQKVLREKR ELEGKLATLS DQVNRRDFES EKRLRKDLKR TKALLADAQL MLDHLKNSAP
SKREIAQLKN QLEESEFTCA AAVKARKAME VEIEDLHLQI DDIAKAKTAL EEQLSRLQRE
KNEIQNRLEE DQEDMNELMK KHKAAVAQAS RDLAQINDLQ AQLEEANKEK QELQEKLQAL
QSQVEFLEQS MVDKSLVSRQ EAKIRELETR LEFERTQVKR LESLASRLKE NMEKLTEERD
QRIAAENREK EQNKRLQRQL RDTKEEMGEL ARKEAEASRK KHELEMDLES LEAANQSLQA
DLKLAFKRIG DLQAAIEDEM ESDENEDLIN SLQDMVTKYQ KRKNKLEGDS DVDSELEDRV
DGVKSWLSKN KGPSKAASDD GSLKSSSPTS YWKSLAPDRS DDEHDPLDNT SRPRYSHSYL
SDSDTEAKLT ETNA
//
MIM
609517
*RECORD*
*FIELD* NO
609517
*FIELD* TI
*609517 TGFB1-INDUCED ANTIAPOPTOTIC FACTOR 1; TIAF1
;;MYOSIN CONTAINING PDZ DOMAIN; MYSPDZ;;
read moreMOLECULE ASSOCIATED WITH JAK3 N TERMINUS; MAJN;;
KIAA0216
*FIELD* TX
CLONING
By sequencing clones obtained from a size-fractionated immature myeloid
cell line cDNA library, Nagase et al. (1996) cloned TIAF1, which they
designated KIAA0216. The deduced 1,581-amino acid protein shares
significant similarity with rat myosin heavy chain, and it contains an
ATP/GTP-binding site motif A. Northern blot analysis detected TIAF1 in
all tissues and cell lines examined, with highest expression in skeletal
muscle.
Using differential display to identify genes whose expression correlated
with the ability of mouse stromal cells to support hematopoiesis,
Furusawa et al. (2000) cloned Tiaf1, which they designated Myspdz. The
deduced 2,035-amino acid protein shares 94% homology with KIAA0216, but
it contains an additional 458 N-terminal amino acids. By database
analysis, Furusawa et al. (2000) identified a human genomic clone
containing an exon with significant similarity to nucleotides 1 to 946
of the mouse Tiaf1 gene, suggesting that human TIAF1 may also encode a
longer protein. Mouse Tiaf1 contains an N-terminal KE-rich region,
followed by a PDZ domain, a head region with an ATP-binding site, a neck
region with an IQ motif, and a coiled-coil C-terminal domain. Northern
blot analysis detected Tiaf1 in all tissues examined. A 10.5-kb
transcript was detected in heart and skeletal muscle, and a 7.0-kb
transcript was detected in hematopoietic tissues and cells. Western blot
analysis detected Tiaf1 at an apparent molecular mass of 230 kD.
Immunostaining localized Tiaf1 in a filamentous network slightly
concentrated in the perinuclear region of mouse stromal cells.
GENE FUNCTION
Ji et al. (2000) found that the C-terminal myosin tail motif of TIAF1
interacts with the N terminus of JAK3 (600173).
Schultz et al. (2004) showed that TIAF1 and p53 (TP53; 191170) induced
apoptosis in human U937 myocytoma cells in both synergistic and
antagonistic manners. At optimal levels, both TIAF1 and p53 mediated
apoptosis cooperatively. Both proteins also suppressed
adherence-independent growth in a mouse fibroblast cell line. In
contrast, initiation of apoptosis by overexpressed TIAF1 was blocked by
low doses of p53, and vice versa. Ectopic p53 blocked apoptosis in U937
cells stably expressing TIAF1. TIAF1 and p53 did not appear to
physically interact; however, nuclear translocation of phosphorylated
p53 was significantly reduced in TIAF1-silenced cells. Schultz et al.
(2004) concluded that TIAF1 likely participates in the nuclear
translocation of activated p53.
GENE STRUCTURE
The TIAF1 gene resides within the 3-prime untranslated region of the
MYO18A gene (610067) (Scott, 2006).
MAPPING
By radiation and somatic cell hybrid analyses, Nagase et al. (1996)
mapped the TIAF1 gene to chromosome 17.
*FIELD* RF
1. Furusawa, T.; Ikawa, S.; Yanai, N.; Obinata, M.: Isolation of
a novel PDZ-containing myosin from hematopoietic supportive bone marrow
stromal cell lines. Biochem. Biophys. Res. Commun. 270: 67-75, 2000.
2. Ji, H.; Zhai, Q.; Zhu, J.; Yan, M.; Sun, L.; Liu, X.; Zheng, Z.
: A novel protein MAJN binds to Jak3 and inhibits apoptosis induced
by IL-2 deprival. Biochem. Biophys. Res. Commun. 270: 267-271, 2000.
3. Nagase, T.; Seki, N.; Ishikawa, K.; Ohira, M.; Kawarabayasi, Y.;
Ohara, O.; Tanaka, A.; Kotani, H.; Miyajima, N.; Nomura, N.: Prediction
of the coding sequences of unidentified human genes. VI. The coding
sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis
of cDNA clones from cell line KG-1 and brain. DNA Res. 3: 321-329,
1996.
4. Schultz, L.; Khera, S.; Sleve, D.; Heath, J.; Chang, N.-S.: TIAF1
and p53 functionally interact in mediating apoptosis and silencing
of TIAF1 abolishes nuclear translocation of serine 15-phosphorylated
p53. DNA Cell Biol. 23: 67-74, 2004.
5. Scott, A. F.: Personal Communication. Baltimore, Md. 4/20/2006.
*FIELD* CD
Patricia A. Hartz: 8/5/2005
*FIELD* ED
alopez: 04/20/2006
alopez: 4/7/2006
mgross: 8/5/2005
*RECORD*
*FIELD* NO
609517
*FIELD* TI
*609517 TGFB1-INDUCED ANTIAPOPTOTIC FACTOR 1; TIAF1
;;MYOSIN CONTAINING PDZ DOMAIN; MYSPDZ;;
read moreMOLECULE ASSOCIATED WITH JAK3 N TERMINUS; MAJN;;
KIAA0216
*FIELD* TX
CLONING
By sequencing clones obtained from a size-fractionated immature myeloid
cell line cDNA library, Nagase et al. (1996) cloned TIAF1, which they
designated KIAA0216. The deduced 1,581-amino acid protein shares
significant similarity with rat myosin heavy chain, and it contains an
ATP/GTP-binding site motif A. Northern blot analysis detected TIAF1 in
all tissues and cell lines examined, with highest expression in skeletal
muscle.
Using differential display to identify genes whose expression correlated
with the ability of mouse stromal cells to support hematopoiesis,
Furusawa et al. (2000) cloned Tiaf1, which they designated Myspdz. The
deduced 2,035-amino acid protein shares 94% homology with KIAA0216, but
it contains an additional 458 N-terminal amino acids. By database
analysis, Furusawa et al. (2000) identified a human genomic clone
containing an exon with significant similarity to nucleotides 1 to 946
of the mouse Tiaf1 gene, suggesting that human TIAF1 may also encode a
longer protein. Mouse Tiaf1 contains an N-terminal KE-rich region,
followed by a PDZ domain, a head region with an ATP-binding site, a neck
region with an IQ motif, and a coiled-coil C-terminal domain. Northern
blot analysis detected Tiaf1 in all tissues examined. A 10.5-kb
transcript was detected in heart and skeletal muscle, and a 7.0-kb
transcript was detected in hematopoietic tissues and cells. Western blot
analysis detected Tiaf1 at an apparent molecular mass of 230 kD.
Immunostaining localized Tiaf1 in a filamentous network slightly
concentrated in the perinuclear region of mouse stromal cells.
GENE FUNCTION
Ji et al. (2000) found that the C-terminal myosin tail motif of TIAF1
interacts with the N terminus of JAK3 (600173).
Schultz et al. (2004) showed that TIAF1 and p53 (TP53; 191170) induced
apoptosis in human U937 myocytoma cells in both synergistic and
antagonistic manners. At optimal levels, both TIAF1 and p53 mediated
apoptosis cooperatively. Both proteins also suppressed
adherence-independent growth in a mouse fibroblast cell line. In
contrast, initiation of apoptosis by overexpressed TIAF1 was blocked by
low doses of p53, and vice versa. Ectopic p53 blocked apoptosis in U937
cells stably expressing TIAF1. TIAF1 and p53 did not appear to
physically interact; however, nuclear translocation of phosphorylated
p53 was significantly reduced in TIAF1-silenced cells. Schultz et al.
(2004) concluded that TIAF1 likely participates in the nuclear
translocation of activated p53.
GENE STRUCTURE
The TIAF1 gene resides within the 3-prime untranslated region of the
MYO18A gene (610067) (Scott, 2006).
MAPPING
By radiation and somatic cell hybrid analyses, Nagase et al. (1996)
mapped the TIAF1 gene to chromosome 17.
*FIELD* RF
1. Furusawa, T.; Ikawa, S.; Yanai, N.; Obinata, M.: Isolation of
a novel PDZ-containing myosin from hematopoietic supportive bone marrow
stromal cell lines. Biochem. Biophys. Res. Commun. 270: 67-75, 2000.
2. Ji, H.; Zhai, Q.; Zhu, J.; Yan, M.; Sun, L.; Liu, X.; Zheng, Z.
: A novel protein MAJN binds to Jak3 and inhibits apoptosis induced
by IL-2 deprival. Biochem. Biophys. Res. Commun. 270: 267-271, 2000.
3. Nagase, T.; Seki, N.; Ishikawa, K.; Ohira, M.; Kawarabayasi, Y.;
Ohara, O.; Tanaka, A.; Kotani, H.; Miyajima, N.; Nomura, N.: Prediction
of the coding sequences of unidentified human genes. VI. The coding
sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis
of cDNA clones from cell line KG-1 and brain. DNA Res. 3: 321-329,
1996.
4. Schultz, L.; Khera, S.; Sleve, D.; Heath, J.; Chang, N.-S.: TIAF1
and p53 functionally interact in mediating apoptosis and silencing
of TIAF1 abolishes nuclear translocation of serine 15-phosphorylated
p53. DNA Cell Biol. 23: 67-74, 2004.
5. Scott, A. F.: Personal Communication. Baltimore, Md. 4/20/2006.
*FIELD* CD
Patricia A. Hartz: 8/5/2005
*FIELD* ED
alopez: 04/20/2006
alopez: 4/7/2006
mgross: 8/5/2005
MIM
610067
*RECORD*
*FIELD* NO
610067
*FIELD* TI
*610067 MYOSIN XVIIIA; MYO18A
;;SURFACTANT PROTEIN A RECEPTOR, 210-KD; SPR210
MYO18A/PDGFRB FUSION GENE, INCLUDED
read more*FIELD* TX
CLONING
Mori et al. (2003) cloned 2 different isoforms of mouse Myo18a, which
they termed MysPDZ-alpha and -beta. Myo18a-alpha contains a KE-rich
region, an N-terminal PDZ domain, and a characteristic myosin homology
region of head, neck (with 1 IQ motif), and coiled-coil tail. The
Myo18a-beta isoform lacks the KE-rich region and PDZ domain. Northern
blot analysis and RT-PCR showed that Myo18A-alpha is present in most
tissues, while Myo18A-beta is expressed specifically in hematopoietic
tissues and cell lines. Western blot analyses of various cell lines
detected Myo18a-alpha and Myo18a-beta as 230- and 190-kD proteins,
respectively. Using immunofluorescence analysis, Mori et al. (2003)
demonstrated that Myo18a-alpha colocalizes with the ER-Golgi complex and
with membrane ruffles and filopodia, while Myo18a-beta localizes
diffusely to the cytoplasm. RT-PCR of fractionated hematopoietic cells
showed that Myo18a-alpha is expressed in mature but not immature
macrophages. Western blot analysis demonstrated that differentiation of
M1 cells increased levels of Myo18a-alpha expression.
GENE FUNCTION
Using peptide sequencing of the previously identified surfactant protein
A (SPA; 178630) receptor-210 (SPR210), Yang et al. (2005) identified
MYO18A as the SPA receptor. Western blot analysis confirmed that
antibodies against SPR210 recognize MYO18A, and showed expression of 2
MYO18A protein variants with sizes of 210 to 220 and 230 to 250 kD in
lung, bone marrow, spleen, and lymph node. An additional splice variant
containing an inserted 15-amino acid coiled-coil domain was also
reported.
Using Western blot analysis, Yang et al. (2005) showed that MYO18A
localizes to the surface of COS-1 cells, and that MYO18A expression in
COS-1 cells mediates SPA binding. Using flow cytometry, the authors
showed that antibodies to the neck domain of MYO18A reduced SPA binding
to 70% of control levels in a dose-dependent manner.
GOLPH3 (612207) and GOLPH3L (612208) are related Golgi proteins. Ng et
al. (2013) found that GOLPH3, but not GOLPH3L, interacted with MYO18A.
Overexpression of GOLPH3 in HEK293 cells resulted in dispersal of Golgi,
whereas overexpression of GOLPH3L resulted in compaction of Golgi.
Knockdown of GOLPH3 or MYO18A via small interfering RNA resulted in a
compact Golgi, whereas knockdown of GOLPH3L had the opposite effect.
However, knockdown of GOLPH3L had no effect on Golgi morphology in the
absence of GOLPH3 and MYO18A, suggesting that the effect of GOLPH3L on
Golgi is indirect and that GOLPH3L may function as an inhibitor of
GOLPH3 and MYO18A. Knockdown of GOLPH3, MYO18A, or GOLPH3L impaired
secretion from HEK293 cells.
GENE STRUCTURE
Mori et al. (2003) reported that the MYO18A gene contains 40 exons. Walz
et al. (2009) reported that the MYO18A gene contains 41 exons.
The TIAF1 gene (609517) resides within the 3-prime untranslated region
of the MYO18A gene (Scott, 2006).
MAPPING
Walz et al. (2009) stated that the MYO18A gene maps to chromosome
17q11.2.
CYTOGENETICS
Walz et al. (2009) reported a 51-year-old male with imatinib-responsive
eosinophilia associated with atypical myeloproliferative neoplasm who
presented with a t(5;17)(q33-34;q11.2). The translocation resulted in
the fusion of MYO18A intron 40 to PDGFRB (173410) intron 9, and RT-PCR
confirmed in-frame fusion between MYO18A exon 40 and PDGFRB exon 10. The
predicted 2,661-amino acid chimeric protein contains almost all of the
MYO18A sequence fused to the PDGFRB transmembrane, WW-like, and kinase
domains. RT-PCR also detected the reciprocal PDGFRB-MYO18A transcript,
with PDGFRB exon 9 fused to MYO18A exon 41.
*FIELD* RF
1. Mori, K.; Furusawa, T.; Okubo, T.; Inoue, T.; Ikawa, S.; Yanai,
N.; Mori, K. J.; Obinata, M.: Genome structure and differential expression
of two isoforms of a novel PDZ-containing myosin (MysPDZ) (Myo18A). J.
Biochem. 133: 405-413, 2003.
2. Ng, M. M.; Dippold, H. C.; Buschman, M. D.; Noakes, C. J.; Field,
S. J.: GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Molec.
Biol. Cell 24: 796-808, 2013.
3. Scott, A. F.: Personal Communication. Baltimore, Md. 4/20/2006.
4. Walz, C.; Haferlach, C.; Hanel, A.; Metzgeroth, G.; Erben, P.;
Gosenca, D.; Hochhaus, A.; Cross, N. C. P.; Reiter, A.: Identification
of a MYO18A-PDGFRB fusion gene in an eosinophilia-associated atypical
myeloproliferative neoplasm with a t(5;17)(q33-34;q11.2). Genes Chromosomes
Cancer 48: 179-183, 2009.
5. Yang, C.-H.; Szeliga, J.; Jordan, J.; Faske, S.; Sever-Chroneos,
Z.; Dorsett, B.; Christian, R. E.; Settlage, R. E.; Shabanowitz, J.;
Hunt, D. F.; Whitsett, J. A.; Chroneos, Z. C.: Identification of
the surfactant protein A receptor 210 as the unconventional myosin
18A. J. Biol. Chem. 280: 34447-34457, 2005.
*FIELD* CN
Patricia A. Hartz - updated: 11/12/2013
Patricia A. Hartz - updated: 3/11/2010
*FIELD* CD
Laura L. Baxter: 4/20/2006
*FIELD* ED
mgross: 11/15/2013
mcolton: 11/12/2013
mgross: 3/15/2010
terry: 3/11/2010
alopez: 6/25/2009
alopez: 4/20/2006
*RECORD*
*FIELD* NO
610067
*FIELD* TI
*610067 MYOSIN XVIIIA; MYO18A
;;SURFACTANT PROTEIN A RECEPTOR, 210-KD; SPR210
MYO18A/PDGFRB FUSION GENE, INCLUDED
read more*FIELD* TX
CLONING
Mori et al. (2003) cloned 2 different isoforms of mouse Myo18a, which
they termed MysPDZ-alpha and -beta. Myo18a-alpha contains a KE-rich
region, an N-terminal PDZ domain, and a characteristic myosin homology
region of head, neck (with 1 IQ motif), and coiled-coil tail. The
Myo18a-beta isoform lacks the KE-rich region and PDZ domain. Northern
blot analysis and RT-PCR showed that Myo18A-alpha is present in most
tissues, while Myo18A-beta is expressed specifically in hematopoietic
tissues and cell lines. Western blot analyses of various cell lines
detected Myo18a-alpha and Myo18a-beta as 230- and 190-kD proteins,
respectively. Using immunofluorescence analysis, Mori et al. (2003)
demonstrated that Myo18a-alpha colocalizes with the ER-Golgi complex and
with membrane ruffles and filopodia, while Myo18a-beta localizes
diffusely to the cytoplasm. RT-PCR of fractionated hematopoietic cells
showed that Myo18a-alpha is expressed in mature but not immature
macrophages. Western blot analysis demonstrated that differentiation of
M1 cells increased levels of Myo18a-alpha expression.
GENE FUNCTION
Using peptide sequencing of the previously identified surfactant protein
A (SPA; 178630) receptor-210 (SPR210), Yang et al. (2005) identified
MYO18A as the SPA receptor. Western blot analysis confirmed that
antibodies against SPR210 recognize MYO18A, and showed expression of 2
MYO18A protein variants with sizes of 210 to 220 and 230 to 250 kD in
lung, bone marrow, spleen, and lymph node. An additional splice variant
containing an inserted 15-amino acid coiled-coil domain was also
reported.
Using Western blot analysis, Yang et al. (2005) showed that MYO18A
localizes to the surface of COS-1 cells, and that MYO18A expression in
COS-1 cells mediates SPA binding. Using flow cytometry, the authors
showed that antibodies to the neck domain of MYO18A reduced SPA binding
to 70% of control levels in a dose-dependent manner.
GOLPH3 (612207) and GOLPH3L (612208) are related Golgi proteins. Ng et
al. (2013) found that GOLPH3, but not GOLPH3L, interacted with MYO18A.
Overexpression of GOLPH3 in HEK293 cells resulted in dispersal of Golgi,
whereas overexpression of GOLPH3L resulted in compaction of Golgi.
Knockdown of GOLPH3 or MYO18A via small interfering RNA resulted in a
compact Golgi, whereas knockdown of GOLPH3L had the opposite effect.
However, knockdown of GOLPH3L had no effect on Golgi morphology in the
absence of GOLPH3 and MYO18A, suggesting that the effect of GOLPH3L on
Golgi is indirect and that GOLPH3L may function as an inhibitor of
GOLPH3 and MYO18A. Knockdown of GOLPH3, MYO18A, or GOLPH3L impaired
secretion from HEK293 cells.
GENE STRUCTURE
Mori et al. (2003) reported that the MYO18A gene contains 40 exons. Walz
et al. (2009) reported that the MYO18A gene contains 41 exons.
The TIAF1 gene (609517) resides within the 3-prime untranslated region
of the MYO18A gene (Scott, 2006).
MAPPING
Walz et al. (2009) stated that the MYO18A gene maps to chromosome
17q11.2.
CYTOGENETICS
Walz et al. (2009) reported a 51-year-old male with imatinib-responsive
eosinophilia associated with atypical myeloproliferative neoplasm who
presented with a t(5;17)(q33-34;q11.2). The translocation resulted in
the fusion of MYO18A intron 40 to PDGFRB (173410) intron 9, and RT-PCR
confirmed in-frame fusion between MYO18A exon 40 and PDGFRB exon 10. The
predicted 2,661-amino acid chimeric protein contains almost all of the
MYO18A sequence fused to the PDGFRB transmembrane, WW-like, and kinase
domains. RT-PCR also detected the reciprocal PDGFRB-MYO18A transcript,
with PDGFRB exon 9 fused to MYO18A exon 41.
*FIELD* RF
1. Mori, K.; Furusawa, T.; Okubo, T.; Inoue, T.; Ikawa, S.; Yanai,
N.; Mori, K. J.; Obinata, M.: Genome structure and differential expression
of two isoforms of a novel PDZ-containing myosin (MysPDZ) (Myo18A). J.
Biochem. 133: 405-413, 2003.
2. Ng, M. M.; Dippold, H. C.; Buschman, M. D.; Noakes, C. J.; Field,
S. J.: GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Molec.
Biol. Cell 24: 796-808, 2013.
3. Scott, A. F.: Personal Communication. Baltimore, Md. 4/20/2006.
4. Walz, C.; Haferlach, C.; Hanel, A.; Metzgeroth, G.; Erben, P.;
Gosenca, D.; Hochhaus, A.; Cross, N. C. P.; Reiter, A.: Identification
of a MYO18A-PDGFRB fusion gene in an eosinophilia-associated atypical
myeloproliferative neoplasm with a t(5;17)(q33-34;q11.2). Genes Chromosomes
Cancer 48: 179-183, 2009.
5. Yang, C.-H.; Szeliga, J.; Jordan, J.; Faske, S.; Sever-Chroneos,
Z.; Dorsett, B.; Christian, R. E.; Settlage, R. E.; Shabanowitz, J.;
Hunt, D. F.; Whitsett, J. A.; Chroneos, Z. C.: Identification of
the surfactant protein A receptor 210 as the unconventional myosin
18A. J. Biol. Chem. 280: 34447-34457, 2005.
*FIELD* CN
Patricia A. Hartz - updated: 11/12/2013
Patricia A. Hartz - updated: 3/11/2010
*FIELD* CD
Laura L. Baxter: 4/20/2006
*FIELD* ED
mgross: 11/15/2013
mcolton: 11/12/2013
mgross: 3/15/2010
terry: 3/11/2010
alopez: 6/25/2009
alopez: 4/20/2006