Full text data of PDE6D
PDE6D
(PDED)
[Confidence: low (only semi-automatic identification from reviews)]
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta; GMP-PDE delta (Protein p17)
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta; GMP-PDE delta (Protein p17)
UniProt
O43924
ID PDE6D_HUMAN Reviewed; 150 AA.
AC O43924; O43250;
DT 15-JUL-1999, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JUN-1998, sequence version 1.
DT 22-JAN-2014, entry version 121.
DE RecName: Full=Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta;
DE Short=GMP-PDE delta;
DE AltName: Full=Protein p17;
GN Name=PDE6D; Synonyms=PDED;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9570951; DOI=10.1006/geno.1998.5210;
RA Li N., Florio S.K., Pettenati M.J., Rao P.N., Beavo J.A., Baehr W.;
RT "Characterization of human and mouse rod cGMP phosphodiesterase delta
RT subunit (PDE6D) and chromosomal localization of the human gene.";
RL Genomics 49:76-82(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9533031;
RA Erchova G., Derre J., Chatelin S., Nancy V., Berger R., Kaplan J.,
RA Munnich A., de Gunzburg J.;
RT "cDNA sequence, genomic organization and mapping of PDE6D, the human
RT gene encoding the delta subunit of the cGMP phosphodiesterase of
RT retinal rod cells to chromosome 2q36.";
RL Cytogenet. Cell Genet. 79:139-141(1997).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9781033; DOI=10.1038/sj.ejhg.5200215;
RA Lorenz B., Migliaccio C., Lichtner P., Meyer C., Strom T.M.,
RA D'Urso M., Becker J., Ciccodicola A., Meitinger T.;
RT "Cloning and gene structure of the rod cGMP phosphodiesterase delta
RT subunit gene (PDED) in man and mouse.";
RL Eur. J. Hum. Genet. 6:283-290(1998).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA], INTERACTION WITH RAB13, SUBCELLULAR
RP LOCATION, AND TISSUE SPECIFICITY.
RX PubMed=9712853; DOI=10.1074/jbc.273.35.22340;
RA Marzesco A.M., Galli T., Louvard D., Zahraoui A.;
RT "The rod cGMP phosphodiesterase delta subunit dissociates the small
RT GTPase Rab13 from membranes.";
RL J. Biol. Chem. 273:22340-22345(1998).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP INTERACTION WITH ARL3.
RX PubMed=10518933; DOI=10.1016/S0014-5793(99)01117-5;
RA Linari M., Hanzal-Bayer M., Becker J.;
RT "The delta subunit of rod specific cyclic GMP phosphodiesterase, PDE
RT delta, interacts with the Arf-like protein Arl3 in a GTP specific
RT manner.";
RL FEBS Lett. 458:55-59(1999).
RN [8]
RP INTERACTION WITH RPGR.
RX PubMed=9990021; DOI=10.1073/pnas.96.4.1315;
RA Linari M., Ueffing M., Manson F., Wright A., Meitinger T., Becker J.;
RT "The retinitis pigmentosa GTPase regulator, RPGR, interacts with the
RT delta subunit of rod cyclic GMP phosphodiesterase.";
RL Proc. Natl. Acad. Sci. U.S.A. 96:1315-1320(1999).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [10]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) IN COMPLEX WITH MOUSE ARL2 AND
RP GTP, AND INTERACTION WITH HRAS.
RX PubMed=11980706; DOI=10.1093/emboj/21.9.2095;
RA Hanzal-Bayer M., Renault L., Roversi P., Wittinghofer A., Hillig R.C.;
RT "The complex of Arl2-GTP and PDE delta: from structure to function.";
RL EMBO J. 21:2095-2106(2002).
CC -!- FUNCTION: Acts as a GTP specific dissociation inhibitor (GDI).
CC Increases the affinity of ARL3 for GTP by several orders of
CC magnitude and does so by decreasing the nucleotide dissociation
CC rate. Stabilizes ARL3-GTP by decreasing the nucleotide
CC dissociation (By similarity).
CC -!- SUBUNIT: Interacts with ARL2, ARL3, and RPGR. Oligomer composed of
CC two catalytic chains (alpha and beta), an inhibitory chain (gamma)
CC and the delta chain. Interacts with ARL3; the interaction occurs
CC specifically with the GTP-bound form of ARL3 (By similarity).
CC Interacts with HRAS and RPGR. Interacts with RAB13 (isoprenylated
CC form); dissociates RAB13 from membranes.
CC -!- INTERACTION:
CC P36404:ARL2; NbExp=4; IntAct=EBI-712685, EBI-752365;
CC Q9D0J4:Arl2 (xeno); NbExp=6; IntAct=EBI-712685, EBI-1033319;
CC P36405:ARL3; NbExp=2; IntAct=EBI-712685, EBI-712710;
CC Q9WUL7:Arl3 (xeno); NbExp=4; IntAct=EBI-712685, EBI-6860857;
CC P51153:RAB13; NbExp=2; IntAct=EBI-712685, EBI-1780121;
CC Q15382:RHEB; NbExp=5; IntAct=EBI-712685, EBI-6860739;
CC Q92834:RPGR; NbExp=9; IntAct=EBI-712685, EBI-6558417;
CC -!- SUBCELLULAR LOCATION: Cytoplasm, cytosol. Cytoplasmic vesicle
CC membrane; Peripheral membrane protein.
CC -!- TISSUE SPECIFICITY: Widely expressed. Detected in various tissues
CC including spleen, prostate gland, testis, ovary, small intestine,
CC colon, retina, and peripheral blood.
CC -!- SIMILARITY: Belongs to the PDE6D/unc-119 family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF045999; AAC39720.1; -; Genomic_DNA.
DR EMBL; AF022912; AAB87872.1; -; mRNA.
DR EMBL; AF042835; AAC25953.1; -; Genomic_DNA.
DR EMBL; AF042833; AAC25953.1; JOINED; Genomic_DNA.
DR EMBL; AF042834; AAC25953.1; JOINED; Genomic_DNA.
DR EMBL; AJ001626; CAA04880.1; -; mRNA.
DR EMBL; BT007278; AAP35942.1; -; mRNA.
DR EMBL; BC007831; AAH07831.1; -; mRNA.
DR RefSeq; NP_002592.1; NM_002601.2.
DR UniGene; Hs.516808; -.
DR PDB; 1KSG; X-ray; 2.30 A; B=1-150.
DR PDB; 1KSH; X-ray; 1.80 A; B=1-150.
DR PDB; 1KSJ; X-ray; 2.60 A; B=1-150.
DR PDB; 3T5G; X-ray; 1.70 A; B=1-150.
DR PDB; 3T5I; X-ray; 2.10 A; A/B/C/D=1-150.
DR PDB; 4JHP; X-ray; 1.90 A; B=1-150.
DR PDB; 4JV6; X-ray; 1.87 A; B=1-150.
DR PDB; 4JV8; X-ray; 1.45 A; B=1-150.
DR PDB; 4JVB; X-ray; 1.75 A; B=1-150.
DR PDB; 4JVF; X-ray; 2.40 A; B=1-150.
DR PDBsum; 1KSG; -.
DR PDBsum; 1KSH; -.
DR PDBsum; 1KSJ; -.
DR PDBsum; 3T5G; -.
DR PDBsum; 3T5I; -.
DR PDBsum; 4JHP; -.
DR PDBsum; 4JV6; -.
DR PDBsum; 4JV8; -.
DR PDBsum; 4JVB; -.
DR PDBsum; 4JVF; -.
DR ProteinModelPortal; O43924; -.
DR SMR; O43924; 4-150.
DR DIP; DIP-36660N; -.
DR IntAct; O43924; 13.
DR MINT; MINT-236371; -.
DR STRING; 9606.ENSP00000287600; -.
DR BindingDB; O43924; -.
DR ChEMBL; CHEMBL2363066; -.
DR PaxDb; O43924; -.
DR PRIDE; O43924; -.
DR DNASU; 5147; -.
DR Ensembl; ENST00000287600; ENSP00000287600; ENSG00000156973.
DR GeneID; 5147; -.
DR KEGG; hsa:5147; -.
DR UCSC; uc002vse.1; human.
DR CTD; 5147; -.
DR GeneCards; GC02M232597; -.
DR HGNC; HGNC:8788; PDE6D.
DR HPA; HPA037434; -.
DR MIM; 602676; gene.
DR neXtProt; NX_O43924; -.
DR PharmGKB; PA33136; -.
DR eggNOG; NOG302334; -.
DR HOGENOM; HOG000007689; -.
DR HOVERGEN; HBG053542; -.
DR InParanoid; O43924; -.
DR KO; K13758; -.
DR OMA; GRIMEEW; -.
DR OrthoDB; EOG7HMS2N; -.
DR PhylomeDB; O43924; -.
DR ChiTaRS; PDE6D; human.
DR EvolutionaryTrace; O43924; -.
DR GeneWiki; PDE6D; -.
DR GenomeRNAi; 5147; -.
DR NextBio; 19860; -.
DR PRO; PR:O43924; -.
DR ArrayExpress; O43924; -.
DR Bgee; O43924; -.
DR CleanEx; HS_PDE6D; -.
DR Genevestigator; O43924; -.
DR GO; GO:0031410; C:cytoplasmic vesicle; IDA:UniProtKB.
DR GO; GO:0030659; C:cytoplasmic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005829; C:cytosol; IDA:UniProtKB.
DR GO; GO:0004114; F:3',5'-cyclic-nucleotide phosphodiesterase activity; IEA:InterPro.
DR GO; GO:0005095; F:GTPase inhibitor activity; ISS:UniProtKB.
DR GO; GO:0033124; P:regulation of GTP catabolic process; ISS:UniProtKB.
DR GO; GO:0050896; P:response to stimulus; IEA:UniProtKB-KW.
DR GO; GO:0007601; P:visual perception; TAS:ProtInc.
DR Gene3D; 2.70.50.40; -; 1.
DR InterPro; IPR008015; GMP_PDE_delta.
DR InterPro; IPR014756; Ig_E-set.
DR InterPro; IPR017287; Rhodop-sen_GMP-Pdiesterase_dsu.
DR Pfam; PF05351; GMP_PDE_delta; 1.
DR PIRSF; PIRSF037825; GMP-Pdiesterase_delta; 1.
DR SUPFAM; SSF81296; SSF81296; 1.
PE 1: Evidence at protein level;
KW 3D-structure; cGMP; Complete proteome; Cytoplasm; Cytoplasmic vesicle;
KW Membrane; Reference proteome; Sensory transduction; Vision.
FT CHAIN 1 150 Retinal rod rhodopsin-sensitive cGMP
FT 3',5'-cyclic phosphodiesterase subunit
FT delta.
FT /FTId=PRO_0000221208.
FT REGION 144 150 Required for association with membranes.
FT CONFLICT 117 117 M -> V (in Ref. 4; CAA04880).
FT CONFLICT 146 146 R -> G (in Ref. 4; CAA04880).
FT HELIX 3 13
FT STRAND 15 24
FT TURN 25 27
FT STRAND 30 34
FT STRAND 43 50
FT HELIX 51 55
FT STRAND 57 69
FT STRAND 71 82
FT STRAND 85 97
FT STRAND 101 110
FT HELIX 114 116
FT HELIX 120 123
FT TURN 124 126
FT STRAND 127 135
FT STRAND 138 150
SQ SEQUENCE 150 AA; 17420 MW; AB8D9309C33B4411 CRC64;
MSAKDERARE ILRGFKLNWM NLRDAETGKI LWQGTEDLSV PGVEHEARVP KKILKCKAVS
RELNFSSTEQ MEKFRLEQKV YFKGQCLEEW FFEFGFVIPN STNTWQSLIE AAPESQMMPA
SVLTGNVIIE TKFFDDDLLV STSRVRLFYV
//
ID PDE6D_HUMAN Reviewed; 150 AA.
AC O43924; O43250;
DT 15-JUL-1999, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-JUN-1998, sequence version 1.
DT 22-JAN-2014, entry version 121.
DE RecName: Full=Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta;
DE Short=GMP-PDE delta;
DE AltName: Full=Protein p17;
GN Name=PDE6D; Synonyms=PDED;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9570951; DOI=10.1006/geno.1998.5210;
RA Li N., Florio S.K., Pettenati M.J., Rao P.N., Beavo J.A., Baehr W.;
RT "Characterization of human and mouse rod cGMP phosphodiesterase delta
RT subunit (PDE6D) and chromosomal localization of the human gene.";
RL Genomics 49:76-82(1998).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA].
RX PubMed=9533031;
RA Erchova G., Derre J., Chatelin S., Nancy V., Berger R., Kaplan J.,
RA Munnich A., de Gunzburg J.;
RT "cDNA sequence, genomic organization and mapping of PDE6D, the human
RT gene encoding the delta subunit of the cGMP phosphodiesterase of
RT retinal rod cells to chromosome 2q36.";
RL Cytogenet. Cell Genet. 79:139-141(1997).
RN [3]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=9781033; DOI=10.1038/sj.ejhg.5200215;
RA Lorenz B., Migliaccio C., Lichtner P., Meyer C., Strom T.M.,
RA D'Urso M., Becker J., Ciccodicola A., Meitinger T.;
RT "Cloning and gene structure of the rod cGMP phosphodiesterase delta
RT subunit gene (PDED) in man and mouse.";
RL Eur. J. Hum. Genet. 6:283-290(1998).
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA], INTERACTION WITH RAB13, SUBCELLULAR
RP LOCATION, AND TISSUE SPECIFICITY.
RX PubMed=9712853; DOI=10.1074/jbc.273.35.22340;
RA Marzesco A.M., Galli T., Louvard D., Zahraoui A.;
RT "The rod cGMP phosphodiesterase delta subunit dissociates the small
RT GTPase Rab13 from membranes.";
RL J. Biol. Chem. 273:22340-22345(1998).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [7]
RP INTERACTION WITH ARL3.
RX PubMed=10518933; DOI=10.1016/S0014-5793(99)01117-5;
RA Linari M., Hanzal-Bayer M., Becker J.;
RT "The delta subunit of rod specific cyclic GMP phosphodiesterase, PDE
RT delta, interacts with the Arf-like protein Arl3 in a GTP specific
RT manner.";
RL FEBS Lett. 458:55-59(1999).
RN [8]
RP INTERACTION WITH RPGR.
RX PubMed=9990021; DOI=10.1073/pnas.96.4.1315;
RA Linari M., Ueffing M., Manson F., Wright A., Meitinger T., Becker J.;
RT "The retinitis pigmentosa GTPase regulator, RPGR, interacts with the
RT delta subunit of rod cyclic GMP phosphodiesterase.";
RL Proc. Natl. Acad. Sci. U.S.A. 96:1315-1320(1999).
RN [9]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [10]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) IN COMPLEX WITH MOUSE ARL2 AND
RP GTP, AND INTERACTION WITH HRAS.
RX PubMed=11980706; DOI=10.1093/emboj/21.9.2095;
RA Hanzal-Bayer M., Renault L., Roversi P., Wittinghofer A., Hillig R.C.;
RT "The complex of Arl2-GTP and PDE delta: from structure to function.";
RL EMBO J. 21:2095-2106(2002).
CC -!- FUNCTION: Acts as a GTP specific dissociation inhibitor (GDI).
CC Increases the affinity of ARL3 for GTP by several orders of
CC magnitude and does so by decreasing the nucleotide dissociation
CC rate. Stabilizes ARL3-GTP by decreasing the nucleotide
CC dissociation (By similarity).
CC -!- SUBUNIT: Interacts with ARL2, ARL3, and RPGR. Oligomer composed of
CC two catalytic chains (alpha and beta), an inhibitory chain (gamma)
CC and the delta chain. Interacts with ARL3; the interaction occurs
CC specifically with the GTP-bound form of ARL3 (By similarity).
CC Interacts with HRAS and RPGR. Interacts with RAB13 (isoprenylated
CC form); dissociates RAB13 from membranes.
CC -!- INTERACTION:
CC P36404:ARL2; NbExp=4; IntAct=EBI-712685, EBI-752365;
CC Q9D0J4:Arl2 (xeno); NbExp=6; IntAct=EBI-712685, EBI-1033319;
CC P36405:ARL3; NbExp=2; IntAct=EBI-712685, EBI-712710;
CC Q9WUL7:Arl3 (xeno); NbExp=4; IntAct=EBI-712685, EBI-6860857;
CC P51153:RAB13; NbExp=2; IntAct=EBI-712685, EBI-1780121;
CC Q15382:RHEB; NbExp=5; IntAct=EBI-712685, EBI-6860739;
CC Q92834:RPGR; NbExp=9; IntAct=EBI-712685, EBI-6558417;
CC -!- SUBCELLULAR LOCATION: Cytoplasm, cytosol. Cytoplasmic vesicle
CC membrane; Peripheral membrane protein.
CC -!- TISSUE SPECIFICITY: Widely expressed. Detected in various tissues
CC including spleen, prostate gland, testis, ovary, small intestine,
CC colon, retina, and peripheral blood.
CC -!- SIMILARITY: Belongs to the PDE6D/unc-119 family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF045999; AAC39720.1; -; Genomic_DNA.
DR EMBL; AF022912; AAB87872.1; -; mRNA.
DR EMBL; AF042835; AAC25953.1; -; Genomic_DNA.
DR EMBL; AF042833; AAC25953.1; JOINED; Genomic_DNA.
DR EMBL; AF042834; AAC25953.1; JOINED; Genomic_DNA.
DR EMBL; AJ001626; CAA04880.1; -; mRNA.
DR EMBL; BT007278; AAP35942.1; -; mRNA.
DR EMBL; BC007831; AAH07831.1; -; mRNA.
DR RefSeq; NP_002592.1; NM_002601.2.
DR UniGene; Hs.516808; -.
DR PDB; 1KSG; X-ray; 2.30 A; B=1-150.
DR PDB; 1KSH; X-ray; 1.80 A; B=1-150.
DR PDB; 1KSJ; X-ray; 2.60 A; B=1-150.
DR PDB; 3T5G; X-ray; 1.70 A; B=1-150.
DR PDB; 3T5I; X-ray; 2.10 A; A/B/C/D=1-150.
DR PDB; 4JHP; X-ray; 1.90 A; B=1-150.
DR PDB; 4JV6; X-ray; 1.87 A; B=1-150.
DR PDB; 4JV8; X-ray; 1.45 A; B=1-150.
DR PDB; 4JVB; X-ray; 1.75 A; B=1-150.
DR PDB; 4JVF; X-ray; 2.40 A; B=1-150.
DR PDBsum; 1KSG; -.
DR PDBsum; 1KSH; -.
DR PDBsum; 1KSJ; -.
DR PDBsum; 3T5G; -.
DR PDBsum; 3T5I; -.
DR PDBsum; 4JHP; -.
DR PDBsum; 4JV6; -.
DR PDBsum; 4JV8; -.
DR PDBsum; 4JVB; -.
DR PDBsum; 4JVF; -.
DR ProteinModelPortal; O43924; -.
DR SMR; O43924; 4-150.
DR DIP; DIP-36660N; -.
DR IntAct; O43924; 13.
DR MINT; MINT-236371; -.
DR STRING; 9606.ENSP00000287600; -.
DR BindingDB; O43924; -.
DR ChEMBL; CHEMBL2363066; -.
DR PaxDb; O43924; -.
DR PRIDE; O43924; -.
DR DNASU; 5147; -.
DR Ensembl; ENST00000287600; ENSP00000287600; ENSG00000156973.
DR GeneID; 5147; -.
DR KEGG; hsa:5147; -.
DR UCSC; uc002vse.1; human.
DR CTD; 5147; -.
DR GeneCards; GC02M232597; -.
DR HGNC; HGNC:8788; PDE6D.
DR HPA; HPA037434; -.
DR MIM; 602676; gene.
DR neXtProt; NX_O43924; -.
DR PharmGKB; PA33136; -.
DR eggNOG; NOG302334; -.
DR HOGENOM; HOG000007689; -.
DR HOVERGEN; HBG053542; -.
DR InParanoid; O43924; -.
DR KO; K13758; -.
DR OMA; GRIMEEW; -.
DR OrthoDB; EOG7HMS2N; -.
DR PhylomeDB; O43924; -.
DR ChiTaRS; PDE6D; human.
DR EvolutionaryTrace; O43924; -.
DR GeneWiki; PDE6D; -.
DR GenomeRNAi; 5147; -.
DR NextBio; 19860; -.
DR PRO; PR:O43924; -.
DR ArrayExpress; O43924; -.
DR Bgee; O43924; -.
DR CleanEx; HS_PDE6D; -.
DR Genevestigator; O43924; -.
DR GO; GO:0031410; C:cytoplasmic vesicle; IDA:UniProtKB.
DR GO; GO:0030659; C:cytoplasmic vesicle membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005829; C:cytosol; IDA:UniProtKB.
DR GO; GO:0004114; F:3',5'-cyclic-nucleotide phosphodiesterase activity; IEA:InterPro.
DR GO; GO:0005095; F:GTPase inhibitor activity; ISS:UniProtKB.
DR GO; GO:0033124; P:regulation of GTP catabolic process; ISS:UniProtKB.
DR GO; GO:0050896; P:response to stimulus; IEA:UniProtKB-KW.
DR GO; GO:0007601; P:visual perception; TAS:ProtInc.
DR Gene3D; 2.70.50.40; -; 1.
DR InterPro; IPR008015; GMP_PDE_delta.
DR InterPro; IPR014756; Ig_E-set.
DR InterPro; IPR017287; Rhodop-sen_GMP-Pdiesterase_dsu.
DR Pfam; PF05351; GMP_PDE_delta; 1.
DR PIRSF; PIRSF037825; GMP-Pdiesterase_delta; 1.
DR SUPFAM; SSF81296; SSF81296; 1.
PE 1: Evidence at protein level;
KW 3D-structure; cGMP; Complete proteome; Cytoplasm; Cytoplasmic vesicle;
KW Membrane; Reference proteome; Sensory transduction; Vision.
FT CHAIN 1 150 Retinal rod rhodopsin-sensitive cGMP
FT 3',5'-cyclic phosphodiesterase subunit
FT delta.
FT /FTId=PRO_0000221208.
FT REGION 144 150 Required for association with membranes.
FT CONFLICT 117 117 M -> V (in Ref. 4; CAA04880).
FT CONFLICT 146 146 R -> G (in Ref. 4; CAA04880).
FT HELIX 3 13
FT STRAND 15 24
FT TURN 25 27
FT STRAND 30 34
FT STRAND 43 50
FT HELIX 51 55
FT STRAND 57 69
FT STRAND 71 82
FT STRAND 85 97
FT STRAND 101 110
FT HELIX 114 116
FT HELIX 120 123
FT TURN 124 126
FT STRAND 127 135
FT STRAND 138 150
SQ SEQUENCE 150 AA; 17420 MW; AB8D9309C33B4411 CRC64;
MSAKDERARE ILRGFKLNWM NLRDAETGKI LWQGTEDLSV PGVEHEARVP KKILKCKAVS
RELNFSSTEQ MEKFRLEQKV YFKGQCLEEW FFEFGFVIPN STNTWQSLIE AAPESQMMPA
SVLTGNVIIE TKFFDDDLLV STSRVRLFYV
//
MIM
602676
*RECORD*
*FIELD* NO
602676
*FIELD* TI
*602676 PHOSPHODIESTERASE 6D, cGMP-SPECIFIC, ROD, DELTA; PDE6D
;;RETINAL ROD PHOTORECEPTOR cGMP PHOSPHODIESTERASE, DELTA SUBUNIT; PDED;;
read morePDE-DELTA
*FIELD* TX
DESCRIPTION
PDE6D is a phosphodiesterase (EC 3.1.4.17) that binds to prenyl groups
and has a critical role in ciliogenesis (Humbert et al., 2012).
CLONING
Ershova et al. (1997) reported that the PDE6D gene encodes a 150-amino
acid protein.
Li et al. (1998) isolated both mouse and human PDE6D cDNAs from retinal
libraries, using a bovine probe. They found that the predicted 150-amino
acid polypeptides are unusually well conserved, with only 1 or 2
conservative substitutions in human, bovine, and mouse PDE6D. Amino acid
analysis predicted that the putative mammalian protein is soluble and
acidic, contains 2 N-linked glycosylation sites, and lacks hydrophobic
transmembrane domains. Li et al. (1998) found that the mammalian PDE6D
genes and the eyeless nematode C. elegans C27H5.1 gene have an identical
intron/exon arrangement. The C. elegans C27H5.1 polypeptide shares
approximately 70% amino acid similarity with the human PDE6D protein.
Southern blot analysis of a variety of species suggested that the
sequences of PDE6D are well conserved among vertebrate and invertebrate
species.
Using Northern blot analysis, Lorenz et al. (1998) detected a 1.3-kb
PDED transcript in human retina, heart, brain, placenta, liver, and
skeletal muscle. A preliminary screen of all 5 exons in 20 unrelated
patients with autosomal recessive retinitis pigmentosa revealed no PDED
mutation. Lorenz et al. (1998) pointed out that the bovine delta subunit
solubilizes the normally membrane-bound PDE and is the only subunit
expressed in extraocular tissues.
GENE STRUCTURE
Ershova et al. (1997) reported that the PDE6D gene contains 4 exons.
Lorenz et al. (1998) reported that the human PDED gene consists of 5
exons spanning at least 30 kb of genomic DNA.
MAPPING
By use of a cDNA fragment of the PDE6D gene, Ershova et al. (1997)
mapped the human PDE6D gene to 2q36 by fluorescence in situ
hybridization (FISH). By PCR analysis of human-hamster somatic cell
hybrids, Li et al. (1998) mapped the PDE6D gene to the long arm of
chromosome 2; by FISH, they localized the gene to 2q35-q36. Based on
these results and known synteny, they predicted that the mouse PDE6D
gene resides on chromosome 1. By FISH and radiation hybrid mapping,
Lorenz et al. (1998) localized the human PDED gene to 2q37.
GENE FUNCTION
cGMP is the cellular second messenger involved in the transduction of
visual signals in retinal rod and cone cells. Constitutively synthesized
by guanylate cyclase, its level is tightly controlled by modulating its
degradation by a specific phosphodiesterase (cGMP-PDE). The enzyme
characterized from bovine retinal rod cells is made of a catalytic core
consisting of a membrane-associated alpha-beta dimer. An inhibitory
gamma subunit enables transducin to regulate the rate of cGMP
degradation according to incoming visual signals. The delta subunit
(PDE6D) plays a role in stabilizing the catalytic dimer from membranes
(Florio et al., 1996).
Correct localization and signaling by farnesylated KRAS is regulated by
the prenyl-binding protein PDED, which sustains the spatial organization
of KRAS (190070) by facilitating its diffusion in the cytoplasm (Chandra
et al., 2012; Zhang et al., 2004). Zimmerman et al. (2013) reported that
interfering with the binding of mammalian PDED to KRAS by means of small
molecules provided a novel opportunity to suppress oncogenic RAS
signaling by altering its localization to endomembranes. Biochemical
screening and subsequent structure-based hit optimization yielded
inhibitors of the KRAS-PDED interaction that selectively bound to the
prenyl-binding pocket of PDED with nanomolar affinity, inhibited
oncogenic RAS signaling, and suppressed in vitro and in vivo
proliferation of human pancreatic ductal adenocarcinoma cells that are
dependent on oncogenic KRAS.
By tandem affinity purification, Humbert et al. (2012) found that
epitope-tagged PDE6D interacted with several prenylated proteins and
small GTPases in HEK293 cells. Coimmunoprecipitation, mutation, and
knockdown experiments with human RPE1 retinal pigment epithelium cells
and mouse IMCD3 collecting duct cells revealed that PDE6D was involved
in a protein network that targeted the phospholipid phosphatase INPP5E
(613037) to ciliary membranes. PDE6D interacted with the prenylated, but
not the soluble, form of INPP5E. The small GTPase ARL13B (608922) bound
an adjacent region of INPP5E, and overexpression of ARL13B promoted
release of INPP5E from PDE6D. Knockdown of ARL13B or the ciliary protein
CEP164 (614848) reduced or eliminated ciliogenesis in RPE1 cells,
whereas PDE6D knockdown had little effect on ciliogenesis. Humbert et
al. (2012) hypothesized that PDE5D, CEP164, and ARL13B mediate
sequential steps in targeting INPP5E to ciliary membranes for cilia
formation.
BIOCHEMICAL FEATURES
Ismail et al. (2011) stated that PDE-delta binds to farnesylated small G
proteins. They presented the 1.7-angstrom structure of human PDE-delta
in complex with C-terminally farnesylated human RHEB (601293). PDE-delta
assumed immunoglobulin-like beta-sandwich folds with a flexible loop and
a farnesyl-binding pocket. PDE-delta interacted almost exclusively with
the C-terminal farnesyl moiety of RHEB. The interaction did not require
guanine nucleotide, which bound RHEB on a surface nearly opposite to the
PDE-delta-binding site. Ismail et al. (2011) observed that the limited
contact of PDE-delta with RHEB provides PDE-delta with relaxed
specificity for farnesylated cargo proteins. PDE-delta also interacted
with a second small G protein, mouse Arl2 (601175). The interaction of
PDE-delta with Arl2 was dependent upon GTP and caused a conformational
change in PDE-delta that closed its farnesyl-binding pocket. In
solution, addition of Arl2-GTP dissociated the PDE-delta-farnesylated
RHEB complex. Addition of Arl3 (604695)-GTP also caused release of
farnesylated RHEB from PDE-delta. In transfected canine kidney cells,
fluorescence-labeled RHEB showed endoplasmic reticulum (ER) and Golgi
localization. Addition of PDE-delta relocalized RHEB into a cytoplasmic
and nuclear distribution, and subsequent addition of Arl2-GTP restored
RHEB localization to ER and Golgi membranes. Ismail et al. (2011)
concluded that PDE-delta functions as a solubilization factor for
farnesylated RHEB and that ARL2 and ARL3 act in a GTP-dependent manner
as allosteric release factors for farnesylated RHEB.
*FIELD* RF
1. Chandra, A.; Grecco, H. E.; Pisupati, V.; Perera, D.; Cassidy,
L.; Skoulidis, F.; Ismail, S. A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman,
A. R.; Wittinghofer, A.; Bastiaens, P. I. H.: The GDI-like solubilizing
factor PDE-delta sustains the spatial organization and signalling
of Ras family proteins. Nature Cell Biol. 14: 148-158, 2012. Note:
Erratum: Nature Cell Biol. 14: 329 only, 2012.
2. Ershova, G.; Derre, J.; Chetelin, S.; Nancy, V.; Berger, R.; Kaplan,
J.; Munnich, A.; de Gunzburg, J.: cDNA sequence, genomic organization
and mapping of PDE6D, the human gene encoding the delta subunit of
the cGMP phosphodiesterase of retinal rod cells to chromosome 2q36. Cytogenet.
Cell Genet. 79: 139-141, 1997.
3. Florio, S. K.; Prusti, R. K.; Beavo, J. A.: Solubilization of
membrane-bound rod phosphodiesterase by the rod phosphodiesterase
recombinant delta subunit. J. Biol. Chem. 271: 24036-24047, 1996.
4. Humbert, M. C.; Weihbrecht, K.; Searby, C. C.; Li, Y.; Pope, R.
M.; Sheffield, V. C.; Seo, S.: ARL13B, PDE6D, and CEP164 form a functional
network for INPP5E ciliary targeting. Proc. Nat. Acad. Sci. 109:
19691-19696, 2012.
5. Ismail, S. A.; Chen, Y.-X.; Rusinova, A.; Chandra, A.; Bierbaum,
M.; Gremer, L.; Triola, G.; Waldmann, H.; Bastiaens, P. I. H.; Wittinghofer,
A.: Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for
farnesylated cargo. Nature Chem. Biol. 7: 942-949, 2011.
6. Li, N.; Florio, S. K.; Pettenati, M. J.; Rao, P. N.; Beavo, J.
A.; Baehr, W.: Characterization of human and mouse rod cGMP phosphodiesterase
delta subunit (PDE6D) and chromosomal localization of the human gene. Genomics 49:
76-82, 1998.
7. Lorenz, B.; Migliaccio, C.; Lichtner, P.; Meyer, C.; Strom, T.
M.; D'Urso, M.; Becker, J.; Ciccodicola, A.; Meitinger, T.: Cloning
and gene structure of the rod cGMP phosphodiesterase delta subunit
gene (PDED) in man and mouse. Europ. J. Hum. Genet. 6: 283-290,
1998.
8. Zhang, H.; Liu, X.; Zhang, K.; Chen, C.-K.; Frederick, J. M.; Prestwich,
G. D.; Baehr, W.: Photoreceptor cGMP phosphodiesterase delta subunit
(PDE-delta) functions as a prenyl-binding protein. J. Biol. Chem. 279:
407-413, 2004.
9. Zimmerman, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.;
Hoffmann, M.; Hahn, S. A.; Triola, G.; Wittinghofer, A.; Bastiaens,
P. I. H.; Waldmann, H.: Small molecule inhibition of the KRAS-PDE-delta
interaction impairs oncogenic KRAS signalling. Nature 497: 638-642,
2013.
*FIELD* CN
Patricia A. Hartz - updated: 11/19/2013
Patricia A. Hartz - updated: 10/3/2013
Ada Hamosh - updated: 7/8/2013
Sheryl A. Jankowski - updated: 8/5/1998
*FIELD* CD
Victor A. McKusick: 6/2/1998
*FIELD* ED
mgross: 11/20/2013
mcolton: 11/20/2013
mcolton: 11/19/2013
mgross: 10/23/2013
tpirozzi: 10/3/2013
alopez: 7/8/2013
carol: 10/7/1998
terry: 10/2/1998
carol: 8/5/1998
dholmes: 7/2/1998
carol: 6/2/1998
*RECORD*
*FIELD* NO
602676
*FIELD* TI
*602676 PHOSPHODIESTERASE 6D, cGMP-SPECIFIC, ROD, DELTA; PDE6D
;;RETINAL ROD PHOTORECEPTOR cGMP PHOSPHODIESTERASE, DELTA SUBUNIT; PDED;;
read morePDE-DELTA
*FIELD* TX
DESCRIPTION
PDE6D is a phosphodiesterase (EC 3.1.4.17) that binds to prenyl groups
and has a critical role in ciliogenesis (Humbert et al., 2012).
CLONING
Ershova et al. (1997) reported that the PDE6D gene encodes a 150-amino
acid protein.
Li et al. (1998) isolated both mouse and human PDE6D cDNAs from retinal
libraries, using a bovine probe. They found that the predicted 150-amino
acid polypeptides are unusually well conserved, with only 1 or 2
conservative substitutions in human, bovine, and mouse PDE6D. Amino acid
analysis predicted that the putative mammalian protein is soluble and
acidic, contains 2 N-linked glycosylation sites, and lacks hydrophobic
transmembrane domains. Li et al. (1998) found that the mammalian PDE6D
genes and the eyeless nematode C. elegans C27H5.1 gene have an identical
intron/exon arrangement. The C. elegans C27H5.1 polypeptide shares
approximately 70% amino acid similarity with the human PDE6D protein.
Southern blot analysis of a variety of species suggested that the
sequences of PDE6D are well conserved among vertebrate and invertebrate
species.
Using Northern blot analysis, Lorenz et al. (1998) detected a 1.3-kb
PDED transcript in human retina, heart, brain, placenta, liver, and
skeletal muscle. A preliminary screen of all 5 exons in 20 unrelated
patients with autosomal recessive retinitis pigmentosa revealed no PDED
mutation. Lorenz et al. (1998) pointed out that the bovine delta subunit
solubilizes the normally membrane-bound PDE and is the only subunit
expressed in extraocular tissues.
GENE STRUCTURE
Ershova et al. (1997) reported that the PDE6D gene contains 4 exons.
Lorenz et al. (1998) reported that the human PDED gene consists of 5
exons spanning at least 30 kb of genomic DNA.
MAPPING
By use of a cDNA fragment of the PDE6D gene, Ershova et al. (1997)
mapped the human PDE6D gene to 2q36 by fluorescence in situ
hybridization (FISH). By PCR analysis of human-hamster somatic cell
hybrids, Li et al. (1998) mapped the PDE6D gene to the long arm of
chromosome 2; by FISH, they localized the gene to 2q35-q36. Based on
these results and known synteny, they predicted that the mouse PDE6D
gene resides on chromosome 1. By FISH and radiation hybrid mapping,
Lorenz et al. (1998) localized the human PDED gene to 2q37.
GENE FUNCTION
cGMP is the cellular second messenger involved in the transduction of
visual signals in retinal rod and cone cells. Constitutively synthesized
by guanylate cyclase, its level is tightly controlled by modulating its
degradation by a specific phosphodiesterase (cGMP-PDE). The enzyme
characterized from bovine retinal rod cells is made of a catalytic core
consisting of a membrane-associated alpha-beta dimer. An inhibitory
gamma subunit enables transducin to regulate the rate of cGMP
degradation according to incoming visual signals. The delta subunit
(PDE6D) plays a role in stabilizing the catalytic dimer from membranes
(Florio et al., 1996).
Correct localization and signaling by farnesylated KRAS is regulated by
the prenyl-binding protein PDED, which sustains the spatial organization
of KRAS (190070) by facilitating its diffusion in the cytoplasm (Chandra
et al., 2012; Zhang et al., 2004). Zimmerman et al. (2013) reported that
interfering with the binding of mammalian PDED to KRAS by means of small
molecules provided a novel opportunity to suppress oncogenic RAS
signaling by altering its localization to endomembranes. Biochemical
screening and subsequent structure-based hit optimization yielded
inhibitors of the KRAS-PDED interaction that selectively bound to the
prenyl-binding pocket of PDED with nanomolar affinity, inhibited
oncogenic RAS signaling, and suppressed in vitro and in vivo
proliferation of human pancreatic ductal adenocarcinoma cells that are
dependent on oncogenic KRAS.
By tandem affinity purification, Humbert et al. (2012) found that
epitope-tagged PDE6D interacted with several prenylated proteins and
small GTPases in HEK293 cells. Coimmunoprecipitation, mutation, and
knockdown experiments with human RPE1 retinal pigment epithelium cells
and mouse IMCD3 collecting duct cells revealed that PDE6D was involved
in a protein network that targeted the phospholipid phosphatase INPP5E
(613037) to ciliary membranes. PDE6D interacted with the prenylated, but
not the soluble, form of INPP5E. The small GTPase ARL13B (608922) bound
an adjacent region of INPP5E, and overexpression of ARL13B promoted
release of INPP5E from PDE6D. Knockdown of ARL13B or the ciliary protein
CEP164 (614848) reduced or eliminated ciliogenesis in RPE1 cells,
whereas PDE6D knockdown had little effect on ciliogenesis. Humbert et
al. (2012) hypothesized that PDE5D, CEP164, and ARL13B mediate
sequential steps in targeting INPP5E to ciliary membranes for cilia
formation.
BIOCHEMICAL FEATURES
Ismail et al. (2011) stated that PDE-delta binds to farnesylated small G
proteins. They presented the 1.7-angstrom structure of human PDE-delta
in complex with C-terminally farnesylated human RHEB (601293). PDE-delta
assumed immunoglobulin-like beta-sandwich folds with a flexible loop and
a farnesyl-binding pocket. PDE-delta interacted almost exclusively with
the C-terminal farnesyl moiety of RHEB. The interaction did not require
guanine nucleotide, which bound RHEB on a surface nearly opposite to the
PDE-delta-binding site. Ismail et al. (2011) observed that the limited
contact of PDE-delta with RHEB provides PDE-delta with relaxed
specificity for farnesylated cargo proteins. PDE-delta also interacted
with a second small G protein, mouse Arl2 (601175). The interaction of
PDE-delta with Arl2 was dependent upon GTP and caused a conformational
change in PDE-delta that closed its farnesyl-binding pocket. In
solution, addition of Arl2-GTP dissociated the PDE-delta-farnesylated
RHEB complex. Addition of Arl3 (604695)-GTP also caused release of
farnesylated RHEB from PDE-delta. In transfected canine kidney cells,
fluorescence-labeled RHEB showed endoplasmic reticulum (ER) and Golgi
localization. Addition of PDE-delta relocalized RHEB into a cytoplasmic
and nuclear distribution, and subsequent addition of Arl2-GTP restored
RHEB localization to ER and Golgi membranes. Ismail et al. (2011)
concluded that PDE-delta functions as a solubilization factor for
farnesylated RHEB and that ARL2 and ARL3 act in a GTP-dependent manner
as allosteric release factors for farnesylated RHEB.
*FIELD* RF
1. Chandra, A.; Grecco, H. E.; Pisupati, V.; Perera, D.; Cassidy,
L.; Skoulidis, F.; Ismail, S. A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman,
A. R.; Wittinghofer, A.; Bastiaens, P. I. H.: The GDI-like solubilizing
factor PDE-delta sustains the spatial organization and signalling
of Ras family proteins. Nature Cell Biol. 14: 148-158, 2012. Note:
Erratum: Nature Cell Biol. 14: 329 only, 2012.
2. Ershova, G.; Derre, J.; Chetelin, S.; Nancy, V.; Berger, R.; Kaplan,
J.; Munnich, A.; de Gunzburg, J.: cDNA sequence, genomic organization
and mapping of PDE6D, the human gene encoding the delta subunit of
the cGMP phosphodiesterase of retinal rod cells to chromosome 2q36. Cytogenet.
Cell Genet. 79: 139-141, 1997.
3. Florio, S. K.; Prusti, R. K.; Beavo, J. A.: Solubilization of
membrane-bound rod phosphodiesterase by the rod phosphodiesterase
recombinant delta subunit. J. Biol. Chem. 271: 24036-24047, 1996.
4. Humbert, M. C.; Weihbrecht, K.; Searby, C. C.; Li, Y.; Pope, R.
M.; Sheffield, V. C.; Seo, S.: ARL13B, PDE6D, and CEP164 form a functional
network for INPP5E ciliary targeting. Proc. Nat. Acad. Sci. 109:
19691-19696, 2012.
5. Ismail, S. A.; Chen, Y.-X.; Rusinova, A.; Chandra, A.; Bierbaum,
M.; Gremer, L.; Triola, G.; Waldmann, H.; Bastiaens, P. I. H.; Wittinghofer,
A.: Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for
farnesylated cargo. Nature Chem. Biol. 7: 942-949, 2011.
6. Li, N.; Florio, S. K.; Pettenati, M. J.; Rao, P. N.; Beavo, J.
A.; Baehr, W.: Characterization of human and mouse rod cGMP phosphodiesterase
delta subunit (PDE6D) and chromosomal localization of the human gene. Genomics 49:
76-82, 1998.
7. Lorenz, B.; Migliaccio, C.; Lichtner, P.; Meyer, C.; Strom, T.
M.; D'Urso, M.; Becker, J.; Ciccodicola, A.; Meitinger, T.: Cloning
and gene structure of the rod cGMP phosphodiesterase delta subunit
gene (PDED) in man and mouse. Europ. J. Hum. Genet. 6: 283-290,
1998.
8. Zhang, H.; Liu, X.; Zhang, K.; Chen, C.-K.; Frederick, J. M.; Prestwich,
G. D.; Baehr, W.: Photoreceptor cGMP phosphodiesterase delta subunit
(PDE-delta) functions as a prenyl-binding protein. J. Biol. Chem. 279:
407-413, 2004.
9. Zimmerman, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.;
Hoffmann, M.; Hahn, S. A.; Triola, G.; Wittinghofer, A.; Bastiaens,
P. I. H.; Waldmann, H.: Small molecule inhibition of the KRAS-PDE-delta
interaction impairs oncogenic KRAS signalling. Nature 497: 638-642,
2013.
*FIELD* CN
Patricia A. Hartz - updated: 11/19/2013
Patricia A. Hartz - updated: 10/3/2013
Ada Hamosh - updated: 7/8/2013
Sheryl A. Jankowski - updated: 8/5/1998
*FIELD* CD
Victor A. McKusick: 6/2/1998
*FIELD* ED
mgross: 11/20/2013
mcolton: 11/20/2013
mcolton: 11/19/2013
mgross: 10/23/2013
tpirozzi: 10/3/2013
alopez: 7/8/2013
carol: 10/7/1998
terry: 10/2/1998
carol: 8/5/1998
dholmes: 7/2/1998
carol: 6/2/1998