Full text data of ACP1
ACP1
[Confidence: medium (present in either hRBCD or BSc_CH or PM22954596)]
Low molecular weight phosphotyrosine protein phosphatase; LMW-PTP; LMW-PTPase; 3.1.3.48 (Adipocyte acid phosphatase; Low molecular weight cytosolic acid phosphatase; 3.1.3.2; Red cell acid phosphatase 1)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
Low molecular weight phosphotyrosine protein phosphatase; LMW-PTP; LMW-PTPase; 3.1.3.48 (Adipocyte acid phosphatase; Low molecular weight cytosolic acid phosphatase; 3.1.3.2; Red cell acid phosphatase 1)
Note: presumably soluble (membrane word is not in UniProt keywords or features)
hRBCD
IPI00218847
IPI00218847 Red cell acid phosphatase 1, isozyme S Red cell acid phosphatase 1, Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates. Isoform 3 does not possess phosphatase activity soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a cytoplasmic n/a found at its expected molecular weight found at molecular weight
IPI00218847 Red cell acid phosphatase 1, isozyme S Red cell acid phosphatase 1, Acts on tyrosine phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates. Isoform 3 does not possess phosphatase activity soluble n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a cytoplasmic n/a found at its expected molecular weight found at molecular weight
UniProt
P24666
ID PPAC_HUMAN Reviewed; 158 AA.
AC P24666; A8K1L9; P24667; Q16035; Q16036; Q16725; Q3KQX8; Q53RU0;
read moreDT 01-MAR-1992, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 153.
DE RecName: Full=Low molecular weight phosphotyrosine protein phosphatase;
DE Short=LMW-PTP;
DE Short=LMW-PTPase;
DE EC=3.1.3.48;
DE AltName: Full=Adipocyte acid phosphatase;
DE AltName: Full=Low molecular weight cytosolic acid phosphatase;
DE EC=3.1.3.2;
DE AltName: Full=Red cell acid phosphatase 1;
GN Name=ACP1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP PROTEIN SEQUENCE (ALLELE B; ISOFORMS 1 AND 2).
RX PubMed=1939112;
RA Dissing J., Johnsen A.H., Sensabaugh G.F.;
RT "Human red cell acid phosphatase (ACP1). The amino acid sequence of
RT the two isozymes Bf and Bs encoded by the ACP1*B allele.";
RL J. Biol. Chem. 266:20619-20625(1991).
RN [2]
RP PROTEIN SEQUENCE (ALLELES A AND C; ISOFORMS 1 AND 2).
RX PubMed=1627603; DOI=10.1016/0167-4838(92)90155-7;
RA Dissing J., Johnsen A.H.;
RT "Human red cell acid phosphatase (ACP1): the primary structure of the
RT two pairs of isozymes encoded by the ACP1*A and ACP1*C alleles.";
RL Biochim. Biophys. Acta 1121:261-268(1992).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2).
RX PubMed=1587862;
RA Wo Y.-Y.P., McCormack A.L., Shabonowitz J., Hunt D.F., Davis J.P.,
RA Mitchell G.L., van Etten R.L.;
RT "Sequencing, cloning, and expression of human red cell-type acid
RT phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase.";
RL J. Biol. Chem. 267:10856-10865(1992).
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=8586411; DOI=10.1006/geno.1995.9893;
RA Bryson G.L.M., Massa H., Trask B.J., van Etten R.L.;
RT "Gene structure, sequence, and chromosomal localization of the human
RT red cell-type low-molecular-weight acid phosphotyrosyl phosphatase
RT gene, ACP1.";
RL Genomics 30:133-140(1995).
RN [5]
RP NUCLEOTIDE SEQUENCE (ISOFORMS 1 AND 2).
RC TISSUE=Adipocyte;
RX PubMed=1304913;
RA Shekels L.L., Smith A.J., van Etten R.L., Bernlohr D.A.;
RT "Identification of the adipocyte acid phosphatase as a PAO-sensitive
RT tyrosyl phosphatase.";
RL Protein Sci. 1:710-721(1992).
RN [6]
RP NUCLEOTIDE SEQUENCE (ISOFORM 2), TISSUE SPECIFICITY, PHOSPHORYLATION
RP AT TYR-132 AND TYR-133, AND MUTAGENESIS OF CYS-13; TYR-132 AND
RP TYR-133.
RX PubMed=9038134; DOI=10.1074/jbc.272.39.24480;
RA Tailor P., Gilman J., Williams S., Couture C., Mustelin T.;
RT "Regulation of the low molecular weight phosphotyrosine phosphatase by
RT phosphorylation at tyrosines 131 and 132.";
RL J. Biol. Chem. 272:5371-5374(1997).
RN [7]
RP NUCLEOTIDE SEQUENCE (ISOFORM 3).
RX PubMed=10336608; DOI=10.1046/j.1432-1327.1999.00353.x;
RA Tailor P., Gilman J., Williams S., Mustelin T.;
RT "A novel isoform of the low molecular weight phosphotyrosine
RT phosphatase, LMPTP-C, arising from alternative mRNA splicing.";
RL Eur. J. Biochem. 262:277-282(1999).
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RC TISSUE=Hippocampus, and Skeletal muscle;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15815621; DOI=10.1038/nature03466;
RA Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H.,
RA Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M.,
RA Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E.,
RA Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J.,
RA Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C.,
RA Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J.,
RA Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A.,
RA Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K.,
RA Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M.,
RA Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K.,
RA McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C.,
RA Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N.,
RA Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M.,
RA Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E.,
RA Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P.,
RA Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A.,
RA Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A.,
RA Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T.,
RA Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D.,
RA Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X.,
RA McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C.,
RA Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S.,
RA Miller W., Eichler E.E., Bork P., Suyama M., Torrents D.,
RA Waterston R.H., Wilson R.K.;
RT "Generation and annotation of the DNA sequences of human chromosomes 2
RT and 4.";
RL Nature 434:724-731(2005).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND VARIANT
RP ARG-106.
RC TISSUE=Muscle, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [13]
RP PROTEIN SEQUENCE OF 42-59, AND MASS SPECTROMETRY.
RC TISSUE=Brain, and Cajal-Retzius cell;
RA Lubec G., Vishwanath V.;
RL Submitted (MAR-2007) to UniProtKB.
RN [14]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 99-158 (ISOFORMS 1/2).
RC TISSUE=Blood;
RX PubMed=8364553; DOI=10.1093/hmg/2.7.1079-a;
RA Sensabaugh G.F., Lazaruk K.A.;
RT "A TaqI site identifies the *A allele at the ACP1 locus.";
RL Hum. Mol. Genet. 2:1079-1079(1993).
RN [15]
RP INTERACTION WITH EPHB1.
RX PubMed=9499402;
RA Stein E., Lane A.A., Cerretti D.P., Schoecklmann H.O., Schroff A.D.,
RA Van Etten R.L., Daniel T.O.;
RT "Eph receptors discriminate specific ligand oligomers to determine
RT alternative signaling complexes, attachment, and assembly responses.";
RL Genes Dev. 12:667-678(1998).
RN [16]
RP INTERACTION WITH EPHA2.
RX PubMed=12167657; DOI=10.1074/jbc.M207127200;
RA Kikawa K.D., Vidale D.R., Van Etten R.L., Kinch M.S.;
RT "Regulation of the EphA2 kinase by the low molecular weight tyrosine
RT phosphatase induces transformation.";
RL J. Biol. Chem. 277:39274-39279(2002).
RN [17]
RP INTERACTION WITH SPTAN1.
RX PubMed=11971983; DOI=10.1128/MCB.22.10.3527-3536.2002;
RA Nicolas G., Fournier C.M., Galand C., Malbert-Colas L., Bournier O.,
RA Kroviarski Y., Bourgeois M., Camonis J.H., Dhermy D., Grandchamp B.,
RA Lecomte M.-C.;
RT "Tyrosine phosphorylation regulates alpha II spectrin cleavage by
RT calpain.";
RL Mol. Cell. Biol. 22:3527-3536(2002).
RN [18]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [19]
RP X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
RX PubMed=9705307; DOI=10.1074/jbc.273.34.21714;
RA Zhang M., Stauffacher C.V., Lin D., van Etten R.L.;
RT "Crystal structure of a human low molecular weight phosphotyrosyl
RT phosphatase. Implications for substrate specificity.";
RL J. Biol. Chem. 273:21714-21720(1998).
CC -!- FUNCTION: Acts on tyrosine phosphorylated proteins, low-MW aryl
CC phosphates and natural and synthetic acyl phosphates. Isoform 3
CC does not possess phosphatase activity.
CC -!- CATALYTIC ACTIVITY: Protein tyrosine phosphate + H(2)O = protein
CC tyrosine + phosphate.
CC -!- CATALYTIC ACTIVITY: A phosphate monoester + H(2)O = an alcohol +
CC phosphate.
CC -!- ENZYME REGULATION: Inhibited by sulfhydryl reagents.
CC -!- SUBUNIT: Isoform 1 interacts with the SH3 domain of SPTAN1. There
CC is no interaction observed for isoforms 2 or 3. Interacts with
CC EPHA2; dephosphorylates EPHA2. Interacts with EPHB1.
CC -!- INTERACTION:
CC Self; NbExp=1; IntAct=EBI-717701, EBI-717701;
CC -!- SUBCELLULAR LOCATION: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=3;
CC Comment=The ratio of isoform 1 to isoform 2 is 2:1 in allele A,
CC 4:1 in allele B and 1:4 in allele C;
CC Name=1; Synonyms=F, A, Alpha, LMPTP-A, HCPTP-A;
CC IsoId=P24666-1; Sequence=Displayed;
CC Name=2; Synonyms=S, B, Beta, LMPTP-B, HCPTP-B;
CC IsoId=P24666-2, P24667-1;
CC Sequence=VSP_010087;
CC Name=3; Synonyms=C, LMPTP-C;
CC IsoId=P24666-3; Sequence=VSP_010088;
CC -!- TISSUE SPECIFICITY: T-lymphocytes express only isoform 2.
CC -!- POLYMORPHISM: ACP1 is genetically polymorphic. Three common
CC alleles are known in Caucasians: ACP1*A, ACP1*B and ACP1*C. They
CC give rise to six different phenotypes. Each allele appears to
CC encode two electrophoretically different isozymes, F and S, which
CC are produced in allele-specific ratios. The sequence shown is that
CC of allele ACP1*B and allele ACP1*C.
CC -!- SIMILARITY: Belongs to the low molecular weight phosphotyrosine
CC protein phosphatase family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M83653; AAB59354.1; -; mRNA.
DR EMBL; M83654; AAB59355.1; -; mRNA.
DR EMBL; U25849; AAC52067.1; -; Genomic_DNA.
DR EMBL; U25847; AAC52067.1; JOINED; Genomic_DNA.
DR EMBL; U25848; AAC52067.1; JOINED; Genomic_DNA.
DR EMBL; S62884; AAB27085.1; -; mRNA.
DR EMBL; S62885; AAB27086.1; -; mRNA.
DR EMBL; M87545; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; AK289934; BAF82623.1; -; mRNA.
DR EMBL; AK291861; BAF84550.1; -; mRNA.
DR EMBL; BT007136; AAP35800.1; -; mRNA.
DR EMBL; AC079779; AAY14958.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX01112.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX01116.1; -; Genomic_DNA.
DR EMBL; BC007422; AAH07422.1; -; mRNA.
DR EMBL; BC106011; AAI06012.1; -; mRNA.
DR EMBL; L06508; AAB59628.1; -; Genomic_DNA.
DR PIR; A38148; A38148.
DR PIR; B38148; B38148.
DR RefSeq; NP_004291.1; NM_004300.3.
DR RefSeq; NP_009030.1; NM_007099.3.
DR UniGene; Hs.558296; -.
DR PDB; 1XWW; X-ray; 1.63 A; A=2-158.
DR PDB; 3N8I; X-ray; 1.50 A; A=2-158.
DR PDB; 5PNT; X-ray; 2.20 A; A=2-158.
DR PDBsum; 1XWW; -.
DR PDBsum; 3N8I; -.
DR PDBsum; 5PNT; -.
DR ProteinModelPortal; P24666; -.
DR SMR; P24666; 5-158.
DR IntAct; P24666; 6.
DR STRING; 9606.ENSP00000272065; -.
DR BindingDB; P24666; -.
DR ChEMBL; CHEMBL4903; -.
DR PhosphoSite; P24666; -.
DR DMDM; 1709543; -.
DR REPRODUCTION-2DPAGE; IPI00218847; -.
DR REPRODUCTION-2DPAGE; IPI00219861; -.
DR PaxDb; P24666; -.
DR PRIDE; P24666; -.
DR DNASU; 52; -.
DR Ensembl; ENST00000272065; ENSP00000272065; ENSG00000143727.
DR Ensembl; ENST00000272067; ENSP00000272067; ENSG00000143727.
DR GeneID; 52; -.
DR KEGG; hsa:52; -.
DR UCSC; uc002qwf.3; human.
DR CTD; 52; -.
DR GeneCards; GC02P000254; -.
DR HGNC; HGNC:122; ACP1.
DR HPA; HPA016754; -.
DR MIM; 171500; gene.
DR neXtProt; NX_P24666; -.
DR PharmGKB; PA24446; -.
DR eggNOG; COG0394; -.
DR HOVERGEN; HBG007540; -.
DR InParanoid; P24666; -.
DR KO; K14394; -.
DR OMA; IDITVDS; -.
DR OrthoDB; EOG7QZGCG; -.
DR PhylomeDB; P24666; -.
DR SignaLink; P24666; -.
DR EvolutionaryTrace; P24666; -.
DR GeneWiki; ACP1; -.
DR GenomeRNAi; 52; -.
DR NextBio; 205; -.
DR PRO; PR:P24666; -.
DR ArrayExpress; P24666; -.
DR Bgee; P24666; -.
DR CleanEx; HS_ACP1; -.
DR Genevestigator; P24666; -.
DR GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
DR GO; GO:0009898; C:cytoplasmic side of plasma membrane; IDA:UniProtKB.
DR GO; GO:0043005; C:neuron projection; IEA:Ensembl.
DR GO; GO:0005634; C:nucleus; IDA:HPA.
DR GO; GO:0003993; F:acid phosphatase activity; TAS:ProtInc.
DR GO; GO:0004726; F:non-membrane spanning protein tyrosine phosphatase activity; IEA:InterPro.
DR GO; GO:0007268; P:synaptic transmission; IEA:Ensembl.
DR InterPro; IPR023485; Ptyr_pPase_SF.
DR InterPro; IPR002115; Tyr_Pase_low_mol_wt_mml.
DR InterPro; IPR000106; Tyr_phospatase/Ars_reductase.
DR InterPro; IPR017867; Tyr_phospatase_low_mol_wt.
DR PANTHER; PTHR11717; PTHR11717; 1.
DR Pfam; PF01451; LMWPc; 1.
DR PRINTS; PR00719; LMWPTPASE.
DR PRINTS; PR00720; MAMMALPTPASE.
DR SMART; SM00226; LMWPc; 1.
DR SUPFAM; SSF52788; SSF52788; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Complete proteome;
KW Cytoplasm; Direct protein sequencing; Hydrolase; Phosphoprotein;
KW Polymorphism; Protein phosphatase; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 158 Low molecular weight phosphotyrosine
FT protein phosphatase.
FT /FTId=PRO_0000046558.
FT ACT_SITE 13 13 Nucleophile (By similarity).
FT ACT_SITE 19 19 By similarity.
FT ACT_SITE 130 130 Proton donor (By similarity).
FT MOD_RES 2 2 N-acetylalanine.
FT MOD_RES 132 132 Phosphotyrosine.
FT MOD_RES 133 133 Phosphotyrosine.
FT VAR_SEQ 41 74 RVDSAATSGYEIGNPPDYRGQSCMKRHGIPMSHV -> VID
FT SGAVSDWNVGRSPDPRAVSCLRNHGIHTAHK (in
FT isoform 2).
FT /FTId=VSP_010087.
FT VAR_SEQ 41 74 Missing (in isoform 3).
FT /FTId=VSP_010088.
FT VARIANT 7 7 K -> N (in dbSNP:rs11691572).
FT /FTId=VAR_050526.
FT VARIANT 106 106 Q -> R (in allele ACP1*A;
FT dbSNP:rs7576247).
FT /FTId=VAR_006171.
FT VARIANT 137 137 S -> F (in dbSNP:rs35569198).
FT /FTId=VAR_050527.
FT MUTAGEN 13 13 C->S: Inactive.
FT MUTAGEN 132 132 Y->F: Reduced phosphorylation and
FT activity.
FT MUTAGEN 133 133 Y->F: Reduced phosphorylation. No effect
FT on activity.
FT CONFLICT 2 6 AEQAT -> PRRGR (in Ref. 5; AAB27086).
FT CONFLICT 13 20 CLGNICRS -> PARREAAR (in Ref. 5;
FT AAB27085).
FT CONFLICT 32 32 T -> W (in Ref. 1; AA sequence and 2; AA
FT sequence).
FT STRAND 7 18
FT HELIX 19 33
FT HELIX 37 39
FT STRAND 40 49
FT TURN 50 53
FT HELIX 58 66
FT HELIX 80 85
FT STRAND 87 93
FT HELIX 94 104
FT STRAND 113 116
FT HELIX 117 120
FT HELIX 136 155
SQ SEQUENCE 158 AA; 18042 MW; 46617BD799313EED CRC64;
MAEQATKSVL FVCLGNICRS PIAEAVFRKL VTDQNISENW RVDSAATSGY EIGNPPDYRG
QSCMKRHGIP MSHVARQITK EDFATFDYIL CMDESNLRDL NRKSNQVKTC KAKIELLGSY
DPQKQLIIED PYYGNDSDFE TVYQQCVRCC RAFLEKAH
//
ID PPAC_HUMAN Reviewed; 158 AA.
AC P24666; A8K1L9; P24667; Q16035; Q16036; Q16725; Q3KQX8; Q53RU0;
read moreDT 01-MAR-1992, integrated into UniProtKB/Swiss-Prot.
DT 23-JAN-2007, sequence version 3.
DT 22-JAN-2014, entry version 153.
DE RecName: Full=Low molecular weight phosphotyrosine protein phosphatase;
DE Short=LMW-PTP;
DE Short=LMW-PTPase;
DE EC=3.1.3.48;
DE AltName: Full=Adipocyte acid phosphatase;
DE AltName: Full=Low molecular weight cytosolic acid phosphatase;
DE EC=3.1.3.2;
DE AltName: Full=Red cell acid phosphatase 1;
GN Name=ACP1;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP PROTEIN SEQUENCE (ALLELE B; ISOFORMS 1 AND 2).
RX PubMed=1939112;
RA Dissing J., Johnsen A.H., Sensabaugh G.F.;
RT "Human red cell acid phosphatase (ACP1). The amino acid sequence of
RT the two isozymes Bf and Bs encoded by the ACP1*B allele.";
RL J. Biol. Chem. 266:20619-20625(1991).
RN [2]
RP PROTEIN SEQUENCE (ALLELES A AND C; ISOFORMS 1 AND 2).
RX PubMed=1627603; DOI=10.1016/0167-4838(92)90155-7;
RA Dissing J., Johnsen A.H.;
RT "Human red cell acid phosphatase (ACP1): the primary structure of the
RT two pairs of isozymes encoded by the ACP1*A and ACP1*C alleles.";
RL Biochim. Biophys. Acta 1121:261-268(1992).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2).
RX PubMed=1587862;
RA Wo Y.-Y.P., McCormack A.L., Shabonowitz J., Hunt D.F., Davis J.P.,
RA Mitchell G.L., van Etten R.L.;
RT "Sequencing, cloning, and expression of human red cell-type acid
RT phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase.";
RL J. Biol. Chem. 267:10856-10865(1992).
RN [4]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=8586411; DOI=10.1006/geno.1995.9893;
RA Bryson G.L.M., Massa H., Trask B.J., van Etten R.L.;
RT "Gene structure, sequence, and chromosomal localization of the human
RT red cell-type low-molecular-weight acid phosphotyrosyl phosphatase
RT gene, ACP1.";
RL Genomics 30:133-140(1995).
RN [5]
RP NUCLEOTIDE SEQUENCE (ISOFORMS 1 AND 2).
RC TISSUE=Adipocyte;
RX PubMed=1304913;
RA Shekels L.L., Smith A.J., van Etten R.L., Bernlohr D.A.;
RT "Identification of the adipocyte acid phosphatase as a PAO-sensitive
RT tyrosyl phosphatase.";
RL Protein Sci. 1:710-721(1992).
RN [6]
RP NUCLEOTIDE SEQUENCE (ISOFORM 2), TISSUE SPECIFICITY, PHOSPHORYLATION
RP AT TYR-132 AND TYR-133, AND MUTAGENESIS OF CYS-13; TYR-132 AND
RP TYR-133.
RX PubMed=9038134; DOI=10.1074/jbc.272.39.24480;
RA Tailor P., Gilman J., Williams S., Couture C., Mustelin T.;
RT "Regulation of the low molecular weight phosphotyrosine phosphatase by
RT phosphorylation at tyrosines 131 and 132.";
RL J. Biol. Chem. 272:5371-5374(1997).
RN [7]
RP NUCLEOTIDE SEQUENCE (ISOFORM 3).
RX PubMed=10336608; DOI=10.1046/j.1432-1327.1999.00353.x;
RA Tailor P., Gilman J., Williams S., Mustelin T.;
RT "A novel isoform of the low molecular weight phosphotyrosine
RT phosphatase, LMPTP-C, arising from alternative mRNA splicing.";
RL Eur. J. Biochem. 262:277-282(1999).
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
RC TISSUE=Hippocampus, and Skeletal muscle;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
RA Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S.,
RA Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y.,
RA Phelan M., Farmer A.;
RT "Cloning of human full-length CDSs in BD Creator(TM) system donor
RT vector.";
RL Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases.
RN [10]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15815621; DOI=10.1038/nature03466;
RA Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H.,
RA Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M.,
RA Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E.,
RA Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J.,
RA Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C.,
RA Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J.,
RA Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A.,
RA Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K.,
RA Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M.,
RA Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K.,
RA McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C.,
RA Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N.,
RA Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M.,
RA Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E.,
RA Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P.,
RA Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A.,
RA Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A.,
RA Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T.,
RA Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D.,
RA Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X.,
RA McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C.,
RA Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S.,
RA Miller W., Eichler E.E., Bork P., Suyama M., Torrents D.,
RA Waterston R.H., Wilson R.K.;
RT "Generation and annotation of the DNA sequences of human chromosomes 2
RT and 4.";
RL Nature 434:724-731(2005).
RN [11]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.
RN [12]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND VARIANT
RP ARG-106.
RC TISSUE=Muscle, and Placenta;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [13]
RP PROTEIN SEQUENCE OF 42-59, AND MASS SPECTROMETRY.
RC TISSUE=Brain, and Cajal-Retzius cell;
RA Lubec G., Vishwanath V.;
RL Submitted (MAR-2007) to UniProtKB.
RN [14]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 99-158 (ISOFORMS 1/2).
RC TISSUE=Blood;
RX PubMed=8364553; DOI=10.1093/hmg/2.7.1079-a;
RA Sensabaugh G.F., Lazaruk K.A.;
RT "A TaqI site identifies the *A allele at the ACP1 locus.";
RL Hum. Mol. Genet. 2:1079-1079(1993).
RN [15]
RP INTERACTION WITH EPHB1.
RX PubMed=9499402;
RA Stein E., Lane A.A., Cerretti D.P., Schoecklmann H.O., Schroff A.D.,
RA Van Etten R.L., Daniel T.O.;
RT "Eph receptors discriminate specific ligand oligomers to determine
RT alternative signaling complexes, attachment, and assembly responses.";
RL Genes Dev. 12:667-678(1998).
RN [16]
RP INTERACTION WITH EPHA2.
RX PubMed=12167657; DOI=10.1074/jbc.M207127200;
RA Kikawa K.D., Vidale D.R., Van Etten R.L., Kinch M.S.;
RT "Regulation of the EphA2 kinase by the low molecular weight tyrosine
RT phosphatase induces transformation.";
RL J. Biol. Chem. 277:39274-39279(2002).
RN [17]
RP INTERACTION WITH SPTAN1.
RX PubMed=11971983; DOI=10.1128/MCB.22.10.3527-3536.2002;
RA Nicolas G., Fournier C.M., Galand C., Malbert-Colas L., Bournier O.,
RA Kroviarski Y., Bourgeois M., Camonis J.H., Dhermy D., Grandchamp B.,
RA Lecomte M.-C.;
RT "Tyrosine phosphorylation regulates alpha II spectrin cleavage by
RT calpain.";
RL Mol. Cell. Biol. 22:3527-3536(2002).
RN [18]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [19]
RP X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
RX PubMed=9705307; DOI=10.1074/jbc.273.34.21714;
RA Zhang M., Stauffacher C.V., Lin D., van Etten R.L.;
RT "Crystal structure of a human low molecular weight phosphotyrosyl
RT phosphatase. Implications for substrate specificity.";
RL J. Biol. Chem. 273:21714-21720(1998).
CC -!- FUNCTION: Acts on tyrosine phosphorylated proteins, low-MW aryl
CC phosphates and natural and synthetic acyl phosphates. Isoform 3
CC does not possess phosphatase activity.
CC -!- CATALYTIC ACTIVITY: Protein tyrosine phosphate + H(2)O = protein
CC tyrosine + phosphate.
CC -!- CATALYTIC ACTIVITY: A phosphate monoester + H(2)O = an alcohol +
CC phosphate.
CC -!- ENZYME REGULATION: Inhibited by sulfhydryl reagents.
CC -!- SUBUNIT: Isoform 1 interacts with the SH3 domain of SPTAN1. There
CC is no interaction observed for isoforms 2 or 3. Interacts with
CC EPHA2; dephosphorylates EPHA2. Interacts with EPHB1.
CC -!- INTERACTION:
CC Self; NbExp=1; IntAct=EBI-717701, EBI-717701;
CC -!- SUBCELLULAR LOCATION: Cytoplasm.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=3;
CC Comment=The ratio of isoform 1 to isoform 2 is 2:1 in allele A,
CC 4:1 in allele B and 1:4 in allele C;
CC Name=1; Synonyms=F, A, Alpha, LMPTP-A, HCPTP-A;
CC IsoId=P24666-1; Sequence=Displayed;
CC Name=2; Synonyms=S, B, Beta, LMPTP-B, HCPTP-B;
CC IsoId=P24666-2, P24667-1;
CC Sequence=VSP_010087;
CC Name=3; Synonyms=C, LMPTP-C;
CC IsoId=P24666-3; Sequence=VSP_010088;
CC -!- TISSUE SPECIFICITY: T-lymphocytes express only isoform 2.
CC -!- POLYMORPHISM: ACP1 is genetically polymorphic. Three common
CC alleles are known in Caucasians: ACP1*A, ACP1*B and ACP1*C. They
CC give rise to six different phenotypes. Each allele appears to
CC encode two electrophoretically different isozymes, F and S, which
CC are produced in allele-specific ratios. The sequence shown is that
CC of allele ACP1*B and allele ACP1*C.
CC -!- SIMILARITY: Belongs to the low molecular weight phosphotyrosine
CC protein phosphatase family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; M83653; AAB59354.1; -; mRNA.
DR EMBL; M83654; AAB59355.1; -; mRNA.
DR EMBL; U25849; AAC52067.1; -; Genomic_DNA.
DR EMBL; U25847; AAC52067.1; JOINED; Genomic_DNA.
DR EMBL; U25848; AAC52067.1; JOINED; Genomic_DNA.
DR EMBL; S62884; AAB27085.1; -; mRNA.
DR EMBL; S62885; AAB27086.1; -; mRNA.
DR EMBL; M87545; -; NOT_ANNOTATED_CDS; mRNA.
DR EMBL; AK289934; BAF82623.1; -; mRNA.
DR EMBL; AK291861; BAF84550.1; -; mRNA.
DR EMBL; BT007136; AAP35800.1; -; mRNA.
DR EMBL; AC079779; AAY14958.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX01112.1; -; Genomic_DNA.
DR EMBL; CH471053; EAX01116.1; -; Genomic_DNA.
DR EMBL; BC007422; AAH07422.1; -; mRNA.
DR EMBL; BC106011; AAI06012.1; -; mRNA.
DR EMBL; L06508; AAB59628.1; -; Genomic_DNA.
DR PIR; A38148; A38148.
DR PIR; B38148; B38148.
DR RefSeq; NP_004291.1; NM_004300.3.
DR RefSeq; NP_009030.1; NM_007099.3.
DR UniGene; Hs.558296; -.
DR PDB; 1XWW; X-ray; 1.63 A; A=2-158.
DR PDB; 3N8I; X-ray; 1.50 A; A=2-158.
DR PDB; 5PNT; X-ray; 2.20 A; A=2-158.
DR PDBsum; 1XWW; -.
DR PDBsum; 3N8I; -.
DR PDBsum; 5PNT; -.
DR ProteinModelPortal; P24666; -.
DR SMR; P24666; 5-158.
DR IntAct; P24666; 6.
DR STRING; 9606.ENSP00000272065; -.
DR BindingDB; P24666; -.
DR ChEMBL; CHEMBL4903; -.
DR PhosphoSite; P24666; -.
DR DMDM; 1709543; -.
DR REPRODUCTION-2DPAGE; IPI00218847; -.
DR REPRODUCTION-2DPAGE; IPI00219861; -.
DR PaxDb; P24666; -.
DR PRIDE; P24666; -.
DR DNASU; 52; -.
DR Ensembl; ENST00000272065; ENSP00000272065; ENSG00000143727.
DR Ensembl; ENST00000272067; ENSP00000272067; ENSG00000143727.
DR GeneID; 52; -.
DR KEGG; hsa:52; -.
DR UCSC; uc002qwf.3; human.
DR CTD; 52; -.
DR GeneCards; GC02P000254; -.
DR HGNC; HGNC:122; ACP1.
DR HPA; HPA016754; -.
DR MIM; 171500; gene.
DR neXtProt; NX_P24666; -.
DR PharmGKB; PA24446; -.
DR eggNOG; COG0394; -.
DR HOVERGEN; HBG007540; -.
DR InParanoid; P24666; -.
DR KO; K14394; -.
DR OMA; IDITVDS; -.
DR OrthoDB; EOG7QZGCG; -.
DR PhylomeDB; P24666; -.
DR SignaLink; P24666; -.
DR EvolutionaryTrace; P24666; -.
DR GeneWiki; ACP1; -.
DR GenomeRNAi; 52; -.
DR NextBio; 205; -.
DR PRO; PR:P24666; -.
DR ArrayExpress; P24666; -.
DR Bgee; P24666; -.
DR CleanEx; HS_ACP1; -.
DR Genevestigator; P24666; -.
DR GO; GO:0005737; C:cytoplasm; IDA:UniProtKB.
DR GO; GO:0009898; C:cytoplasmic side of plasma membrane; IDA:UniProtKB.
DR GO; GO:0043005; C:neuron projection; IEA:Ensembl.
DR GO; GO:0005634; C:nucleus; IDA:HPA.
DR GO; GO:0003993; F:acid phosphatase activity; TAS:ProtInc.
DR GO; GO:0004726; F:non-membrane spanning protein tyrosine phosphatase activity; IEA:InterPro.
DR GO; GO:0007268; P:synaptic transmission; IEA:Ensembl.
DR InterPro; IPR023485; Ptyr_pPase_SF.
DR InterPro; IPR002115; Tyr_Pase_low_mol_wt_mml.
DR InterPro; IPR000106; Tyr_phospatase/Ars_reductase.
DR InterPro; IPR017867; Tyr_phospatase_low_mol_wt.
DR PANTHER; PTHR11717; PTHR11717; 1.
DR Pfam; PF01451; LMWPc; 1.
DR PRINTS; PR00719; LMWPTPASE.
DR PRINTS; PR00720; MAMMALPTPASE.
DR SMART; SM00226; LMWPc; 1.
DR SUPFAM; SSF52788; SSF52788; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Complete proteome;
KW Cytoplasm; Direct protein sequencing; Hydrolase; Phosphoprotein;
KW Polymorphism; Protein phosphatase; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 158 Low molecular weight phosphotyrosine
FT protein phosphatase.
FT /FTId=PRO_0000046558.
FT ACT_SITE 13 13 Nucleophile (By similarity).
FT ACT_SITE 19 19 By similarity.
FT ACT_SITE 130 130 Proton donor (By similarity).
FT MOD_RES 2 2 N-acetylalanine.
FT MOD_RES 132 132 Phosphotyrosine.
FT MOD_RES 133 133 Phosphotyrosine.
FT VAR_SEQ 41 74 RVDSAATSGYEIGNPPDYRGQSCMKRHGIPMSHV -> VID
FT SGAVSDWNVGRSPDPRAVSCLRNHGIHTAHK (in
FT isoform 2).
FT /FTId=VSP_010087.
FT VAR_SEQ 41 74 Missing (in isoform 3).
FT /FTId=VSP_010088.
FT VARIANT 7 7 K -> N (in dbSNP:rs11691572).
FT /FTId=VAR_050526.
FT VARIANT 106 106 Q -> R (in allele ACP1*A;
FT dbSNP:rs7576247).
FT /FTId=VAR_006171.
FT VARIANT 137 137 S -> F (in dbSNP:rs35569198).
FT /FTId=VAR_050527.
FT MUTAGEN 13 13 C->S: Inactive.
FT MUTAGEN 132 132 Y->F: Reduced phosphorylation and
FT activity.
FT MUTAGEN 133 133 Y->F: Reduced phosphorylation. No effect
FT on activity.
FT CONFLICT 2 6 AEQAT -> PRRGR (in Ref. 5; AAB27086).
FT CONFLICT 13 20 CLGNICRS -> PARREAAR (in Ref. 5;
FT AAB27085).
FT CONFLICT 32 32 T -> W (in Ref. 1; AA sequence and 2; AA
FT sequence).
FT STRAND 7 18
FT HELIX 19 33
FT HELIX 37 39
FT STRAND 40 49
FT TURN 50 53
FT HELIX 58 66
FT HELIX 80 85
FT STRAND 87 93
FT HELIX 94 104
FT STRAND 113 116
FT HELIX 117 120
FT HELIX 136 155
SQ SEQUENCE 158 AA; 18042 MW; 46617BD799313EED CRC64;
MAEQATKSVL FVCLGNICRS PIAEAVFRKL VTDQNISENW RVDSAATSGY EIGNPPDYRG
QSCMKRHGIP MSHVARQITK EDFATFDYIL CMDESNLRDL NRKSNQVKTC KAKIELLGSY
DPQKQLIIED PYYGNDSDFE TVYQQCVRCC RAFLEKAH
//
MIM
171500
*RECORD*
*FIELD* NO
171500
*FIELD* TI
*171500 ACID PHOSPHATASE 1, SOLUBLE; ACP1
;;PHOSPHATASE, ACID, OF ERYTHROCYTE
*FIELD* TX
read more
CLONING
Wo et al. (1992) cloned genes encoding 2 low molecular weight
phosphotyrosyl protein phosphatases from a human placenta cDNA library.
They were found to have identical nucleotide sequences, with the
exception of a 108-bp segment in the middle of the open reading frame.
From further studies they concluded that the 2 represent the fast and
slow electrophoretic forms of red cell acid phosphatase and that this
enzyme is not unique to the red cell but instead is expressed in all
human tissues.
GENE FUNCTION
Sensabaugh and Golden (1978) showed that ACP1 is inhibited by folic acid
and various folates, and that the inhibition is phenotype dependent:
ACP1(C) more than ACP1(A) more than ACP1(B). This explains elevation of
ACP levels in red cells of patients with megaloblastic anemia and also
variation in incidence and severity of favism (134700) in persons with
G6PD deficiency (300908).
Swallow et al. (1973) showed that 'red cell' acid phosphatase is not
limited to erythrocytes but can be demonstrated in other tissues,
including cultured fibroblasts and lymphoblastoid cells where there is
no possibility of contamination by blood.
MAPPING
Weitkamp et al. (1969) presented data suggesting that the acid
phosphatase locus may be on chromosome 2. Renwick (1971) presented an
analysis of the Weitkamp data supporting assignment to chromosome 2.
Ferguson-Smith et al. (1973) presented deletion mapping evidence that
the acid phosphatase locus is on the distal end of the short arm of
chromosome 2, somewhere between 2p23 and 2pter. A child lacking this
segment was of phenotype B whereas the father and mother were homozygous
phenotype B and A, respectively.
Hulten et al. (1966) described a family in which studies of a reciprocal
translocation involving chromosome 2 suggested that the Kidd locus may
be on one of the involved chromosomes. Cell hybrid studies confirmed the
localization of acid phosphatase-1 on chromosome 2 (Povey et al., 1974).
Chu et al. (1975) presented cell-hybrid evidence for synteny of
gal-1-PT, acid phosphatase, MDH1 (154200), and gal-plus-activator (GLAT;
137030) and for assignment to chromosome 2. Junien et al. (1979)
assigned the ACP1 locus to 2p25.
Larson et al. (1982) studied 4 patients who had inherited an unbalanced
form of a familial reciprocal translocation, t(2;10)(p24;q26), giving
them partial duplication of 2p. Increased levels of acid phosphatase
indicated that ACP1 is located in the 2p24-2pter region and that MDH is
not. The previous inconsistency of the SRO (smallest region of overlap)
was now resolved; ACP1 is at 2p25.
By deletion mapping, Beemer et al. (1983) concluded that ACP1 is located
at 2p25 whereas MDH is closer to the centromere, i.e., in 2p25-p23. They
pointed to the report of Larson et al. (1982) as confirming their
findings.
Wakita et al. (1985) presented evidence in support of location of ACP1
at 2p25. In a patient with duplication of 2p25.3-p25.1, ACP activity was
1.4 times the mean value for normal persons.
Lothe et al. (1986) found that ACP1 is very closely linked (theta =
0.01) to a RFLP called D2S1 that maps to 2pter-p23. Siciliano et al.
(1987) and Thompson et al. (1987) resolved earlier ambiguity of the ACP1
assignment (2p23 or 2p25) by demonstrating in hybrid cells with
rearranged chromosomes that ACP1 is located at band 2p23, proximal to
MDH1 (154200). ACP1 is seemingly remote from APOB (107730); linkage
studies demonstrate no close linkage (Berg, 1987). There may be a large
amount of recombination in that region of 2p.
Wo et al. (1992) examined a human chromosome 2-specific library and
demonstrated that the sequences encoding 2 low molecular weight
phosphotyrosyl protein phosphatases that they were studying are located
on chromosome 2.
By fluorescence in situ hybridization, Bryson et al. (1995) mapped the
ACP1 gene to the distal portion of 2p25.
GENE STRUCTURE
Bryson et al. (1995) showed that ACP1 contains 7 exons spanning 18 kb
with a GC-rich promoter. Alternative splicing of exons 3 and 4 was shown
to account for 2 different isozymes.
MOLECULAR GENETICS
Hopkinson et al. (1963) described a new human polymorphism involving
erythrocyte acid phosphatase (EC 3.1.3.2) as demonstrated in starch-gel
electrophoresis. Three alleles, P(a), P(b) and P(c), were thought to be
involved, their frequency being estimated to be 0.35, 0.60 and 0.05,
respectively. Another rare allele, P(r), was described by Giblett and
Scott (1965).
Dissing et al. (1991) concluded that 2 electrophoretically distinct
isozymes, f and s, which are produced in allele-specific ratios and are
associated with each of the 3 major alleles, are generated by
alternative splicing of the primary RNA transcript.
Mohrenweiser and Novotny (1982) described a low activity variant of ACP1
(GUA-1) that is frequent (gene frequency of 0.132) in Guaymi Indians of
Central America. This variant has an electrophoretic mobility similar to
the common B- and C-type variants, but individuals of the GUA-1
phenotype have a level of enzyme activity only 27% of the activity
expected for the ACP1C variant. Red cells of persons with the GUA-1
phenotype had increased basal levels of the flavoenzyme glutathione
reductase and a larger fraction of the glutathione reductase protein in
the form of the holoenzyme, indicating increased levels of flavin
adenine dinucleotide in the red cells of these persons. The finding was
consistent with the suggestion that ACP1 has a physiologic function as a
flavin mononucleotide phosphatase. This function could regulate the
intracellular concentrations of flavin coenzymes and, ultimately, of
flavoenzymes, and could be the mechanism for the association between
ACP1 type and certain disease states.
Miller et al. (1987) gave a general review of the electrophoretic
variants of red blood cell acid phosphatase. Arnaud et al. (1989)
identified in Czechoslovakia a rare variant of ACP1, called ACP1*KUK.
Arnaud et al. (1992) reported kinetic and thermodynamic characteristics
of the KUK variant.
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
HISTORY
Van Cong and Moullec (1971) suggested that the acid phosphatase and
Lewis (111100) loci are linked, but Chautard-Freire-Maia (1974) could
not corroborate this linkage.
Mace and Robson (1974) and Weitkamp et al. (1975) presented data
consistent with loose linkage of red cell acid phosphatase and MNS blood
group (111300); these loci were later shown to be on separate
chromosomes (2 and 4, respectively). Mace and Robson (1974) found also a
hint of linkage between ACP and Kidd blood group (Jk; 111000); the Kidd
gene (SLC14A1; 613868) was subsequently shown to be on chromosome 18,
not 2.
*FIELD* AV
.0001
ACID PHOSPHATASE 1, SOLUBLE, A/B POLYMORPHISM OF
ACP1, ARG105GLN
Dissing and Johnsen (1992) provided evidence for the molecular basis of
the 3 common alleles in Caucasians: ACP1*A, ACP1*B, and ACP1*C, which
give rise to 6 phenotypes (A, B, C, AB, AC, and BC). Each allele encodes
2 isozymes, f and s, which show fast and slow electrophoretic mobility,
respectively. The f and s isozymes are produced in allele-specific
ratios: 2:1 for Af and As, 4:1 for Bf and Bs, and 1:4 for Cf and Cs,
respectively. The f and s isozymes appear to be generated by alternative
splicing of exons in the primary RNA transcript. The coding portions of
the ACP1*B and ACP1*C alleles are identical; the only difference at the
protein level is the ratio of f and s isozyme. Thus, a difference in the
splicing mechanism presumably accounts for the difference in ratio. Af
and As differ from the Bf and Bs isozymes by a single substitution at
residue 105: arg and gln, respectively. These observations explain the
electrophoretic identity of the B and C isozyme pairs.
*FIELD* SA
Bottini et al. (1980); Emanuel et al. (1979); Fisher and Harris (1971);
Fuhrmann and Lichte (1966); Hamerton et al. (1975); Herbich et al.
(1970); Herbich and Meinhart (1972); Karp and Sutton (1967); Mace
et al. (1975); Magenis et al. (1975); Mayr (1976); Nezbeda (1979);
Palmarino et al. (1975); Yoshihara and Mohrenweiser (1980)
*FIELD* RF
1. Arnaud, J.; Vavrusa, B.; Sevin, J.; Constans, J.: Human red-cell
acid phosphatase (ACP1): a new mutant (ACP1*KUK) detected by isoelectric
focusing, kinetics of thermostability and substrate activity. Hum.
Hered. 39: 288-293, 1989.
2. Arnaud, J.; Vavrusa, B.; Wiederanders, G.; Constans, J.: Human
red-cell acid phosphatase (ACP1): kinetic and thermodynamic characterization
of the KUK variant. Hum. Hered. 42: 140-142, 1992.
3. Beemer, F. A.; van der Heiden, C.; Van Hemel, J. O.; Jansen, M.
: Letter to the editors. (Letter) Clin. Genet. 24: 151, 1983.
4. Berg, K.: Close linkage between APOB and ACP1 excluded. (Abstract) Cytogenet.
Cell Genet. 46: 580, 1987.
5. Bottini, E.; Carapella, E.; Orzalesi, M.; Lucarelli, P.; Pascone,
R.; Gloria-Bottini, F.; Coccia, M.: Is there a role of erythrocyte
acid phosphatase polymorphism in intrauterine development? (Letter) Am.
J. Hum. Genet. 32: 764-767, 1980.
6. Bryson, G. L. M.; Massa, H.; Trask, B. J.; Van Etten, R. L.: Gene
structure, sequence, and chromosomal localization of the human red
cell-type low molecular weight acid phosphotyrosyl phosphatase gene,
ACP1. Genomics 30: 133-140, 1995.
7. Chautard-Freire-Maia, E. A.: Linkage relationships between 22
autosomal markers. Ann. Hum. Genet. 38: 191-198, 1974.
8. Chu, E. H. Y.; Chang, C. C.; Sun, N. C.: Synteny of the human
genes for gal-1-PT, ACP-1, MDH-1, and gal-plus-activator and assignment
to chromosome 2. Birth Defects Orig. Art. Ser. XI(3): 103-106, 1975.
Note: Alternate: Cytogenet. Cell Genet. 14: 273-276, 1975...
9. Dissing, J.; Johnsen, A. H.: Human red cell acid phosphatase (ACP1):
the primary structure of the two pairs of isozymes encoded by the
ACP1*A and ACP1*C alleles. Biochim. Biophys. Acta 1121: 261-268,
1992.
10. Dissing, J.; Johnsen, A. H.; Sensabaugh, G. F.: Human red cell
acid phosphatase (ACP1): the amino acid sequence of the two isozymes
Bf and Bs encoded by the ACP1*B allele. J. Biol. Chem. 266: 20619-20625,
1991.
11. Emanuel, B. S.; Zackai, E. H.; Van Dyke, D. C.; Swallow, D. M.;
Allen, F. H.; Mellman, W. J.: Deletion mapping: further evidence
for the location of acid phosphatase (ACP-1) within 2p23. Am. J.
Med. Genet. 4: 167-172, 1979.
12. Ferguson-Smith, M. A.; Newman, B. F.; Ellis, P. M.; Thomson, D.
M. G.; Riley, I. D.: Assignment by deletion of human red cell acid
phosphatase gene locus to the short arm of chromosome 2. Nature 243:
271-273, 1973.
13. Fisher, R. A.; Harris, H.: Studies on the separate isoenzymes
of red cell acid phosphatase phenotypes A and B: chromatographic separation
of the isoenzymes. Ann. Hum. Genet. 34: 431-438, 1971.
14. Fuhrmann, W.; Lichte, K. H.: Human red cell acid phosphatase
polymorphism: a study on gene frequency and forensic use of the system
in cases of disputed paternity. Humangenetik 3: 121-126, 1966.
15. Giblett, E. R.; Scott, N. M.: Red cell acid phosphatase: racial
distribution and report of a new phenotype. Am. J. Hum. Genet. 17:
425-432, 1965.
16. Hamerton, J. L.; Mohandas, T.; McAlpine, P. J.; Douglas, G. R.
: Localization of human gene loci using spontaneous chromosome rearrangements
in human-Chinese hamster somatic cell hybrids. Am. J. Hum. Genet. 27:
595-608, 1975.
17. Herbich, J.; Fisher, R. A.; Hopkinson, D. A.: Atypical segregation
of human red cell acid phosphatase phenotypes: evidence for a rare
'silent' allele P(O). Ann. Hum. Genet. 34: 145-152, 1970.
18. Herbich, J.; Meinhart, K.: The rare 'silent' allele P(O) or P(V)
(P Vienna) of human red cell acid phosphatase, typed in a second family. Humangenetik 15:
345-348, 1972.
19. Hopkinson, D. A.; Spencer, N.; Harris, H.: Red cell acid phosphatase
variants: a new human polymorphism. Nature 199: 969-971, 1963.
20. Hulten, M.; Lindsten, J.; Pen-Ming, L. M.; Fraccaro, M.; Mannini,
A.; Tiepolo, L.; Robson, E. B.; Heiken, A.; Tillinger, K. G.: Possible
localization of the genes for the Kidd blood group on an autosome
involved in a reciprocal translocation. Nature 211: 1067-1068, 1966.
21. Junien, C.; Kaplan, J.-C.; Bernheim, A.; Berger, R.: Regional
assignment of red cell acid phosphatase locus to band 2p25. Hum.
Genet. 48: 17-21, 1979.
22. Karp, G. W., Jr.; Sutton, H. E.: Some new phenotypes of human
red cell acid phosphatase. Am. J. Hum. Genet. 19: 54-62, 1967.
23. Larson, L. M.; Bruce, A. W.; Saumur, J. H.; Wasdahl, W. A.: Further
evidence by gene dosage for the regional assignment of erythrocyte
acid phosphatase (ACP1) and malate dehydrogenase (MDH1) loci on chromosome
2p. Clin. Genet. 22: 220-225, 1982.
24. Lothe, R. A.; Gedde-Dahl, T.; Olaisen, B.; Bakker, E.; Pearson,
P.: Very close linkage between D2S1 and ACP1 on chromosome 2p. Ann.
Hum. Genet. 50: 361-367, 1986.
25. Mace, M. A.; Cook, P. J. L.; Robson, E. B.: Linkage data on red
cell acid phosphatase from family studies. Ann. Hum. Genet. 38:
471-477, 1975.
26. Mace, M. A.; Robson, E. B.: Linkage data on ACP-1 and MNSs. Cytogenet.
Cell Genet. 13: 123-125, 1974.
27. Magenis, R. E.; Koler, R. D.; Lovrien, E. W.; Bigley, R. H.; Duval,
M. C.; Overton, K. M.: Gene dosage: evidence for assignment of erythrocyte
acid phosphatase locus to chromosome 2. Proc. Nat. Acad. Sci. 72:
4526-4530, 1975.
28. Mayr, W. R.: No close linkage between MNSs and red cell acid
phosphatase. Hum. Hered. 26: 1-3, 1976.
29. Miller, S. A.; Nelson, M. S.; Dykes, D. D.; Polesky, H. F.: Comparison
of acid phosphatase ACP1 variants by isoelectric focusing and conventional
electrophoresis: identification of three new alleles, ACP1*N, ACP1*P
and ACP1*S. Hum. Hered. 37: 371-375, 1987.
30. Mohrenweiser, H. W.; Novotny, J. E.: ACP-1-GUA-1: a low-activity
variant of human erythrocyte acid phosphatase: association with increased
glutathione reductase activity. Am. J. Hum. Genet. 34: 425-433,
1982.
31. Nezbeda, P.: Occurrence of the ACP-1 null allele in Czechoslovakia. Hum.
Genet. 46: 227-229, 1979.
32. Palmarino, R.; Agostino, R.; Gloria, F.; Lucarelli, P.; Businco,
L.; Antognoni, G.; Maggioni, G.; Workman, P. L.; Bottini, E.: Red
cell acid phosphatase: another polymorphism correlated with malaria? Am.
J. Phys. Anthrop. 43: 177-186, 1975.
33. Povey, S.; Swallow, D. M.; Bobrow, M.; Craig, I.; Van Heyningen,
V.: Probable assignment of the locus determining human red cell acid
phosphatase ACP(1) to chromosome 2 using somatic cell hybrids. Ann.
Hum. Genet. 38: 1-5, 1974.
34. Renwick, J. H.: Assignment and map-positioning of human loci
using chromosomal variation. Ann. Hum. Genet. 35: 79-97, 1971.
35. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
36. Sensabaugh, G. F.; Golden, V. L.: Phenotype dependence in the
inhibition of red cell acid phosphatase (ACP) by folates. Am. J.
Hum. Genet. 30: 553-560, 1978.
37. Siciliano, M. J.; Bachinski, L.; Dolf, G.; Carrano, A. V.; Thompson,
L. H.: Chromosomal assignments of human DNA repair genes that complement
Chinese hamster ovary (CHO) cell mutants. (Abstract) Cytogenet. Cell
Genet. 46: 691-692, 1987.
38. Swallow, D. M.; Povey, S.; Harris, H.: Activity of the 'red cell'
acid phosphatase locus in other tissues. Ann. Hum. Genet. 37: 31-38,
1973.
39. Thompson, L. H.; Carrano, A. V.; Sato, K.; Salazar, E. P.; White,
B. F.; Stewart, S. A.; Minkler, J. L.; Siciliano, M. J.: Identification
of nucleotide-excision-repair genes on human chromosomes 2 and 13
by functional complementation in hamster-human hybrids. Somat. Cell
Molec. Genet. 13: 539-551, 1987.
40. Van Cong, N.; Moullec, J.: Linkage probable entre les groupes
de phosphatase acide des globules rouges et le systeme Lewis. Ann.
Genet. 14: 121-125, 1971.
41. Wakita, Y.; Narahara, K.; Takahashi, Y.; Kikkawa, K.; Kimura,
S.; Oda, M.; Kimoto, H.: Duplication of 2p25: confirmation of the
assignment of soluble acid phosphatase (ACP1) locus to 2p25. Hum.
Genet. 71: 259-260, 1985.
42. Weitkamp, L. R.; Janzen, M. K.; Guttormsen, S. A.; Gershowitz,
H.: Inherited pericentric inversion of chromosome number two: a linkage
study. Ann. Hum. Genet. 33: 53-59, 1969.
43. Weitkamp, L. R.; Lovrien, E. W.; Olaisen, B.; Fenger, K.; Gedde-Dahl,
T., Jr.; Sorensen, S. A.; Conneally, P. M.; Bias, W. B.; Ott, J.:
Linkage relations of the loci for the MN blood group and red cell
phosphate. Birth Defects Orig. Art. Ser. 11(3): 276-280, 1975. Note:
Alternate: Cytogenet. Cell Genet. 14: 446-450, 1975...
44. Wo, Y.-Y. P.; McCormack, A. L.; Shabanowitz, J.; Hunt, D. F.;
Davis, J. P.; Mitchell, G. L.; Van Etten, R. L.: Sequencing, cloning,
and expression of human red cell-type acid phosphatase, a cytoplasmic
phosphotyrosyl protein phosphatase. J. Biol. Chem. 267: 10856-10865,
1992.
45. Yoshihara, C. M.; Mohrenweiser, H. W.: Characterization of ACP1(TIC-1),
an electrophoretic variant of erythrocyte acid phosphatase restricted
to the Ticuna Indians of Central Amazonas. Am. J. Hum. Genet. 32:
898-907, 1980.
*FIELD* CN
Alan F. Scott - updated: 1/15/1996
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
carol: 11/12/2013
alopez: 4/5/2011
carol: 8/1/2000
kayiaros: 7/13/1999
terry: 5/5/1999
terry: 4/17/1996
mark: 1/15/1996
mimadm: 1/14/1995
warfield: 3/30/1994
carol: 10/8/1992
carol: 9/8/1992
carol: 8/31/1992
carol: 8/11/1992
*RECORD*
*FIELD* NO
171500
*FIELD* TI
*171500 ACID PHOSPHATASE 1, SOLUBLE; ACP1
;;PHOSPHATASE, ACID, OF ERYTHROCYTE
*FIELD* TX
read more
CLONING
Wo et al. (1992) cloned genes encoding 2 low molecular weight
phosphotyrosyl protein phosphatases from a human placenta cDNA library.
They were found to have identical nucleotide sequences, with the
exception of a 108-bp segment in the middle of the open reading frame.
From further studies they concluded that the 2 represent the fast and
slow electrophoretic forms of red cell acid phosphatase and that this
enzyme is not unique to the red cell but instead is expressed in all
human tissues.
GENE FUNCTION
Sensabaugh and Golden (1978) showed that ACP1 is inhibited by folic acid
and various folates, and that the inhibition is phenotype dependent:
ACP1(C) more than ACP1(A) more than ACP1(B). This explains elevation of
ACP levels in red cells of patients with megaloblastic anemia and also
variation in incidence and severity of favism (134700) in persons with
G6PD deficiency (300908).
Swallow et al. (1973) showed that 'red cell' acid phosphatase is not
limited to erythrocytes but can be demonstrated in other tissues,
including cultured fibroblasts and lymphoblastoid cells where there is
no possibility of contamination by blood.
MAPPING
Weitkamp et al. (1969) presented data suggesting that the acid
phosphatase locus may be on chromosome 2. Renwick (1971) presented an
analysis of the Weitkamp data supporting assignment to chromosome 2.
Ferguson-Smith et al. (1973) presented deletion mapping evidence that
the acid phosphatase locus is on the distal end of the short arm of
chromosome 2, somewhere between 2p23 and 2pter. A child lacking this
segment was of phenotype B whereas the father and mother were homozygous
phenotype B and A, respectively.
Hulten et al. (1966) described a family in which studies of a reciprocal
translocation involving chromosome 2 suggested that the Kidd locus may
be on one of the involved chromosomes. Cell hybrid studies confirmed the
localization of acid phosphatase-1 on chromosome 2 (Povey et al., 1974).
Chu et al. (1975) presented cell-hybrid evidence for synteny of
gal-1-PT, acid phosphatase, MDH1 (154200), and gal-plus-activator (GLAT;
137030) and for assignment to chromosome 2. Junien et al. (1979)
assigned the ACP1 locus to 2p25.
Larson et al. (1982) studied 4 patients who had inherited an unbalanced
form of a familial reciprocal translocation, t(2;10)(p24;q26), giving
them partial duplication of 2p. Increased levels of acid phosphatase
indicated that ACP1 is located in the 2p24-2pter region and that MDH is
not. The previous inconsistency of the SRO (smallest region of overlap)
was now resolved; ACP1 is at 2p25.
By deletion mapping, Beemer et al. (1983) concluded that ACP1 is located
at 2p25 whereas MDH is closer to the centromere, i.e., in 2p25-p23. They
pointed to the report of Larson et al. (1982) as confirming their
findings.
Wakita et al. (1985) presented evidence in support of location of ACP1
at 2p25. In a patient with duplication of 2p25.3-p25.1, ACP activity was
1.4 times the mean value for normal persons.
Lothe et al. (1986) found that ACP1 is very closely linked (theta =
0.01) to a RFLP called D2S1 that maps to 2pter-p23. Siciliano et al.
(1987) and Thompson et al. (1987) resolved earlier ambiguity of the ACP1
assignment (2p23 or 2p25) by demonstrating in hybrid cells with
rearranged chromosomes that ACP1 is located at band 2p23, proximal to
MDH1 (154200). ACP1 is seemingly remote from APOB (107730); linkage
studies demonstrate no close linkage (Berg, 1987). There may be a large
amount of recombination in that region of 2p.
Wo et al. (1992) examined a human chromosome 2-specific library and
demonstrated that the sequences encoding 2 low molecular weight
phosphotyrosyl protein phosphatases that they were studying are located
on chromosome 2.
By fluorescence in situ hybridization, Bryson et al. (1995) mapped the
ACP1 gene to the distal portion of 2p25.
GENE STRUCTURE
Bryson et al. (1995) showed that ACP1 contains 7 exons spanning 18 kb
with a GC-rich promoter. Alternative splicing of exons 3 and 4 was shown
to account for 2 different isozymes.
MOLECULAR GENETICS
Hopkinson et al. (1963) described a new human polymorphism involving
erythrocyte acid phosphatase (EC 3.1.3.2) as demonstrated in starch-gel
electrophoresis. Three alleles, P(a), P(b) and P(c), were thought to be
involved, their frequency being estimated to be 0.35, 0.60 and 0.05,
respectively. Another rare allele, P(r), was described by Giblett and
Scott (1965).
Dissing et al. (1991) concluded that 2 electrophoretically distinct
isozymes, f and s, which are produced in allele-specific ratios and are
associated with each of the 3 major alleles, are generated by
alternative splicing of the primary RNA transcript.
Mohrenweiser and Novotny (1982) described a low activity variant of ACP1
(GUA-1) that is frequent (gene frequency of 0.132) in Guaymi Indians of
Central America. This variant has an electrophoretic mobility similar to
the common B- and C-type variants, but individuals of the GUA-1
phenotype have a level of enzyme activity only 27% of the activity
expected for the ACP1C variant. Red cells of persons with the GUA-1
phenotype had increased basal levels of the flavoenzyme glutathione
reductase and a larger fraction of the glutathione reductase protein in
the form of the holoenzyme, indicating increased levels of flavin
adenine dinucleotide in the red cells of these persons. The finding was
consistent with the suggestion that ACP1 has a physiologic function as a
flavin mononucleotide phosphatase. This function could regulate the
intracellular concentrations of flavin coenzymes and, ultimately, of
flavoenzymes, and could be the mechanism for the association between
ACP1 type and certain disease states.
Miller et al. (1987) gave a general review of the electrophoretic
variants of red blood cell acid phosphatase. Arnaud et al. (1989)
identified in Czechoslovakia a rare variant of ACP1, called ACP1*KUK.
Arnaud et al. (1992) reported kinetic and thermodynamic characteristics
of the KUK variant.
Data on gene frequencies of allelic variants were tabulated by
Roychoudhury and Nei (1988).
HISTORY
Van Cong and Moullec (1971) suggested that the acid phosphatase and
Lewis (111100) loci are linked, but Chautard-Freire-Maia (1974) could
not corroborate this linkage.
Mace and Robson (1974) and Weitkamp et al. (1975) presented data
consistent with loose linkage of red cell acid phosphatase and MNS blood
group (111300); these loci were later shown to be on separate
chromosomes (2 and 4, respectively). Mace and Robson (1974) found also a
hint of linkage between ACP and Kidd blood group (Jk; 111000); the Kidd
gene (SLC14A1; 613868) was subsequently shown to be on chromosome 18,
not 2.
*FIELD* AV
.0001
ACID PHOSPHATASE 1, SOLUBLE, A/B POLYMORPHISM OF
ACP1, ARG105GLN
Dissing and Johnsen (1992) provided evidence for the molecular basis of
the 3 common alleles in Caucasians: ACP1*A, ACP1*B, and ACP1*C, which
give rise to 6 phenotypes (A, B, C, AB, AC, and BC). Each allele encodes
2 isozymes, f and s, which show fast and slow electrophoretic mobility,
respectively. The f and s isozymes are produced in allele-specific
ratios: 2:1 for Af and As, 4:1 for Bf and Bs, and 1:4 for Cf and Cs,
respectively. The f and s isozymes appear to be generated by alternative
splicing of exons in the primary RNA transcript. The coding portions of
the ACP1*B and ACP1*C alleles are identical; the only difference at the
protein level is the ratio of f and s isozyme. Thus, a difference in the
splicing mechanism presumably accounts for the difference in ratio. Af
and As differ from the Bf and Bs isozymes by a single substitution at
residue 105: arg and gln, respectively. These observations explain the
electrophoretic identity of the B and C isozyme pairs.
*FIELD* SA
Bottini et al. (1980); Emanuel et al. (1979); Fisher and Harris (1971);
Fuhrmann and Lichte (1966); Hamerton et al. (1975); Herbich et al.
(1970); Herbich and Meinhart (1972); Karp and Sutton (1967); Mace
et al. (1975); Magenis et al. (1975); Mayr (1976); Nezbeda (1979);
Palmarino et al. (1975); Yoshihara and Mohrenweiser (1980)
*FIELD* RF
1. Arnaud, J.; Vavrusa, B.; Sevin, J.; Constans, J.: Human red-cell
acid phosphatase (ACP1): a new mutant (ACP1*KUK) detected by isoelectric
focusing, kinetics of thermostability and substrate activity. Hum.
Hered. 39: 288-293, 1989.
2. Arnaud, J.; Vavrusa, B.; Wiederanders, G.; Constans, J.: Human
red-cell acid phosphatase (ACP1): kinetic and thermodynamic characterization
of the KUK variant. Hum. Hered. 42: 140-142, 1992.
3. Beemer, F. A.; van der Heiden, C.; Van Hemel, J. O.; Jansen, M.
: Letter to the editors. (Letter) Clin. Genet. 24: 151, 1983.
4. Berg, K.: Close linkage between APOB and ACP1 excluded. (Abstract) Cytogenet.
Cell Genet. 46: 580, 1987.
5. Bottini, E.; Carapella, E.; Orzalesi, M.; Lucarelli, P.; Pascone,
R.; Gloria-Bottini, F.; Coccia, M.: Is there a role of erythrocyte
acid phosphatase polymorphism in intrauterine development? (Letter) Am.
J. Hum. Genet. 32: 764-767, 1980.
6. Bryson, G. L. M.; Massa, H.; Trask, B. J.; Van Etten, R. L.: Gene
structure, sequence, and chromosomal localization of the human red
cell-type low molecular weight acid phosphotyrosyl phosphatase gene,
ACP1. Genomics 30: 133-140, 1995.
7. Chautard-Freire-Maia, E. A.: Linkage relationships between 22
autosomal markers. Ann. Hum. Genet. 38: 191-198, 1974.
8. Chu, E. H. Y.; Chang, C. C.; Sun, N. C.: Synteny of the human
genes for gal-1-PT, ACP-1, MDH-1, and gal-plus-activator and assignment
to chromosome 2. Birth Defects Orig. Art. Ser. XI(3): 103-106, 1975.
Note: Alternate: Cytogenet. Cell Genet. 14: 273-276, 1975...
9. Dissing, J.; Johnsen, A. H.: Human red cell acid phosphatase (ACP1):
the primary structure of the two pairs of isozymes encoded by the
ACP1*A and ACP1*C alleles. Biochim. Biophys. Acta 1121: 261-268,
1992.
10. Dissing, J.; Johnsen, A. H.; Sensabaugh, G. F.: Human red cell
acid phosphatase (ACP1): the amino acid sequence of the two isozymes
Bf and Bs encoded by the ACP1*B allele. J. Biol. Chem. 266: 20619-20625,
1991.
11. Emanuel, B. S.; Zackai, E. H.; Van Dyke, D. C.; Swallow, D. M.;
Allen, F. H.; Mellman, W. J.: Deletion mapping: further evidence
for the location of acid phosphatase (ACP-1) within 2p23. Am. J.
Med. Genet. 4: 167-172, 1979.
12. Ferguson-Smith, M. A.; Newman, B. F.; Ellis, P. M.; Thomson, D.
M. G.; Riley, I. D.: Assignment by deletion of human red cell acid
phosphatase gene locus to the short arm of chromosome 2. Nature 243:
271-273, 1973.
13. Fisher, R. A.; Harris, H.: Studies on the separate isoenzymes
of red cell acid phosphatase phenotypes A and B: chromatographic separation
of the isoenzymes. Ann. Hum. Genet. 34: 431-438, 1971.
14. Fuhrmann, W.; Lichte, K. H.: Human red cell acid phosphatase
polymorphism: a study on gene frequency and forensic use of the system
in cases of disputed paternity. Humangenetik 3: 121-126, 1966.
15. Giblett, E. R.; Scott, N. M.: Red cell acid phosphatase: racial
distribution and report of a new phenotype. Am. J. Hum. Genet. 17:
425-432, 1965.
16. Hamerton, J. L.; Mohandas, T.; McAlpine, P. J.; Douglas, G. R.
: Localization of human gene loci using spontaneous chromosome rearrangements
in human-Chinese hamster somatic cell hybrids. Am. J. Hum. Genet. 27:
595-608, 1975.
17. Herbich, J.; Fisher, R. A.; Hopkinson, D. A.: Atypical segregation
of human red cell acid phosphatase phenotypes: evidence for a rare
'silent' allele P(O). Ann. Hum. Genet. 34: 145-152, 1970.
18. Herbich, J.; Meinhart, K.: The rare 'silent' allele P(O) or P(V)
(P Vienna) of human red cell acid phosphatase, typed in a second family. Humangenetik 15:
345-348, 1972.
19. Hopkinson, D. A.; Spencer, N.; Harris, H.: Red cell acid phosphatase
variants: a new human polymorphism. Nature 199: 969-971, 1963.
20. Hulten, M.; Lindsten, J.; Pen-Ming, L. M.; Fraccaro, M.; Mannini,
A.; Tiepolo, L.; Robson, E. B.; Heiken, A.; Tillinger, K. G.: Possible
localization of the genes for the Kidd blood group on an autosome
involved in a reciprocal translocation. Nature 211: 1067-1068, 1966.
21. Junien, C.; Kaplan, J.-C.; Bernheim, A.; Berger, R.: Regional
assignment of red cell acid phosphatase locus to band 2p25. Hum.
Genet. 48: 17-21, 1979.
22. Karp, G. W., Jr.; Sutton, H. E.: Some new phenotypes of human
red cell acid phosphatase. Am. J. Hum. Genet. 19: 54-62, 1967.
23. Larson, L. M.; Bruce, A. W.; Saumur, J. H.; Wasdahl, W. A.: Further
evidence by gene dosage for the regional assignment of erythrocyte
acid phosphatase (ACP1) and malate dehydrogenase (MDH1) loci on chromosome
2p. Clin. Genet. 22: 220-225, 1982.
24. Lothe, R. A.; Gedde-Dahl, T.; Olaisen, B.; Bakker, E.; Pearson,
P.: Very close linkage between D2S1 and ACP1 on chromosome 2p. Ann.
Hum. Genet. 50: 361-367, 1986.
25. Mace, M. A.; Cook, P. J. L.; Robson, E. B.: Linkage data on red
cell acid phosphatase from family studies. Ann. Hum. Genet. 38:
471-477, 1975.
26. Mace, M. A.; Robson, E. B.: Linkage data on ACP-1 and MNSs. Cytogenet.
Cell Genet. 13: 123-125, 1974.
27. Magenis, R. E.; Koler, R. D.; Lovrien, E. W.; Bigley, R. H.; Duval,
M. C.; Overton, K. M.: Gene dosage: evidence for assignment of erythrocyte
acid phosphatase locus to chromosome 2. Proc. Nat. Acad. Sci. 72:
4526-4530, 1975.
28. Mayr, W. R.: No close linkage between MNSs and red cell acid
phosphatase. Hum. Hered. 26: 1-3, 1976.
29. Miller, S. A.; Nelson, M. S.; Dykes, D. D.; Polesky, H. F.: Comparison
of acid phosphatase ACP1 variants by isoelectric focusing and conventional
electrophoresis: identification of three new alleles, ACP1*N, ACP1*P
and ACP1*S. Hum. Hered. 37: 371-375, 1987.
30. Mohrenweiser, H. W.; Novotny, J. E.: ACP-1-GUA-1: a low-activity
variant of human erythrocyte acid phosphatase: association with increased
glutathione reductase activity. Am. J. Hum. Genet. 34: 425-433,
1982.
31. Nezbeda, P.: Occurrence of the ACP-1 null allele in Czechoslovakia. Hum.
Genet. 46: 227-229, 1979.
32. Palmarino, R.; Agostino, R.; Gloria, F.; Lucarelli, P.; Businco,
L.; Antognoni, G.; Maggioni, G.; Workman, P. L.; Bottini, E.: Red
cell acid phosphatase: another polymorphism correlated with malaria? Am.
J. Phys. Anthrop. 43: 177-186, 1975.
33. Povey, S.; Swallow, D. M.; Bobrow, M.; Craig, I.; Van Heyningen,
V.: Probable assignment of the locus determining human red cell acid
phosphatase ACP(1) to chromosome 2 using somatic cell hybrids. Ann.
Hum. Genet. 38: 1-5, 1974.
34. Renwick, J. H.: Assignment and map-positioning of human loci
using chromosomal variation. Ann. Hum. Genet. 35: 79-97, 1971.
35. Roychoudhury, A. K.; Nei, M.: Human Polymorphic Genes: World
Distribution. New York: Oxford Univ. Press (pub.) 1988.
36. Sensabaugh, G. F.; Golden, V. L.: Phenotype dependence in the
inhibition of red cell acid phosphatase (ACP) by folates. Am. J.
Hum. Genet. 30: 553-560, 1978.
37. Siciliano, M. J.; Bachinski, L.; Dolf, G.; Carrano, A. V.; Thompson,
L. H.: Chromosomal assignments of human DNA repair genes that complement
Chinese hamster ovary (CHO) cell mutants. (Abstract) Cytogenet. Cell
Genet. 46: 691-692, 1987.
38. Swallow, D. M.; Povey, S.; Harris, H.: Activity of the 'red cell'
acid phosphatase locus in other tissues. Ann. Hum. Genet. 37: 31-38,
1973.
39. Thompson, L. H.; Carrano, A. V.; Sato, K.; Salazar, E. P.; White,
B. F.; Stewart, S. A.; Minkler, J. L.; Siciliano, M. J.: Identification
of nucleotide-excision-repair genes on human chromosomes 2 and 13
by functional complementation in hamster-human hybrids. Somat. Cell
Molec. Genet. 13: 539-551, 1987.
40. Van Cong, N.; Moullec, J.: Linkage probable entre les groupes
de phosphatase acide des globules rouges et le systeme Lewis. Ann.
Genet. 14: 121-125, 1971.
41. Wakita, Y.; Narahara, K.; Takahashi, Y.; Kikkawa, K.; Kimura,
S.; Oda, M.; Kimoto, H.: Duplication of 2p25: confirmation of the
assignment of soluble acid phosphatase (ACP1) locus to 2p25. Hum.
Genet. 71: 259-260, 1985.
42. Weitkamp, L. R.; Janzen, M. K.; Guttormsen, S. A.; Gershowitz,
H.: Inherited pericentric inversion of chromosome number two: a linkage
study. Ann. Hum. Genet. 33: 53-59, 1969.
43. Weitkamp, L. R.; Lovrien, E. W.; Olaisen, B.; Fenger, K.; Gedde-Dahl,
T., Jr.; Sorensen, S. A.; Conneally, P. M.; Bias, W. B.; Ott, J.:
Linkage relations of the loci for the MN blood group and red cell
phosphate. Birth Defects Orig. Art. Ser. 11(3): 276-280, 1975. Note:
Alternate: Cytogenet. Cell Genet. 14: 446-450, 1975...
44. Wo, Y.-Y. P.; McCormack, A. L.; Shabanowitz, J.; Hunt, D. F.;
Davis, J. P.; Mitchell, G. L.; Van Etten, R. L.: Sequencing, cloning,
and expression of human red cell-type acid phosphatase, a cytoplasmic
phosphotyrosyl protein phosphatase. J. Biol. Chem. 267: 10856-10865,
1992.
45. Yoshihara, C. M.; Mohrenweiser, H. W.: Characterization of ACP1(TIC-1),
an electrophoretic variant of erythrocyte acid phosphatase restricted
to the Ticuna Indians of Central Amazonas. Am. J. Hum. Genet. 32:
898-907, 1980.
*FIELD* CN
Alan F. Scott - updated: 1/15/1996
*FIELD* CD
Victor A. McKusick: 6/2/1986
*FIELD* ED
carol: 11/12/2013
alopez: 4/5/2011
carol: 8/1/2000
kayiaros: 7/13/1999
terry: 5/5/1999
terry: 4/17/1996
mark: 1/15/1996
mimadm: 1/14/1995
warfield: 3/30/1994
carol: 10/8/1992
carol: 9/8/1992
carol: 8/31/1992
carol: 8/11/1992