Full text data of RAB28
RAB28
[Confidence: low (only semi-automatic identification from reviews)]
Ras-related protein Rab-28; Flags: Precursor
Ras-related protein Rab-28; Flags: Precursor
UniProt
P51157
ID RAB28_HUMAN Reviewed; 221 AA.
AC P51157; G8JLC5; Q8IYR8; Q8NI05;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 24-JAN-2006, sequence version 2.
DT 22-JAN-2014, entry version 132.
DE RecName: Full=Ras-related protein Rab-28;
DE Flags: Precursor;
GN Name=RAB28;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS L AND S).
RC TISSUE=Testis;
RX PubMed=8647132; DOI=10.1111/j.1432-1033.1996.0833p.x;
RA Brauers A., Schuermann A., Massmann S., Muehl-Zuerbes P., Becker W.,
RA Kainulainen H., Lie C., Joost H.-G.;
RT "Alternative mRNA splicing of the novel GTPase Rab28 generates
RT isoforms with different C-termini.";
RL Eur. J. Biochem. 237:833-840(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM L).
RC TISSUE=Brain;
RA Puhl H.L. III, Ikeda S.R., Aronstam R.S.;
RT "cDNA clones of human proteins involved in signal transduction
RT sequenced by the Guthrie cDNA resource center (www.cdna.org).";
RL Submitted (APR-2002) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15815621; DOI=10.1038/nature03466;
RA Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H.,
RA Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M.,
RA Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E.,
RA Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J.,
RA Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C.,
RA Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J.,
RA Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A.,
RA Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K.,
RA Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M.,
RA Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K.,
RA McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C.,
RA Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N.,
RA Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M.,
RA Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E.,
RA Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P.,
RA Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A.,
RA Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A.,
RA Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T.,
RA Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D.,
RA Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X.,
RA McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C.,
RA Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S.,
RA Miller W., Eichler E.E., Bork P., Suyama M., Torrents D.,
RA Waterston R.H., Wilson R.K.;
RT "Generation and annotation of the DNA sequences of human chromosomes 2
RT and 4.";
RL Nature 434:724-731(2005).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS S AND 3).
RC TISSUE=Brain, and Embryonic stem cell;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP ISOPRENYLATION AT CYS-218.
RX PubMed=17411337; DOI=10.1371/journal.pcbi.0030066;
RA Maurer-Stroh S., Koranda M., Benetka W., Schneider G., Sirota F.L.,
RA Eisenhaber F.;
RT "Towards complete sets of farnesylated and geranylgeranylated
RT proteins.";
RL PLoS Comput. Biol. 3:634-648(2007).
RN [6]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [7]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-8, MASS SPECTROMETRY, AND CLEAVAGE OF INITIATOR
RP METHIONINE.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [8]
RP INVOVEMENT IN CORD18, AND TISSUE SPECIFCITY.
RX PubMed=23746546; DOI=10.1016/j.ajhg.2013.05.005;
RG European Retinal Disease Consortium;
RA Roosing S., Rohrschneider K., Beryozkin A., Sharon D., Weisschuh N.,
RA Staller J., Kohl S., Zelinger L., Peters T.A., Neveling K.,
RA Strom T.M., van den Born L.I., Hoyng C.B., Klaver C.C., Roepman R.,
RA Wissinger B., Banin E., Cremers F.P., den Hollander A.I.;
RT "Mutations in RAB28, encoding a farnesylated small GTPase, are
RT associated with autosomal-recessive cone-rod dystrophy.";
RL Am. J. Hum. Genet. 93:110-117(2013).
RN [9]
RP X-RAY CRYSTALLOGRAPHY (1.1 ANGSTROMS) OF 11-184 IN COMPLEX WITH GTP
RP AND GDP ANALOGS.
RX PubMed=19026641; DOI=10.1016/j.febslet.2008.11.008;
RA Lee S.H., Baek K., Dominguez R.;
RT "Large nucleotide-dependent conformational change in Rab28.";
RL FEBS Lett. 582:4107-4111(2008).
CC -!- SUBCELLULAR LOCATION: Cell membrane; Lipid-anchor; Cytoplasmic
CC side (Potential). Cytoplasm, cytoskeleton, cilium basal body.
CC Note=Expressed in the basal body and ciliary rootlet of the
CC photoreceptors (By similarity).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=3;
CC Name=S; Synonyms=Rab28S;
CC IsoId=P51157-1; Sequence=Displayed;
CC Name=L; Synonyms=Rab28L;
CC IsoId=P51157-2; Sequence=VSP_005530;
CC Name=3;
CC IsoId=P51157-3; Sequence=VSP_045807;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Isoform S is detected in most tissues
CC investigated: cortex, liver, kidney, skeletal muscle, adipose
CC tissue, testis, urothelium, lung, bone marrow and retinal pigment
CC epithelium (RPE). Isoform L 2 is widely and abundantly expressed
CC all tissues. Isoform 3 is highly expressed in heart, lung, bone
CC marrow, retina, brain, and RPE.
CC -!- DISEASE: Cone-rod dystrophy 18 (CORD18) [MIM:615374]: A form of
CC cone-rod dystrophy, an inherited retinal dystrophy characterized
CC by retinal pigment deposits visible on fundus examination,
CC predominantly in the macular region, and initial loss of cone
CC photoreceptors followed by rod degeneration. This leads to
CC decreased visual acuity and sensitivity in the central visual
CC field, followed by loss of peripheral vision. Severe loss of
CC vision occurs earlier than in retinitis pigmentosa. Note=The
CC disease is caused by mutations affecting the gene represented in
CC this entry.
CC -!- SIMILARITY: Belongs to the small GTPase superfamily. Rab family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X94703; CAA64364.1; -; mRNA.
DR EMBL; AF498955; AAM21103.1; -; mRNA.
DR EMBL; AC006226; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC006445; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC020729; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; BC035054; AAH35054.1; -; mRNA.
DR EMBL; CX165950; -; NOT_ANNOTATED_CDS; mRNA.
DR PIR; S65477; S65477.
DR PIR; S72399; S72399.
DR RefSeq; NP_001017979.1; NM_001017979.2.
DR RefSeq; NP_001153073.1; NM_001159601.1.
DR RefSeq; NP_004240.2; NM_004249.3.
DR RefSeq; XP_005248272.1; XM_005248215.1.
DR RefSeq; XP_005248273.1; XM_005248216.1.
DR UniGene; Hs.656060; -.
DR PDB; 2HXS; X-ray; 1.10 A; A=11-184.
DR PDB; 3E5H; X-ray; 1.50 A; A=11-184.
DR PDBsum; 2HXS; -.
DR PDBsum; 3E5H; -.
DR ProteinModelPortal; P51157; -.
DR SMR; P51157; 8-184.
DR PhosphoSite; P51157; -.
DR DMDM; 85700393; -.
DR PaxDb; P51157; -.
DR PRIDE; P51157; -.
DR DNASU; 9364; -.
DR Ensembl; ENST00000288723; ENSP00000288723; ENSG00000157869.
DR Ensembl; ENST00000330852; ENSP00000328551; ENSG00000157869.
DR Ensembl; ENST00000338176; ENSP00000340079; ENSG00000157869.
DR GeneID; 9364; -.
DR KEGG; hsa:9364; -.
DR UCSC; uc011bwz.1; human.
DR CTD; 9364; -.
DR GeneCards; GC04M013369; -.
DR HGNC; HGNC:9768; RAB28.
DR HPA; HPA044575; -.
DR MIM; 612994; gene.
DR MIM; 615374; phenotype.
DR neXtProt; NX_P51157; -.
DR Orphanet; 1872; Cone rod dystrophy.
DR PharmGKB; PA34119; -.
DR eggNOG; COG1100; -.
DR HOGENOM; HOG000233968; -.
DR HOVERGEN; HBG101090; -.
DR InParanoid; P51157; -.
DR KO; K07915; -.
DR OMA; PRSSMCV; -.
DR PhylomeDB; P51157; -.
DR EvolutionaryTrace; P51157; -.
DR GenomeRNAi; 9364; -.
DR NextBio; 35067; -.
DR PRO; PR:P51157; -.
DR ArrayExpress; P51157; -.
DR Bgee; P51157; -.
DR CleanEx; HS_RAB28; -.
DR Genevestigator; P51157; -.
DR GO; GO:0035253; C:ciliary rootlet; ISS:UniProtKB.
DR GO; GO:0036064; C:cilium basal body; ISS:UniProtKB.
DR GO; GO:0005886; C:plasma membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0019003; F:GDP binding; IDA:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IDA:UniProtKB.
DR GO; GO:0003924; F:GTPase activity; TAS:ProtInc.
DR GO; GO:0007264; P:small GTPase mediated signal transduction; IEA:InterPro.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR005225; Small_GTP-bd_dom.
DR InterPro; IPR001806; Small_GTPase.
DR Pfam; PF00071; Ras; 1.
DR PRINTS; PR00449; RASTRNSFRMNG.
DR SUPFAM; SSF52540; SSF52540; 1.
DR TIGRFAMs; TIGR00231; small_GTP; 1.
DR PROSITE; PS51419; RAB; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Cell membrane;
KW Cell projection; Complete proteome; Cone-rod dystrophy; Cytoplasm;
KW Cytoskeleton; GTP-binding; Lipoprotein; Membrane; Methylation;
KW Nucleotide-binding; Phosphoprotein; Prenylation; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 218 Ras-related protein Rab-28.
FT /FTId=PRO_0000121227.
FT PROPEP 219 221 Removed in mature form (Probable).
FT /FTId=PRO_0000396721.
FT NP_BIND 19 27 GTP.
FT NP_BIND 68 72 GTP.
FT NP_BIND 129 132 GTP.
FT NP_BIND 159 161 GTP.
FT MOTIF 41 49 Effector region (By similarity).
FT MOD_RES 2 2 N-acetylserine.
FT MOD_RES 8 8 Phosphoserine.
FT MOD_RES 218 218 Cysteine methyl ester (Probable).
FT LIPID 218 218 S-farnesyl cysteine.
FT VAR_SEQ 192 221 RVVKADIVNYNQEPMSRTVNPPRSSMCAVQ -> GHFIIFI
FT SSTNRE (in isoform 3).
FT /FTId=VSP_045807.
FT VAR_SEQ 193 221 VVKADIVNYNQEPMSRTVNPPRSSMCAVQ -> IVRAEIVK
FT YPEEENQHTTSTQSRICSVQ (in isoform L).
FT /FTId=VSP_005530.
FT CONFLICT 22 22 A -> T (in Ref. 1; CAA64364).
FT STRAND 12 18
FT HELIX 25 33
FT HELIX 34 36
FT HELIX 39 43
FT TURN 44 46
FT STRAND 47 56
FT TURN 57 59
FT STRAND 60 68
FT HELIX 71 75
FT HELIX 79 83
FT STRAND 87 94
FT HELIX 98 102
FT HELIX 104 118
FT STRAND 123 129
FT HELIX 131 136
FT HELIX 141 151
FT STRAND 154 158
FT TURN 160 162
FT HELIX 166 177
SQ SEQUENCE 221 AA; 24841 MW; 65AC9D6F10491916 CRC64;
MSDSEEESQD RQLKIVVLGD GASGKTSLTT CFAQETFGKQ YKQTIGLDFF LRRITLPGNL
NVTLQIWDIG GQTIGGKMLD KYIYGAQGVL LVYDITNYQS FENLEDWYTV VKKVSEESET
QPLVALVGNK IDLEHMRTIK PEKHLRFCQE NGFSSHFVSA KTGDSVFLCF QKVAAEILGI
KLNKAEIEQS QRVVKADIVN YNQEPMSRTV NPPRSSMCAV Q
//
ID RAB28_HUMAN Reviewed; 221 AA.
AC P51157; G8JLC5; Q8IYR8; Q8NI05;
DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
read moreDT 24-JAN-2006, sequence version 2.
DT 22-JAN-2014, entry version 132.
DE RecName: Full=Ras-related protein Rab-28;
DE Flags: Precursor;
GN Name=RAB28;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS L AND S).
RC TISSUE=Testis;
RX PubMed=8647132; DOI=10.1111/j.1432-1033.1996.0833p.x;
RA Brauers A., Schuermann A., Massmann S., Muehl-Zuerbes P., Becker W.,
RA Kainulainen H., Lie C., Joost H.-G.;
RT "Alternative mRNA splicing of the novel GTPase Rab28 generates
RT isoforms with different C-termini.";
RL Eur. J. Biochem. 237:833-840(1996).
RN [2]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM L).
RC TISSUE=Brain;
RA Puhl H.L. III, Ikeda S.R., Aronstam R.S.;
RT "cDNA clones of human proteins involved in signal transduction
RT sequenced by the Guthrie cDNA resource center (www.cdna.org).";
RL Submitted (APR-2002) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=15815621; DOI=10.1038/nature03466;
RA Hillier L.W., Graves T.A., Fulton R.S., Fulton L.A., Pepin K.H.,
RA Minx P., Wagner-McPherson C., Layman D., Wylie K., Sekhon M.,
RA Becker M.C., Fewell G.A., Delehaunty K.D., Miner T.L., Nash W.E.,
RA Kremitzki C., Oddy L., Du H., Sun H., Bradshaw-Cordum H., Ali J.,
RA Carter J., Cordes M., Harris A., Isak A., van Brunt A., Nguyen C.,
RA Du F., Courtney L., Kalicki J., Ozersky P., Abbott S., Armstrong J.,
RA Belter E.A., Caruso L., Cedroni M., Cotton M., Davidson T., Desai A.,
RA Elliott G., Erb T., Fronick C., Gaige T., Haakenson W., Haglund K.,
RA Holmes A., Harkins R., Kim K., Kruchowski S.S., Strong C.M.,
RA Grewal N., Goyea E., Hou S., Levy A., Martinka S., Mead K.,
RA McLellan M.D., Meyer R., Randall-Maher J., Tomlinson C.,
RA Dauphin-Kohlberg S., Kozlowicz-Reilly A., Shah N.,
RA Swearengen-Shahid S., Snider J., Strong J.T., Thompson J., Yoakum M.,
RA Leonard S., Pearman C., Trani L., Radionenko M., Waligorski J.E.,
RA Wang C., Rock S.M., Tin-Wollam A.-M., Maupin R., Latreille P.,
RA Wendl M.C., Yang S.-P., Pohl C., Wallis J.W., Spieth J., Bieri T.A.,
RA Berkowicz N., Nelson J.O., Osborne J., Ding L., Meyer R., Sabo A.,
RA Shotland Y., Sinha P., Wohldmann P.E., Cook L.L., Hickenbotham M.T.,
RA Eldred J., Williams D., Jones T.A., She X., Ciccarelli F.D.,
RA Izaurralde E., Taylor J., Schmutz J., Myers R.M., Cox D.R., Huang X.,
RA McPherson J.D., Mardis E.R., Clifton S.W., Warren W.C.,
RA Chinwalla A.T., Eddy S.R., Marra M.A., Ovcharenko I., Furey T.S.,
RA Miller W., Eichler E.E., Bork P., Suyama M., Torrents D.,
RA Waterston R.H., Wilson R.K.;
RT "Generation and annotation of the DNA sequences of human chromosomes 2
RT and 4.";
RL Nature 434:724-731(2005).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS S AND 3).
RC TISSUE=Brain, and Embryonic stem cell;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [5]
RP ISOPRENYLATION AT CYS-218.
RX PubMed=17411337; DOI=10.1371/journal.pcbi.0030066;
RA Maurer-Stroh S., Koranda M., Benetka W., Schneider G., Sirota F.L.,
RA Eisenhaber F.;
RT "Towards complete sets of farnesylated and geranylgeranylated
RT proteins.";
RL PLoS Comput. Biol. 3:634-648(2007).
RN [6]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [7]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, PHOSPHORYLATION [LARGE
RP SCALE ANALYSIS] AT SER-8, MASS SPECTROMETRY, AND CLEAVAGE OF INITIATOR
RP METHIONINE.
RX PubMed=21406692; DOI=10.1126/scisignal.2001570;
RA Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J.,
RA Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V.,
RA Blagoev B.;
RT "System-wide temporal characterization of the proteome and
RT phosphoproteome of human embryonic stem cell differentiation.";
RL Sci. Signal. 4:RS3-RS3(2011).
RN [8]
RP INVOVEMENT IN CORD18, AND TISSUE SPECIFCITY.
RX PubMed=23746546; DOI=10.1016/j.ajhg.2013.05.005;
RG European Retinal Disease Consortium;
RA Roosing S., Rohrschneider K., Beryozkin A., Sharon D., Weisschuh N.,
RA Staller J., Kohl S., Zelinger L., Peters T.A., Neveling K.,
RA Strom T.M., van den Born L.I., Hoyng C.B., Klaver C.C., Roepman R.,
RA Wissinger B., Banin E., Cremers F.P., den Hollander A.I.;
RT "Mutations in RAB28, encoding a farnesylated small GTPase, are
RT associated with autosomal-recessive cone-rod dystrophy.";
RL Am. J. Hum. Genet. 93:110-117(2013).
RN [9]
RP X-RAY CRYSTALLOGRAPHY (1.1 ANGSTROMS) OF 11-184 IN COMPLEX WITH GTP
RP AND GDP ANALOGS.
RX PubMed=19026641; DOI=10.1016/j.febslet.2008.11.008;
RA Lee S.H., Baek K., Dominguez R.;
RT "Large nucleotide-dependent conformational change in Rab28.";
RL FEBS Lett. 582:4107-4111(2008).
CC -!- SUBCELLULAR LOCATION: Cell membrane; Lipid-anchor; Cytoplasmic
CC side (Potential). Cytoplasm, cytoskeleton, cilium basal body.
CC Note=Expressed in the basal body and ciliary rootlet of the
CC photoreceptors (By similarity).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=3;
CC Name=S; Synonyms=Rab28S;
CC IsoId=P51157-1; Sequence=Displayed;
CC Name=L; Synonyms=Rab28L;
CC IsoId=P51157-2; Sequence=VSP_005530;
CC Name=3;
CC IsoId=P51157-3; Sequence=VSP_045807;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Isoform S is detected in most tissues
CC investigated: cortex, liver, kidney, skeletal muscle, adipose
CC tissue, testis, urothelium, lung, bone marrow and retinal pigment
CC epithelium (RPE). Isoform L 2 is widely and abundantly expressed
CC all tissues. Isoform 3 is highly expressed in heart, lung, bone
CC marrow, retina, brain, and RPE.
CC -!- DISEASE: Cone-rod dystrophy 18 (CORD18) [MIM:615374]: A form of
CC cone-rod dystrophy, an inherited retinal dystrophy characterized
CC by retinal pigment deposits visible on fundus examination,
CC predominantly in the macular region, and initial loss of cone
CC photoreceptors followed by rod degeneration. This leads to
CC decreased visual acuity and sensitivity in the central visual
CC field, followed by loss of peripheral vision. Severe loss of
CC vision occurs earlier than in retinitis pigmentosa. Note=The
CC disease is caused by mutations affecting the gene represented in
CC this entry.
CC -!- SIMILARITY: Belongs to the small GTPase superfamily. Rab family.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; X94703; CAA64364.1; -; mRNA.
DR EMBL; AF498955; AAM21103.1; -; mRNA.
DR EMBL; AC006226; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC006445; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AC020729; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; BC035054; AAH35054.1; -; mRNA.
DR EMBL; CX165950; -; NOT_ANNOTATED_CDS; mRNA.
DR PIR; S65477; S65477.
DR PIR; S72399; S72399.
DR RefSeq; NP_001017979.1; NM_001017979.2.
DR RefSeq; NP_001153073.1; NM_001159601.1.
DR RefSeq; NP_004240.2; NM_004249.3.
DR RefSeq; XP_005248272.1; XM_005248215.1.
DR RefSeq; XP_005248273.1; XM_005248216.1.
DR UniGene; Hs.656060; -.
DR PDB; 2HXS; X-ray; 1.10 A; A=11-184.
DR PDB; 3E5H; X-ray; 1.50 A; A=11-184.
DR PDBsum; 2HXS; -.
DR PDBsum; 3E5H; -.
DR ProteinModelPortal; P51157; -.
DR SMR; P51157; 8-184.
DR PhosphoSite; P51157; -.
DR DMDM; 85700393; -.
DR PaxDb; P51157; -.
DR PRIDE; P51157; -.
DR DNASU; 9364; -.
DR Ensembl; ENST00000288723; ENSP00000288723; ENSG00000157869.
DR Ensembl; ENST00000330852; ENSP00000328551; ENSG00000157869.
DR Ensembl; ENST00000338176; ENSP00000340079; ENSG00000157869.
DR GeneID; 9364; -.
DR KEGG; hsa:9364; -.
DR UCSC; uc011bwz.1; human.
DR CTD; 9364; -.
DR GeneCards; GC04M013369; -.
DR HGNC; HGNC:9768; RAB28.
DR HPA; HPA044575; -.
DR MIM; 612994; gene.
DR MIM; 615374; phenotype.
DR neXtProt; NX_P51157; -.
DR Orphanet; 1872; Cone rod dystrophy.
DR PharmGKB; PA34119; -.
DR eggNOG; COG1100; -.
DR HOGENOM; HOG000233968; -.
DR HOVERGEN; HBG101090; -.
DR InParanoid; P51157; -.
DR KO; K07915; -.
DR OMA; PRSSMCV; -.
DR PhylomeDB; P51157; -.
DR EvolutionaryTrace; P51157; -.
DR GenomeRNAi; 9364; -.
DR NextBio; 35067; -.
DR PRO; PR:P51157; -.
DR ArrayExpress; P51157; -.
DR Bgee; P51157; -.
DR CleanEx; HS_RAB28; -.
DR Genevestigator; P51157; -.
DR GO; GO:0035253; C:ciliary rootlet; ISS:UniProtKB.
DR GO; GO:0036064; C:cilium basal body; ISS:UniProtKB.
DR GO; GO:0005886; C:plasma membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0019003; F:GDP binding; IDA:UniProtKB.
DR GO; GO:0005525; F:GTP binding; IDA:UniProtKB.
DR GO; GO:0003924; F:GTPase activity; TAS:ProtInc.
DR GO; GO:0007264; P:small GTPase mediated signal transduction; IEA:InterPro.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR005225; Small_GTP-bd_dom.
DR InterPro; IPR001806; Small_GTPase.
DR Pfam; PF00071; Ras; 1.
DR PRINTS; PR00449; RASTRNSFRMNG.
DR SUPFAM; SSF52540; SSF52540; 1.
DR TIGRFAMs; TIGR00231; small_GTP; 1.
DR PROSITE; PS51419; RAB; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Cell membrane;
KW Cell projection; Complete proteome; Cone-rod dystrophy; Cytoplasm;
KW Cytoskeleton; GTP-binding; Lipoprotein; Membrane; Methylation;
KW Nucleotide-binding; Phosphoprotein; Prenylation; Reference proteome.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 218 Ras-related protein Rab-28.
FT /FTId=PRO_0000121227.
FT PROPEP 219 221 Removed in mature form (Probable).
FT /FTId=PRO_0000396721.
FT NP_BIND 19 27 GTP.
FT NP_BIND 68 72 GTP.
FT NP_BIND 129 132 GTP.
FT NP_BIND 159 161 GTP.
FT MOTIF 41 49 Effector region (By similarity).
FT MOD_RES 2 2 N-acetylserine.
FT MOD_RES 8 8 Phosphoserine.
FT MOD_RES 218 218 Cysteine methyl ester (Probable).
FT LIPID 218 218 S-farnesyl cysteine.
FT VAR_SEQ 192 221 RVVKADIVNYNQEPMSRTVNPPRSSMCAVQ -> GHFIIFI
FT SSTNRE (in isoform 3).
FT /FTId=VSP_045807.
FT VAR_SEQ 193 221 VVKADIVNYNQEPMSRTVNPPRSSMCAVQ -> IVRAEIVK
FT YPEEENQHTTSTQSRICSVQ (in isoform L).
FT /FTId=VSP_005530.
FT CONFLICT 22 22 A -> T (in Ref. 1; CAA64364).
FT STRAND 12 18
FT HELIX 25 33
FT HELIX 34 36
FT HELIX 39 43
FT TURN 44 46
FT STRAND 47 56
FT TURN 57 59
FT STRAND 60 68
FT HELIX 71 75
FT HELIX 79 83
FT STRAND 87 94
FT HELIX 98 102
FT HELIX 104 118
FT STRAND 123 129
FT HELIX 131 136
FT HELIX 141 151
FT STRAND 154 158
FT TURN 160 162
FT HELIX 166 177
SQ SEQUENCE 221 AA; 24841 MW; 65AC9D6F10491916 CRC64;
MSDSEEESQD RQLKIVVLGD GASGKTSLTT CFAQETFGKQ YKQTIGLDFF LRRITLPGNL
NVTLQIWDIG GQTIGGKMLD KYIYGAQGVL LVYDITNYQS FENLEDWYTV VKKVSEESET
QPLVALVGNK IDLEHMRTIK PEKHLRFCQE NGFSSHFVSA KTGDSVFLCF QKVAAEILGI
KLNKAEIEQS QRVVKADIVN YNQEPMSRTV NPPRSSMCAV Q
//
MIM
612994
*RECORD*
*FIELD* NO
612994
*FIELD* TI
*612994 RAS-ASSOCIATED PROTEIN 28; RAB28
*FIELD* TX
DESCRIPTION
RAS-related GTPases, such as RAB28, are GTP-dependent switches that
read moreoperate signaling pathways in cell growth, metabolism, and organelle
trafficking (Brauers et al., 1996).
CLONING
By searching a human EST database for sequences similar to rat Rab28,
followed by PCR of a testis cDNA library, Brauers et al. (1996) cloned 2
splice variants of RAB28, which they called RAB28S and RAB28L. RAB28S
encodes a deduced 221-amino acid protein with domain characteristics of
a GTPase, 9 potential phosphorylation sites, and a C-terminal
farnesylation motif. RAB28L encodes a 220-amino acid protein that also
has GTPase motifs and differs from RAB28S only at the C terminus,
although it also has a C-terminal farnesylation motif. RAB28 is only
distantly related to other RAB family members, sharing 31 to 33% amino
acid identity with RAB1 (179508), RAB6 (179513), RAB11 (see RAB11A;
605570), and RAB13 (602672). Northern blot analysis of human tissues
detected weak expression of a 2.0-kb transcript only in testis. PCR
analysis detected RAB28S in all tissues examined and RAB28L
predominantly in testis.
Roosing et al. (2013) performed expression analysis in RNA samples from
various human tissues and observed the highest expression of RAB28
splice variant 1 in lung, bone marrow, retinal pigment epithelium (RPE),
and kidney; wide and abundant expression of variant 2; and highest
expression of variant 3 in heart, lung, bone marrow, retina, brain, and
RPE. Staining of rat retina showed localization of RAB28 to the basal
body and ciliary rootlet of the photoreceptors.
BIOCHEMICAL FEATURES
Lee et al. (2008) solved the crystal structures of RAB28 in the active
and inactive forms at 1.5- and 1.1-angstrom resolution, respectively.
While the overall fold of RAB28 resembles that of other RAB GTPases, it
undergoes a larger nucleotide-dependent conformational change than other
members of this family, likely due to a double-glycine motif at the
beginning of switch 2. This double-glycine motif is conserved in ARF
proteins (see ARF1; 103180), but in RAB proteins only occurs in RAB28
and RAB7B. Also, the nucleotide-binding site of RAB28 in the inactive
conformation contains a GDP molecule with an additional monophosphate in
the 3-prime position rather than the typical GDP molecule.
MAPPING
Hartz (2009) mapped the RAB28 gene to chromosome 4p15.33 based on an
alignment of the RAB28 sequence (GenBank GENBANK X94703) with the
genomic sequence (GRCh37).
GENE FUNCTION
Using recombinant proteins, Brauers et al. (1996) showed that both
RAB28S and RAB28L bound radiolabeled GTP. Both rapidly hydrolyzed GTP
with no apparent difference in activity.
MOLECULAR GENETICS
In affected sibs from 2 unrelated families with cone-rod dystrophy
(CORD18; 615374), Roosing et al. (2013) identified homozygosity for
nonsense mutations in the RAB28 gene, E189X (612994.0001) and R137X
(612994.0002), respectively.
*FIELD* AV
.0001
CONE-ROD DYSTROPHY 18
RAB28, GLU189TER
In 3 sibs from a German family with cone-rod dystrophy (CORD18; 615374),
Roosing et al. (2013) identified homozygosity for a c.565C-T transition
in exon 6 of the RAB28 gene, resulting in a glu189-to-ter (E189X)
substitution in the shared mRNA segment, predicted to truncate all 3
RAB28 isoforms. RAB28 transcript was detected by RT-PCR analysis of RNA
samples from patient lymphocytes, indicating that there was not complete
loss of RAB28 transcript by nonsense-mediated decay. The mutation was
not found in 176 ethnically matched controls or in the Exome Variant
Server database (release ESP6500).
.0002
CONE-ROD DYSTROPHY 18
RAB28, ARG137TER
In a brother and sister from a consanguineous family of Moroccan Jewish
ancestry with cone-rod dystrophy (CORD18; 615374), Roosing et al. (2013)
identified homozygosity for a c.409C-T transition in exon 5 of the RAB28
gene, resulting in an arg137-to-ter (R137X) substitution in the shared
mRNA segment, predicted to truncate all 3 RAB28 isoforms. RAB28
transcript was detected by RT-PCR analysis of RNA samples from patient
lymphocytes, indicating that there was not complete loss of RAB28
transcript by nonsense-mediated decay. Their unaffected parents were
heterozygous for the mutation, which was not found in 118 ethnically
matched controls or in the Exome Variant Server database (release
ESP6500).
*FIELD* RF
1. Brauers, A.; Schurmann, A.; Massmann, S.; Muhl-Zurbes, P.; Becker,
W.; Kainulainen, H.; Lie, C.; Joost, H.-G.: Alternative mRNA splicing
of the novel GTPase Rab28 generates isoforms with different C-termini. Europ.
J. Biochem. 237: 833-840, 1996.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 8/28/2009.
3. Lee, S. H.; Baek, K.; Dominguez, R.: Large nucleotide-dependent
conformational change in Rab28. FEBS Lett. 582: 4107-4111, 2008.
4. Roosing, S.; Rohrschneider, K.; Beryozkin, A.; Sharon, D.; Weisschuh,
N.; Staller, J.; Kohl, S.; Zelinger, L.; Peters, T. A.; Neveling,
K.; Strom, T. M.; European Retinal Disease Consortium; Ingeborgh
van den Born, L.; Hoyng, C. B.; Klaver, C. C. W.; Roepman, R.; Wissinger,
B.; Banin, E.; Cremers, F. P. M.; den Hollander, A. I.: Mutations
in RAB28, encoding a farnesylated small GTPase, are associated with
autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 93: 110-117,
2013.
*FIELD* CN
Marla J. F. O'Neill - updated: 08/21/2013
*FIELD* CD
Patricia A. Hartz: 8/31/2009
*FIELD* ED
carol: 08/21/2013
mgross: 8/31/2009
*RECORD*
*FIELD* NO
612994
*FIELD* TI
*612994 RAS-ASSOCIATED PROTEIN 28; RAB28
*FIELD* TX
DESCRIPTION
RAS-related GTPases, such as RAB28, are GTP-dependent switches that
read moreoperate signaling pathways in cell growth, metabolism, and organelle
trafficking (Brauers et al., 1996).
CLONING
By searching a human EST database for sequences similar to rat Rab28,
followed by PCR of a testis cDNA library, Brauers et al. (1996) cloned 2
splice variants of RAB28, which they called RAB28S and RAB28L. RAB28S
encodes a deduced 221-amino acid protein with domain characteristics of
a GTPase, 9 potential phosphorylation sites, and a C-terminal
farnesylation motif. RAB28L encodes a 220-amino acid protein that also
has GTPase motifs and differs from RAB28S only at the C terminus,
although it also has a C-terminal farnesylation motif. RAB28 is only
distantly related to other RAB family members, sharing 31 to 33% amino
acid identity with RAB1 (179508), RAB6 (179513), RAB11 (see RAB11A;
605570), and RAB13 (602672). Northern blot analysis of human tissues
detected weak expression of a 2.0-kb transcript only in testis. PCR
analysis detected RAB28S in all tissues examined and RAB28L
predominantly in testis.
Roosing et al. (2013) performed expression analysis in RNA samples from
various human tissues and observed the highest expression of RAB28
splice variant 1 in lung, bone marrow, retinal pigment epithelium (RPE),
and kidney; wide and abundant expression of variant 2; and highest
expression of variant 3 in heart, lung, bone marrow, retina, brain, and
RPE. Staining of rat retina showed localization of RAB28 to the basal
body and ciliary rootlet of the photoreceptors.
BIOCHEMICAL FEATURES
Lee et al. (2008) solved the crystal structures of RAB28 in the active
and inactive forms at 1.5- and 1.1-angstrom resolution, respectively.
While the overall fold of RAB28 resembles that of other RAB GTPases, it
undergoes a larger nucleotide-dependent conformational change than other
members of this family, likely due to a double-glycine motif at the
beginning of switch 2. This double-glycine motif is conserved in ARF
proteins (see ARF1; 103180), but in RAB proteins only occurs in RAB28
and RAB7B. Also, the nucleotide-binding site of RAB28 in the inactive
conformation contains a GDP molecule with an additional monophosphate in
the 3-prime position rather than the typical GDP molecule.
MAPPING
Hartz (2009) mapped the RAB28 gene to chromosome 4p15.33 based on an
alignment of the RAB28 sequence (GenBank GENBANK X94703) with the
genomic sequence (GRCh37).
GENE FUNCTION
Using recombinant proteins, Brauers et al. (1996) showed that both
RAB28S and RAB28L bound radiolabeled GTP. Both rapidly hydrolyzed GTP
with no apparent difference in activity.
MOLECULAR GENETICS
In affected sibs from 2 unrelated families with cone-rod dystrophy
(CORD18; 615374), Roosing et al. (2013) identified homozygosity for
nonsense mutations in the RAB28 gene, E189X (612994.0001) and R137X
(612994.0002), respectively.
*FIELD* AV
.0001
CONE-ROD DYSTROPHY 18
RAB28, GLU189TER
In 3 sibs from a German family with cone-rod dystrophy (CORD18; 615374),
Roosing et al. (2013) identified homozygosity for a c.565C-T transition
in exon 6 of the RAB28 gene, resulting in a glu189-to-ter (E189X)
substitution in the shared mRNA segment, predicted to truncate all 3
RAB28 isoforms. RAB28 transcript was detected by RT-PCR analysis of RNA
samples from patient lymphocytes, indicating that there was not complete
loss of RAB28 transcript by nonsense-mediated decay. The mutation was
not found in 176 ethnically matched controls or in the Exome Variant
Server database (release ESP6500).
.0002
CONE-ROD DYSTROPHY 18
RAB28, ARG137TER
In a brother and sister from a consanguineous family of Moroccan Jewish
ancestry with cone-rod dystrophy (CORD18; 615374), Roosing et al. (2013)
identified homozygosity for a c.409C-T transition in exon 5 of the RAB28
gene, resulting in an arg137-to-ter (R137X) substitution in the shared
mRNA segment, predicted to truncate all 3 RAB28 isoforms. RAB28
transcript was detected by RT-PCR analysis of RNA samples from patient
lymphocytes, indicating that there was not complete loss of RAB28
transcript by nonsense-mediated decay. Their unaffected parents were
heterozygous for the mutation, which was not found in 118 ethnically
matched controls or in the Exome Variant Server database (release
ESP6500).
*FIELD* RF
1. Brauers, A.; Schurmann, A.; Massmann, S.; Muhl-Zurbes, P.; Becker,
W.; Kainulainen, H.; Lie, C.; Joost, H.-G.: Alternative mRNA splicing
of the novel GTPase Rab28 generates isoforms with different C-termini. Europ.
J. Biochem. 237: 833-840, 1996.
2. Hartz, P. A.: Personal Communication. Baltimore, Md. 8/28/2009.
3. Lee, S. H.; Baek, K.; Dominguez, R.: Large nucleotide-dependent
conformational change in Rab28. FEBS Lett. 582: 4107-4111, 2008.
4. Roosing, S.; Rohrschneider, K.; Beryozkin, A.; Sharon, D.; Weisschuh,
N.; Staller, J.; Kohl, S.; Zelinger, L.; Peters, T. A.; Neveling,
K.; Strom, T. M.; European Retinal Disease Consortium; Ingeborgh
van den Born, L.; Hoyng, C. B.; Klaver, C. C. W.; Roepman, R.; Wissinger,
B.; Banin, E.; Cremers, F. P. M.; den Hollander, A. I.: Mutations
in RAB28, encoding a farnesylated small GTPase, are associated with
autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 93: 110-117,
2013.
*FIELD* CN
Marla J. F. O'Neill - updated: 08/21/2013
*FIELD* CD
Patricia A. Hartz: 8/31/2009
*FIELD* ED
carol: 08/21/2013
mgross: 8/31/2009
MIM
615374
*RECORD*
*FIELD* NO
615374
*FIELD* TI
#615374 CONE-ROD DYSTROPHY 18; CORD18
*FIELD* TX
A number sign (#) is used with this entry because of evidence that
read morecone-rod dystrophy-18 (CORD18) is caused by homozygous mutation in the
RAB28 gene (612994) on chromosome 4p15.
For a general phenotypic description and a discussion of genetic
heterogeneity of cone-rod dystrophy (CORD), see 120970.
CLINICAL FEATURES
Roosing et al. (2013) studied a German family in which 3 sibs were
diagnosed with cone-rod dystrophy in the second decade of life, with
rapidly deteriorating visual acuities and high myopia. Funduscopy showed
hyperpigmentation of the fovea, and autofluorescence revealed a slightly
hyperfluorescent fovea. Optical coherence tomography (OCT) showed
altered photoreceptors in the fovea but intact peripheral
photoreceptors. Color-vision tests revealed defects in all axes, and
visual field testing showed a central scotoma. On electroretinography
(ERG), photopic responses were nondetectable and scotopic responses
reduced in all 3 sibs. Roosing et al. (2013) also studied a
consanguineous family of Moroccan Jewish origin in which a brother and
sister with CORD had a presentation similar to that of the sibs from the
German family. The brother presented with low vision from early
childhood, with progressive deterioration of visual acuity and high
myopia. The retinal pigment epithelium showed foveal atrophy;
hypofluorescence was observed in the fovea and a hyperfluorescent ring
was noted around the fovea. OCT imaging confirmed absence of
photoreceptors in the central fovea, whereas the photoreceptor layer
further out appeared largely intact. Color-vision defects were noted in
both sibs. Photopic ERG responses were nondetectable, and scotopic
responses were moderately reduced.
MOLECULAR GENETICS
In 2 of 3 affected sibs from a German family with CORD, Roosing et al.
(2013) performed exome sequencing but found no pathogenic variants in
known autosomal recessive CORD-associated genes among the shared
variants; there was only a single homozygous shared variant, a nonsense
mutation in the RAB28 gene (E189X; 612994.0001), located within the
largest shared homozygous region in the family. Sanger sequencing
confirmed homozygosity for the mutation in the 3 affected sibs, and it
was not found in 176 ethnically matched controls or in the Exome Variant
Server database (release ESP6500). Sequencing of RAB28 in 468 CORD
probands and 149 probands with cone dystrophy revealed no mutations.
Analysis of SNP data from more than 400 probands in the European Retinal
Disease Consortium, including patients with autosomal recessive CORD,
Leber congenital amaurosis (see 204000), and retinitis pigmentosa (see
268000) identified 7 families with large homozygous regions spanning
RAB28; Sanger sequencing of RAB28 in those families revealed a
homozygous nonsense mutation (R137X; 612994.0002) in affected sibs from
a consanguineous family of Moroccan Jewish ancestry with CORD.
*FIELD* RF
1. Roosing, S.; Rohrschneider, K.; Beryozkin, A.; Sharon, D.; Weisschuh,
N.; Staller, J.; Kohl, S.; Zelinger, L.; Peters, T. A.; Neveling,
K.; Strom, T. M.; European Retinal Disease Consortium; Ingeborgh
van den Born, L.; Hoyng, C. B.; Klaver, C. C. W.; Roepman, R.; Wissinger,
B.; Banin, E.; Cremers, F. P. M.; den Hollander, A. I.: Mutations
in RAB28, encoding a farnesylated small GTPase, are associated with
autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 93: 110-117,
2013.
*FIELD* CS
INHERITANCE:
Autosomal recessive
HEAD AND NECK:
[Eyes];
High myopia;
Decreased visual acuity, rapidly progressive;
Foveal hyperpigmentation;
Foveal hyperfluorescence;
Foveal atrophy (in some patients);
Defects in all axes of color vision;
Central scotoma;
Lack of photoreceptors in fovea by optical coherence tomography;
Nondetectable photopic responses on electroretinography;
Reduced scotopic responses on electroretinography
MISCELLANEOUS:
Onset of symptoms in the second decade of life
MOLECULAR BASIS:
Caused by mutation in the RAS-associated protein-28 gene (RAB28, 612994.0001)
*FIELD* CD
Marla J. F. O'Neill: 12/10/2013
*FIELD* ED
joanna: 12/10/2013
*FIELD* CD
Marla J. F. O'Neill: 8/21/2013
*FIELD* ED
carol: 08/21/2013
*RECORD*
*FIELD* NO
615374
*FIELD* TI
#615374 CONE-ROD DYSTROPHY 18; CORD18
*FIELD* TX
A number sign (#) is used with this entry because of evidence that
read morecone-rod dystrophy-18 (CORD18) is caused by homozygous mutation in the
RAB28 gene (612994) on chromosome 4p15.
For a general phenotypic description and a discussion of genetic
heterogeneity of cone-rod dystrophy (CORD), see 120970.
CLINICAL FEATURES
Roosing et al. (2013) studied a German family in which 3 sibs were
diagnosed with cone-rod dystrophy in the second decade of life, with
rapidly deteriorating visual acuities and high myopia. Funduscopy showed
hyperpigmentation of the fovea, and autofluorescence revealed a slightly
hyperfluorescent fovea. Optical coherence tomography (OCT) showed
altered photoreceptors in the fovea but intact peripheral
photoreceptors. Color-vision tests revealed defects in all axes, and
visual field testing showed a central scotoma. On electroretinography
(ERG), photopic responses were nondetectable and scotopic responses
reduced in all 3 sibs. Roosing et al. (2013) also studied a
consanguineous family of Moroccan Jewish origin in which a brother and
sister with CORD had a presentation similar to that of the sibs from the
German family. The brother presented with low vision from early
childhood, with progressive deterioration of visual acuity and high
myopia. The retinal pigment epithelium showed foveal atrophy;
hypofluorescence was observed in the fovea and a hyperfluorescent ring
was noted around the fovea. OCT imaging confirmed absence of
photoreceptors in the central fovea, whereas the photoreceptor layer
further out appeared largely intact. Color-vision defects were noted in
both sibs. Photopic ERG responses were nondetectable, and scotopic
responses were moderately reduced.
MOLECULAR GENETICS
In 2 of 3 affected sibs from a German family with CORD, Roosing et al.
(2013) performed exome sequencing but found no pathogenic variants in
known autosomal recessive CORD-associated genes among the shared
variants; there was only a single homozygous shared variant, a nonsense
mutation in the RAB28 gene (E189X; 612994.0001), located within the
largest shared homozygous region in the family. Sanger sequencing
confirmed homozygosity for the mutation in the 3 affected sibs, and it
was not found in 176 ethnically matched controls or in the Exome Variant
Server database (release ESP6500). Sequencing of RAB28 in 468 CORD
probands and 149 probands with cone dystrophy revealed no mutations.
Analysis of SNP data from more than 400 probands in the European Retinal
Disease Consortium, including patients with autosomal recessive CORD,
Leber congenital amaurosis (see 204000), and retinitis pigmentosa (see
268000) identified 7 families with large homozygous regions spanning
RAB28; Sanger sequencing of RAB28 in those families revealed a
homozygous nonsense mutation (R137X; 612994.0002) in affected sibs from
a consanguineous family of Moroccan Jewish ancestry with CORD.
*FIELD* RF
1. Roosing, S.; Rohrschneider, K.; Beryozkin, A.; Sharon, D.; Weisschuh,
N.; Staller, J.; Kohl, S.; Zelinger, L.; Peters, T. A.; Neveling,
K.; Strom, T. M.; European Retinal Disease Consortium; Ingeborgh
van den Born, L.; Hoyng, C. B.; Klaver, C. C. W.; Roepman, R.; Wissinger,
B.; Banin, E.; Cremers, F. P. M.; den Hollander, A. I.: Mutations
in RAB28, encoding a farnesylated small GTPase, are associated with
autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 93: 110-117,
2013.
*FIELD* CS
INHERITANCE:
Autosomal recessive
HEAD AND NECK:
[Eyes];
High myopia;
Decreased visual acuity, rapidly progressive;
Foveal hyperpigmentation;
Foveal hyperfluorescence;
Foveal atrophy (in some patients);
Defects in all axes of color vision;
Central scotoma;
Lack of photoreceptors in fovea by optical coherence tomography;
Nondetectable photopic responses on electroretinography;
Reduced scotopic responses on electroretinography
MISCELLANEOUS:
Onset of symptoms in the second decade of life
MOLECULAR BASIS:
Caused by mutation in the RAS-associated protein-28 gene (RAB28, 612994.0001)
*FIELD* CD
Marla J. F. O'Neill: 12/10/2013
*FIELD* ED
joanna: 12/10/2013
*FIELD* CD
Marla J. F. O'Neill: 8/21/2013
*FIELD* ED
carol: 08/21/2013