Full text data of SUN2
SUN2
(FRIGG, KIAA0668, RAB5IP, UNC84B)
[Confidence: medium (present in either hRBCD or BSc_CH or PM22954596)]
SUN domain-containing protein 2 (Protein unc-84 homolog B; Rab5-interacting protein; Rab5IP; Sad1/unc-84 protein-like 2)
SUN domain-containing protein 2 (Protein unc-84 homolog B; Rab5-interacting protein; Rab5IP; Sad1/unc-84 protein-like 2)
UniProt
Q9UH99
ID SUN2_HUMAN Reviewed; 717 AA.
AC Q9UH99; B0QY62; O75156; Q2NKN8; Q504T5; Q6B4H1; Q7Z3E3;
DT 02-AUG-2002, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-MAR-2003, sequence version 3.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=SUN domain-containing protein 2;
DE AltName: Full=Protein unc-84 homolog B;
DE AltName: Full=Rab5-interacting protein;
DE Short=Rab5IP;
DE AltName: Full=Sad1/unc-84 protein-like 2;
GN Name=SUN2; Synonyms=FRIGG, KIAA0668, RAB5IP, UNC84B;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, AND INTERACTION WITH RAB5A.
RC TISSUE=B-cell;
RX PubMed=10818110; DOI=10.1074/jbc.M909600199;
RA Hoffenberg S., Liu X., Nikolova L., Hall H.S., Dai W., Baughn R.E.,
RA Dickey B.F., Barbieri M.A., Aballay A., Stahl P.D., Knoll B.J.;
RT "A novel membrane-anchored Rab5 interacting protein required for
RT homotypic endosome fusion.";
RL J. Biol. Chem. 275:24661-24669(2000).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), SUBCELLULAR LOCATION, SUBUNIT,
RP AND ASSOCIATION WITH THE CENTROSOME.
RX PubMed=17132086; DOI=10.1089/dna.2006.25.554;
RA Wang Q., Du X., Cai Z., Greene M.I.;
RT "Characterization of the structures involved in localization of the
RT SUN proteins to the nuclear envelope and the centrosome.";
RL DNA Cell Biol. 25:554-562(2006).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Brain;
RX PubMed=9734811; DOI=10.1093/dnares/5.3.169;
RA Ishikawa K., Nagase T., Suyama M., Miyajima N., Tanaka A., Kotani H.,
RA Nomura N., Ohara O.;
RT "Prediction of the coding sequences of unidentified human genes. X.
RT The complete sequences of 100 new cDNA clones from brain which can
RT code for large proteins in vitro.";
RL DNA Res. 5:169-176(1998).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=15461802; DOI=10.1186/gb-2004-5-10-r84;
RA Collins J.E., Wright C.L., Edwards C.A., Davis M.P., Grinham J.A.,
RA Cole C.G., Goward M.E., Aguado B., Mallya M., Mokrab Y., Huckle E.J.,
RA Beare D.M., Dunham I.;
RT "A genome annotation-driven approach to cloning the human ORFeome.";
RL Genome Biol. 5:R84.1-R84.11(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Fetal kidney;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=10591208; DOI=10.1038/990031;
RA Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M.,
RA Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K.,
RA Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P.,
RA Bird C.P., Blakey S.E., Bridgeman A.M., Buck D., Burgess J.,
RA Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G.,
RA Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R.,
RA Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E.,
RA Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G.,
RA Evans K.L., Fey J.M., Fleming K., French L., Garner A.A.,
RA Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C.,
RA Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S.,
RA Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A.,
RA Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M.,
RA Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T.,
RA Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J.,
RA Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T.,
RA Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T.,
RA Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L.,
RA Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M.,
RA Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L.,
RA Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L.,
RA Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N.,
RA Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J.,
RA Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S.,
RA Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T.,
RA Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I.,
RA Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H.,
RA Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L.,
RA Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z.,
RA Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P.,
RA Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S.,
RA Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J.,
RA Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T.,
RA Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J.,
RA Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R.,
RA Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S.,
RA Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E.,
RA Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P.,
RA Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E.,
RA O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X.,
RA Khan A.S., Lane L., Tilahun Y., Wright H.;
RT "The DNA sequence of human chromosome 22.";
RL Nature 402:489-495(1999).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND
RP VARIANTS ARG-89 AND SER-671.
RC TISSUE=Brain, and Pancreas;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 278-717 (ISOFORM 1).
RX PubMed=10375507;
RA Malone C.J., Fixsen W.D., Horvitz H.R., Han M.;
RT "UNC-84 localizes to the nuclear envelope and is required for nuclear
RT migration and anchoring during C. elegans development.";
RL Development 126:3171-3181(1999).
RN [9]
RP TISSUE SPECIFICITY.
RX PubMed=12393179; DOI=10.1016/S0925-4439(02)00171-0;
RA Sun G., Yuen Chan S., Yuan Y., Wang Chan K., Qiu G., Sun K.,
RA Ping Leung M.;
RT "Isolation of differentially expressed genes in human heart tissues.";
RL Biochim. Biophys. Acta 1588:241-246(2002).
RN [10]
RP PHOSPHORYLATION AT SER-12; SER-54 AND SER-116.
RX PubMed=12239280; DOI=10.1074/mcp.M200010-MCP200;
RA Gronborg M., Kristiansen T.Z., Stensballe A., Andersen J.S., Ohara O.,
RA Mann M., Jensen O.N., Pandey A.;
RT "A mass spectrometry-based proteomic approach for identification of
RT serine/threonine-phosphorylated proteins by enrichment with phospho-
RT specific antibodies: identification of a novel protein, Frigg, as a
RT protein kinase A substrate.";
RL Mol. Cell. Proteomics 1:517-527(2002).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND SUBCELLULAR LOCATION.
RX PubMed=12958361; DOI=10.1126/science.1088176;
RA Schirmer E.C., Florens L., Guan T., Yates J.R. III, Gerace L.;
RT "Nuclear membrane proteins with potential disease links found by
RT subtractive proteomics.";
RL Science 301:1380-1382(2003).
RN [12]
RP SUBCELLULAR LOCATION, AND TOPOLOGY.
RX PubMed=15082709; DOI=10.1074/jbc.M313157200;
RA Hodzic D.M., Yeater D.B., Bengtsson L., Otto H., Stahl P.D.;
RT "Sun2 is a novel mammalian inner nuclear membrane protein.";
RL J. Biol. Chem. 279:25805-25812(2004).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-54, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [14]
RP SUBCELLULAR LOCATION.
RX PubMed=17724119; DOI=10.1083/jcb.200704108;
RA Liu Q., Pante N., Misteli T., Elsagga M., Crisp M., Hodzic D.,
RA Burke B., Roux K.J.;
RT "Functional association of Sun1 with nuclear pore complexes.";
RL J. Cell Biol. 178:785-798(2007).
RN [15]
RP INTERACTION WITH SUN1.
RX PubMed=18845190; DOI=10.1016/j.bbamcr.2008.09.001;
RA Lu W., Gotzmann J., Sironi L., Jaeger V.M., Schneider M., Luke Y.,
RA Uhlen M., Szigyarto C.A., Brachner A., Ellenberg J., Foisner R.,
RA Noegel A.A., Karakesisoglou I.;
RT "Sun1 forms immobile macromolecular assemblies at the nuclear
RT envelope.";
RL Biochim. Biophys. Acta 1783:2415-2426(2008).
RN [16]
RP INTERACTION WITH SYNE1; SYNE2 AND SYNE3, AND FUNCTION OF THE LINC
RP COMPLEXES.
RX PubMed=18396275; DOI=10.1016/j.yexcr.2008.02.022;
RA Stewart-Hutchinson P.J., Hale C.M., Wirtz D., Hodzic D.;
RT "Structural requirements for the assembly of LINC complexes and their
RT function in cellular mechanical stiffness.";
RL Exp. Cell Res. 314:1892-1905(2008).
RN [17]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-636, AND MASS
RP SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=19159218; DOI=10.1021/pr8008012;
RA Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.;
RT "Glycoproteomics analysis of human liver tissue by combination of
RT multiple enzyme digestion and hydrazide chemistry.";
RL J. Proteome Res. 8:651-661(2009).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-38, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [19]
RP INTERACTION WITH TMEM43.
RX PubMed=21391237; DOI=10.1002/ana.22338;
RA Liang W.C., Mitsuhashi H., Keduka E., Nonaka I., Noguchi S.,
RA Nishino I., Hayashi Y.K.;
RT "TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related
RT myopathy.";
RL Ann. Neurol. 69:1005-1013(2011).
RN [20]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Component of SUN-protein-containing multivariate
CC complexes also called LINC complexes which link the nucleoskeleton
CC and cytoskeleton by providing versatile outer nuclear membrane
CC attachment sites for cytoskeletal filaments. Specifically, SYNE2
CC and SUN2 assemble in arrays of transmembrane actin-associated
CC nuclear (TAN) lines which are bound to F-actin cables and couple
CC the nucleus to retrograde actin flow during actin-dependent
CC nuclear movement. Required for interkinetic nuclear migration
CC (INM) and essential for nucleokinesis and centrosome-nucleus
CC coupling during radial neuronal migration in the cerebral cortex
CC and during glial migration. Anchors chromosome movement in the
CC prophase of meiosis and is involved in selective gene expression
CC of coding and non-coding RNAs needed for gametogenesis. Required
CC for telomere attachment to nuclear envelope and gametogenesis. May
CC also function on endocytic vesicles as a receptor for RAB5-GDP and
CC participate in the activation of RAB5.
CC -!- SUBUNIT: Component of LINC complexes composed of SUN domain-
CC containing proteins SUN1 or SUN2 coupled to KASH domain-containing
CC proteins (SYNE1, SYNE2 or SYNE3), also called nesprins. Interacts
CC with EMD, LMNA, RAB5A, SYNE1, SYNE2 and SYNE3. Interacts with
CC TMEM43.
CC -!- INTERACTION:
CC Self; NbExp=2; IntAct=EBI-1044964, EBI-1044964;
CC P53618:COPB1; NbExp=2; IntAct=EBI-1044964, EBI-359063;
CC P50402:EMD; NbExp=3; IntAct=EBI-1044964, EBI-489887;
CC P52292:KPNA2; NbExp=3; IntAct=EBI-1044964, EBI-349938;
CC Q8NF91:SYNE1; NbExp=3; IntAct=EBI-1044964, EBI-928867;
CC Q8NF91-1:SYNE1; NbExp=2; IntAct=EBI-1044964, EBI-6170938;
CC Q8WXH0:SYNE2; NbExp=5; IntAct=EBI-1044964, EBI-2372294;
CC Q8WXH0-1:SYNE2; NbExp=2; IntAct=EBI-1044964, EBI-6170976;
CC -!- SUBCELLULAR LOCATION: Nucleus inner membrane; Single-pass type II
CC membrane protein. Endosome membrane; Single-pass type II membrane
CC protein (Probable).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q9UH99-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q9UH99-2; Sequence=VSP_045882;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Widely expressed. Highly expressed in heart,
CC lung and muscle. Weakly expressed in fetal heart. Slightly
CC overexpressed in some heart tissues form patients with congenital
CC heart defects.
CC -!- DOMAIN: The SUN domain may play a role in the nuclear anchoring
CC and/or migration.
CC -!- SIMILARITY: Contains 1 SUN domain.
CC -!- CAUTION: It is uncertain whether Met-1 or Met-50 is the initiator.
CC -!- SEQUENCE CAUTION:
CC Sequence=BAA31643.1; Type=Erroneous initiation; Note=Translation N-terminally shortened;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AB014568; BAA31643.1; ALT_INIT; mRNA.
DR EMBL; AY682988; AAT90500.1; -; mRNA.
DR EMBL; CR456474; CAG30360.1; -; mRNA.
DR EMBL; BX537962; CAD97926.1; -; mRNA.
DR EMBL; AL008583; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AL021806; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AL021707; CAI21604.1; -; Genomic_DNA.
DR EMBL; AL021707; CAQ07913.1; -; Genomic_DNA.
DR EMBL; BC030684; AAH30684.2; -; mRNA.
DR EMBL; BC094797; AAH94797.1; -; mRNA.
DR EMBL; BC111717; AAI11718.1; -; mRNA.
DR EMBL; AF202723; AAF15887.1; -; mRNA.
DR PIR; T00371; T00371.
DR RefSeq; NP_001186508.1; NM_001199579.1.
DR RefSeq; NP_001186509.1; NM_001199580.1.
DR RefSeq; NP_056189.1; NM_015374.2.
DR RefSeq; XP_005261558.1; XM_005261501.1.
DR RefSeq; XP_005261559.1; XM_005261502.1.
DR UniGene; Hs.517622; -.
DR UniGene; Hs.744734; -.
DR PDB; 3UNP; X-ray; 2.39 A; A=520-717.
DR PDB; 4DXR; X-ray; 2.32 A; A=522-717.
DR PDB; 4DXS; X-ray; 2.71 A; A=522-717.
DR PDB; 4DXT; X-ray; 2.22 A; A=522-717.
DR PDB; 4FI9; X-ray; 3.05 A; A=523-717.
DR PDBsum; 3UNP; -.
DR PDBsum; 4DXR; -.
DR PDBsum; 4DXS; -.
DR PDBsum; 4DXT; -.
DR PDBsum; 4FI9; -.
DR ProteinModelPortal; Q9UH99; -.
DR SMR; Q9UH99; 522-717.
DR IntAct; Q9UH99; 18.
DR MINT; MINT-3080157; -.
DR PhosphoSite; Q9UH99; -.
DR DMDM; 29337242; -.
DR PaxDb; Q9UH99; -.
DR PRIDE; Q9UH99; -.
DR DNASU; 25777; -.
DR Ensembl; ENST00000216064; ENSP00000216064; ENSG00000100242.
DR Ensembl; ENST00000405018; ENSP00000385616; ENSG00000100242.
DR Ensembl; ENST00000405510; ENSP00000385740; ENSG00000100242.
DR Ensembl; ENST00000406622; ENSP00000383992; ENSG00000100242.
DR GeneID; 25777; -.
DR KEGG; hsa:25777; -.
DR UCSC; uc010gxq.2; human.
DR CTD; 25777; -.
DR GeneCards; GC22M039418; -.
DR H-InvDB; HIX0159176; -.
DR HGNC; HGNC:14210; SUN2.
DR HPA; HPA001209; -.
DR MIM; 613569; gene.
DR neXtProt; NX_Q9UH99; -.
DR PharmGKB; PA165378369; -.
DR eggNOG; NOG285464; -.
DR HOGENOM; HOG000253025; -.
DR HOVERGEN; HBG056957; -.
DR OMA; MQGKSAR; -.
DR OrthoDB; EOG7J446H; -.
DR PhylomeDB; Q9UH99; -.
DR Reactome; REACT_111183; Meiosis.
DR Reactome; REACT_115566; Cell Cycle.
DR ChiTaRS; SUN2; human.
DR GeneWiki; UNC84B; -.
DR GenomeRNAi; 25777; -.
DR NextBio; 46920; -.
DR PRO; PR:Q9UH99; -.
DR ArrayExpress; Q9UH99; -.
DR Bgee; Q9UH99; -.
DR CleanEx; HS_UNC84B; -.
DR Genevestigator; Q9UH99; -.
DR GO; GO:0000794; C:condensed nuclear chromosome; IEA:Ensembl.
DR GO; GO:0010008; C:endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
DR GO; GO:0000784; C:nuclear chromosome, telomeric region; IEA:Ensembl.
DR GO; GO:0005637; C:nuclear inner membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0031965; C:nuclear membrane; IDA:HPA.
DR GO; GO:0034993; C:SUN-KASH complex; IDA:UniProtKB.
DR GO; GO:0005521; F:lamin binding; IDA:UniProtKB.
DR GO; GO:0008017; F:microtubule binding; TAS:UniProtKB.
DR GO; GO:0051642; P:centrosome localization; ISS:UniProtKB.
DR GO; GO:0090286; P:cytoskeletal anchoring at nuclear membrane; IDA:UniProtKB.
DR GO; GO:0007052; P:mitotic spindle organization; TAS:UniProtKB.
DR GO; GO:0006998; P:nuclear envelope organization; IGI:MGI.
DR GO; GO:0090292; P:nuclear matrix anchoring at nuclear membrane; IDA:UniProtKB.
DR GO; GO:0031022; P:nuclear migration along microfilament; ISS:UniProtKB.
DR GO; GO:0030335; P:positive regulation of cell migration; ISS:UniProtKB.
DR InterPro; IPR012919; Sad1_UNC_C.
DR Pfam; PF07738; Sad1_UNC; 1.
DR PROSITE; PS51469; SUN; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Coiled coil; Complete proteome;
KW Endosome; Glycoprotein; Membrane; Nucleus; Phosphoprotein;
KW Polymorphism; Reference proteome; Signal-anchor; Transmembrane;
KW Transmembrane helix.
FT CHAIN 1 717 SUN domain-containing protein 2.
FT /FTId=PRO_0000218913.
FT TOPO_DOM 1 212 Nuclear.
FT TRANSMEM 213 233 Helical.
FT TOPO_DOM 234 717 Perinuclear space.
FT DOMAIN 555 716 SUN.
FT REGION 1 139 LMNA-binding (By similarity).
FT COILED 273 296 Potential.
FT COILED 348 440 Potential.
FT COILED 475 506 Potential.
FT COMPBIAS 2 164 Ser-rich.
FT COMPBIAS 100 105 Poly-Arg.
FT COMPBIAS 316 322 Poly-Gly.
FT COMPBIAS 468 471 Poly-Gly.
FT MOD_RES 12 12 Phosphoserine.
FT MOD_RES 38 38 Phosphoserine.
FT MOD_RES 54 54 Phosphoserine.
FT MOD_RES 116 116 Phosphoserine.
FT CARBOHYD 636 636 N-linked (GlcNAc...).
FT VAR_SEQ 141 141 V -> VEDSEGRGSKVTETEPVSSFPA (in isoform
FT 2).
FT /FTId=VSP_045882.
FT VARIANT 33 33 T -> A (in dbSNP:rs2072799).
FT /FTId=VAR_052282.
FT VARIANT 89 89 L -> R (in dbSNP:rs35496634).
FT /FTId=VAR_052283.
FT VARIANT 348 348 R -> C (in dbSNP:rs138708).
FT /FTId=VAR_052284.
FT VARIANT 671 671 G -> S (in dbSNP:rs2072797).
FT /FTId=VAR_024624.
FT CONFLICT 644 644 K -> R (in Ref. 5; CAD97926).
FT HELIX 525 540
FT TURN 541 544
FT HELIX 552 554
FT STRAND 557 563
FT HELIX 571 574
FT TURN 575 577
FT STRAND 579 584
FT HELIX 588 592
FT STRAND 601 605
FT STRAND 609 627
FT HELIX 631 633
FT HELIX 635 637
FT STRAND 645 655
FT STRAND 660 666
FT STRAND 669 671
FT STRAND 673 678
FT STRAND 687 694
FT STRAND 697 699
FT STRAND 701 706
FT STRAND 708 714
SQ SEQUENCE 717 AA; 80311 MW; CCF43C118E935E84 CRC64;
MSRRSQRLTR YSQGDDDGSS SSGGSSVAGS QSTLFKDSPL RTLKRKSSNM KRLSPAPQLG
PSSDAHTSYY SESLVHESWF PPRSSLEELH GDANWGEDLR VRRRRGTGGS ESSRASGLVG
RKATEDFLGS SSGYSSEDDY VGYSDVDQQS SSSRLRSAVS RAGSLLWMVA TSPGRLFRLL
YWWAGTTWYR LTTAASLLDV FVLTRRFSSL KTFLWFLLPL LLLTCLTYGA WYFYPYGLQT
FHPALVSWWA AKDSRRPDEG WEARDSSPHF QAEQRVMSRV HSLERRLEAL AAEFSSNWQK
EAMRLERLEL RQGAPGQGGG GGLSHEDTLA LLEGLVSRRE AALKEDFRRE TAARIQEELS
ALRAEHQQDS EDLFKKIVRA SQESEARIQQ LKSEWQSMTQ ESFQESSVKE LRRLEDQLAG
LQQELAALAL KQSSVAEEVG LLPQQIQAVR DDVESQFPAW ISQFLARGGG GRVGLLQREE
MQAQLRELES KILTHVAEMQ GKSAREAAAS LSLTLQKEGV IGVTEEQVHH IVKQALQRYS
EDRIGLADYA LESGGASVIS TRCSETYETK TALLSLFGIP LWYHSQSPRV ILQPDVHPGN
CWAFQGPQGF AVVRLSARIR PTAVTLEHVP KALSPNSTIS SAPKDFAIFG FDEDLQQEGT
LLGKFTYDQD GEPIQTFHFQ APTMATYQVV ELRILTNWGH PEYTCIYRFR VHGEPAH
//
ID SUN2_HUMAN Reviewed; 717 AA.
AC Q9UH99; B0QY62; O75156; Q2NKN8; Q504T5; Q6B4H1; Q7Z3E3;
DT 02-AUG-2002, integrated into UniProtKB/Swiss-Prot.
read moreDT 25-MAR-2003, sequence version 3.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=SUN domain-containing protein 2;
DE AltName: Full=Protein unc-84 homolog B;
DE AltName: Full=Rab5-interacting protein;
DE Short=Rab5IP;
DE AltName: Full=Sad1/unc-84 protein-like 2;
GN Name=SUN2; Synonyms=FRIGG, KIAA0668, RAB5IP, UNC84B;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, AND INTERACTION WITH RAB5A.
RC TISSUE=B-cell;
RX PubMed=10818110; DOI=10.1074/jbc.M909600199;
RA Hoffenberg S., Liu X., Nikolova L., Hall H.S., Dai W., Baughn R.E.,
RA Dickey B.F., Barbieri M.A., Aballay A., Stahl P.D., Knoll B.J.;
RT "A novel membrane-anchored Rab5 interacting protein required for
RT homotypic endosome fusion.";
RL J. Biol. Chem. 275:24661-24669(2000).
RN [2]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), SUBCELLULAR LOCATION, SUBUNIT,
RP AND ASSOCIATION WITH THE CENTROSOME.
RX PubMed=17132086; DOI=10.1089/dna.2006.25.554;
RA Wang Q., Du X., Cai Z., Greene M.I.;
RT "Characterization of the structures involved in localization of the
RT SUN proteins to the nuclear envelope and the centrosome.";
RL DNA Cell Biol. 25:554-562(2006).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Brain;
RX PubMed=9734811; DOI=10.1093/dnares/5.3.169;
RA Ishikawa K., Nagase T., Suyama M., Miyajima N., Tanaka A., Kotani H.,
RA Nomura N., Ohara O.;
RT "Prediction of the coding sequences of unidentified human genes. X.
RT The complete sequences of 100 new cDNA clones from brain which can
RT code for large proteins in vitro.";
RL DNA Res. 5:169-176(1998).
RN [4]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RX PubMed=15461802; DOI=10.1186/gb-2004-5-10-r84;
RA Collins J.E., Wright C.L., Edwards C.A., Davis M.P., Grinham J.A.,
RA Cole C.G., Goward M.E., Aguado B., Mallya M., Mokrab Y., Huckle E.J.,
RA Beare D.M., Dunham I.;
RT "A genome annotation-driven approach to cloning the human ORFeome.";
RL Genome Biol. 5:R84.1-R84.11(2004).
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Fetal kidney;
RX PubMed=17974005; DOI=10.1186/1471-2164-8-399;
RA Bechtel S., Rosenfelder H., Duda A., Schmidt C.P., Ernst U.,
RA Wellenreuther R., Mehrle A., Schuster C., Bahr A., Bloecker H.,
RA Heubner D., Hoerlein A., Michel G., Wedler H., Koehrer K.,
RA Ottenwaelder B., Poustka A., Wiemann S., Schupp I.;
RT "The full-ORF clone resource of the German cDNA consortium.";
RL BMC Genomics 8:399-399(2007).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RX PubMed=10591208; DOI=10.1038/990031;
RA Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M.,
RA Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K.,
RA Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P.,
RA Bird C.P., Blakey S.E., Bridgeman A.M., Buck D., Burgess J.,
RA Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G.,
RA Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R.,
RA Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E.,
RA Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G.,
RA Evans K.L., Fey J.M., Fleming K., French L., Garner A.A.,
RA Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C.,
RA Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S.,
RA Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A.,
RA Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M.,
RA Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T.,
RA Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J.,
RA Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T.,
RA Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T.,
RA Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L.,
RA Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M.,
RA Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L.,
RA Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L.,
RA Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N.,
RA Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J.,
RA Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S.,
RA Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T.,
RA Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I.,
RA Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H.,
RA Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L.,
RA Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z.,
RA Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P.,
RA Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S.,
RA Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J.,
RA Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T.,
RA Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J.,
RA Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R.,
RA Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S.,
RA Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E.,
RA Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P.,
RA Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E.,
RA O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X.,
RA Khan A.S., Lane L., Tilahun Y., Wright H.;
RT "The DNA sequence of human chromosome 22.";
RL Nature 402:489-495(1999).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2), AND
RP VARIANTS ARG-89 AND SER-671.
RC TISSUE=Brain, and Pancreas;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [8]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 278-717 (ISOFORM 1).
RX PubMed=10375507;
RA Malone C.J., Fixsen W.D., Horvitz H.R., Han M.;
RT "UNC-84 localizes to the nuclear envelope and is required for nuclear
RT migration and anchoring during C. elegans development.";
RL Development 126:3171-3181(1999).
RN [9]
RP TISSUE SPECIFICITY.
RX PubMed=12393179; DOI=10.1016/S0925-4439(02)00171-0;
RA Sun G., Yuen Chan S., Yuan Y., Wang Chan K., Qiu G., Sun K.,
RA Ping Leung M.;
RT "Isolation of differentially expressed genes in human heart tissues.";
RL Biochim. Biophys. Acta 1588:241-246(2002).
RN [10]
RP PHOSPHORYLATION AT SER-12; SER-54 AND SER-116.
RX PubMed=12239280; DOI=10.1074/mcp.M200010-MCP200;
RA Gronborg M., Kristiansen T.Z., Stensballe A., Andersen J.S., Ohara O.,
RA Mann M., Jensen O.N., Pandey A.;
RT "A mass spectrometry-based proteomic approach for identification of
RT serine/threonine-phosphorylated proteins by enrichment with phospho-
RT specific antibodies: identification of a novel protein, Frigg, as a
RT protein kinase A substrate.";
RL Mol. Cell. Proteomics 1:517-527(2002).
RN [11]
RP IDENTIFICATION BY MASS SPECTROMETRY, AND SUBCELLULAR LOCATION.
RX PubMed=12958361; DOI=10.1126/science.1088176;
RA Schirmer E.C., Florens L., Guan T., Yates J.R. III, Gerace L.;
RT "Nuclear membrane proteins with potential disease links found by
RT subtractive proteomics.";
RL Science 301:1380-1382(2003).
RN [12]
RP SUBCELLULAR LOCATION, AND TOPOLOGY.
RX PubMed=15082709; DOI=10.1074/jbc.M313157200;
RA Hodzic D.M., Yeater D.B., Bengtsson L., Otto H., Stahl P.D.;
RT "Sun2 is a novel mammalian inner nuclear membrane protein.";
RL J. Biol. Chem. 279:25805-25812(2004).
RN [13]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-54, AND MASS
RP SPECTROMETRY.
RC TISSUE=Cervix carcinoma;
RX PubMed=17081983; DOI=10.1016/j.cell.2006.09.026;
RA Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,
RA Mann M.;
RT "Global, in vivo, and site-specific phosphorylation dynamics in
RT signaling networks.";
RL Cell 127:635-648(2006).
RN [14]
RP SUBCELLULAR LOCATION.
RX PubMed=17724119; DOI=10.1083/jcb.200704108;
RA Liu Q., Pante N., Misteli T., Elsagga M., Crisp M., Hodzic D.,
RA Burke B., Roux K.J.;
RT "Functional association of Sun1 with nuclear pore complexes.";
RL J. Cell Biol. 178:785-798(2007).
RN [15]
RP INTERACTION WITH SUN1.
RX PubMed=18845190; DOI=10.1016/j.bbamcr.2008.09.001;
RA Lu W., Gotzmann J., Sironi L., Jaeger V.M., Schneider M., Luke Y.,
RA Uhlen M., Szigyarto C.A., Brachner A., Ellenberg J., Foisner R.,
RA Noegel A.A., Karakesisoglou I.;
RT "Sun1 forms immobile macromolecular assemblies at the nuclear
RT envelope.";
RL Biochim. Biophys. Acta 1783:2415-2426(2008).
RN [16]
RP INTERACTION WITH SYNE1; SYNE2 AND SYNE3, AND FUNCTION OF THE LINC
RP COMPLEXES.
RX PubMed=18396275; DOI=10.1016/j.yexcr.2008.02.022;
RA Stewart-Hutchinson P.J., Hale C.M., Wirtz D., Hodzic D.;
RT "Structural requirements for the assembly of LINC complexes and their
RT function in cellular mechanical stiffness.";
RL Exp. Cell Res. 314:1892-1905(2008).
RN [17]
RP GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-636, AND MASS
RP SPECTROMETRY.
RC TISSUE=Liver;
RX PubMed=19159218; DOI=10.1021/pr8008012;
RA Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.;
RT "Glycoproteomics analysis of human liver tissue by combination of
RT multiple enzyme digestion and hydrazide chemistry.";
RL J. Proteome Res. 8:651-661(2009).
RN [18]
RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-38, AND MASS
RP SPECTROMETRY.
RC TISSUE=Leukemic T-cell;
RX PubMed=19690332; DOI=10.1126/scisignal.2000007;
RA Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,
RA Rodionov V., Han D.K.;
RT "Quantitative phosphoproteomic analysis of T cell receptor signaling
RT reveals system-wide modulation of protein-protein interactions.";
RL Sci. Signal. 2:RA46-RA46(2009).
RN [19]
RP INTERACTION WITH TMEM43.
RX PubMed=21391237; DOI=10.1002/ana.22338;
RA Liang W.C., Mitsuhashi H., Keduka E., Nonaka I., Noguchi S.,
RA Nishino I., Hayashi Y.K.;
RT "TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related
RT myopathy.";
RL Ann. Neurol. 69:1005-1013(2011).
RN [20]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
CC -!- FUNCTION: Component of SUN-protein-containing multivariate
CC complexes also called LINC complexes which link the nucleoskeleton
CC and cytoskeleton by providing versatile outer nuclear membrane
CC attachment sites for cytoskeletal filaments. Specifically, SYNE2
CC and SUN2 assemble in arrays of transmembrane actin-associated
CC nuclear (TAN) lines which are bound to F-actin cables and couple
CC the nucleus to retrograde actin flow during actin-dependent
CC nuclear movement. Required for interkinetic nuclear migration
CC (INM) and essential for nucleokinesis and centrosome-nucleus
CC coupling during radial neuronal migration in the cerebral cortex
CC and during glial migration. Anchors chromosome movement in the
CC prophase of meiosis and is involved in selective gene expression
CC of coding and non-coding RNAs needed for gametogenesis. Required
CC for telomere attachment to nuclear envelope and gametogenesis. May
CC also function on endocytic vesicles as a receptor for RAB5-GDP and
CC participate in the activation of RAB5.
CC -!- SUBUNIT: Component of LINC complexes composed of SUN domain-
CC containing proteins SUN1 or SUN2 coupled to KASH domain-containing
CC proteins (SYNE1, SYNE2 or SYNE3), also called nesprins. Interacts
CC with EMD, LMNA, RAB5A, SYNE1, SYNE2 and SYNE3. Interacts with
CC TMEM43.
CC -!- INTERACTION:
CC Self; NbExp=2; IntAct=EBI-1044964, EBI-1044964;
CC P53618:COPB1; NbExp=2; IntAct=EBI-1044964, EBI-359063;
CC P50402:EMD; NbExp=3; IntAct=EBI-1044964, EBI-489887;
CC P52292:KPNA2; NbExp=3; IntAct=EBI-1044964, EBI-349938;
CC Q8NF91:SYNE1; NbExp=3; IntAct=EBI-1044964, EBI-928867;
CC Q8NF91-1:SYNE1; NbExp=2; IntAct=EBI-1044964, EBI-6170938;
CC Q8WXH0:SYNE2; NbExp=5; IntAct=EBI-1044964, EBI-2372294;
CC Q8WXH0-1:SYNE2; NbExp=2; IntAct=EBI-1044964, EBI-6170976;
CC -!- SUBCELLULAR LOCATION: Nucleus inner membrane; Single-pass type II
CC membrane protein. Endosome membrane; Single-pass type II membrane
CC protein (Probable).
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Name=1;
CC IsoId=Q9UH99-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q9UH99-2; Sequence=VSP_045882;
CC Note=No experimental confirmation available;
CC -!- TISSUE SPECIFICITY: Widely expressed. Highly expressed in heart,
CC lung and muscle. Weakly expressed in fetal heart. Slightly
CC overexpressed in some heart tissues form patients with congenital
CC heart defects.
CC -!- DOMAIN: The SUN domain may play a role in the nuclear anchoring
CC and/or migration.
CC -!- SIMILARITY: Contains 1 SUN domain.
CC -!- CAUTION: It is uncertain whether Met-1 or Met-50 is the initiator.
CC -!- SEQUENCE CAUTION:
CC Sequence=BAA31643.1; Type=Erroneous initiation; Note=Translation N-terminally shortened;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AB014568; BAA31643.1; ALT_INIT; mRNA.
DR EMBL; AY682988; AAT90500.1; -; mRNA.
DR EMBL; CR456474; CAG30360.1; -; mRNA.
DR EMBL; BX537962; CAD97926.1; -; mRNA.
DR EMBL; AL008583; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AL021806; -; NOT_ANNOTATED_CDS; Genomic_DNA.
DR EMBL; AL021707; CAI21604.1; -; Genomic_DNA.
DR EMBL; AL021707; CAQ07913.1; -; Genomic_DNA.
DR EMBL; BC030684; AAH30684.2; -; mRNA.
DR EMBL; BC094797; AAH94797.1; -; mRNA.
DR EMBL; BC111717; AAI11718.1; -; mRNA.
DR EMBL; AF202723; AAF15887.1; -; mRNA.
DR PIR; T00371; T00371.
DR RefSeq; NP_001186508.1; NM_001199579.1.
DR RefSeq; NP_001186509.1; NM_001199580.1.
DR RefSeq; NP_056189.1; NM_015374.2.
DR RefSeq; XP_005261558.1; XM_005261501.1.
DR RefSeq; XP_005261559.1; XM_005261502.1.
DR UniGene; Hs.517622; -.
DR UniGene; Hs.744734; -.
DR PDB; 3UNP; X-ray; 2.39 A; A=520-717.
DR PDB; 4DXR; X-ray; 2.32 A; A=522-717.
DR PDB; 4DXS; X-ray; 2.71 A; A=522-717.
DR PDB; 4DXT; X-ray; 2.22 A; A=522-717.
DR PDB; 4FI9; X-ray; 3.05 A; A=523-717.
DR PDBsum; 3UNP; -.
DR PDBsum; 4DXR; -.
DR PDBsum; 4DXS; -.
DR PDBsum; 4DXT; -.
DR PDBsum; 4FI9; -.
DR ProteinModelPortal; Q9UH99; -.
DR SMR; Q9UH99; 522-717.
DR IntAct; Q9UH99; 18.
DR MINT; MINT-3080157; -.
DR PhosphoSite; Q9UH99; -.
DR DMDM; 29337242; -.
DR PaxDb; Q9UH99; -.
DR PRIDE; Q9UH99; -.
DR DNASU; 25777; -.
DR Ensembl; ENST00000216064; ENSP00000216064; ENSG00000100242.
DR Ensembl; ENST00000405018; ENSP00000385616; ENSG00000100242.
DR Ensembl; ENST00000405510; ENSP00000385740; ENSG00000100242.
DR Ensembl; ENST00000406622; ENSP00000383992; ENSG00000100242.
DR GeneID; 25777; -.
DR KEGG; hsa:25777; -.
DR UCSC; uc010gxq.2; human.
DR CTD; 25777; -.
DR GeneCards; GC22M039418; -.
DR H-InvDB; HIX0159176; -.
DR HGNC; HGNC:14210; SUN2.
DR HPA; HPA001209; -.
DR MIM; 613569; gene.
DR neXtProt; NX_Q9UH99; -.
DR PharmGKB; PA165378369; -.
DR eggNOG; NOG285464; -.
DR HOGENOM; HOG000253025; -.
DR HOVERGEN; HBG056957; -.
DR OMA; MQGKSAR; -.
DR OrthoDB; EOG7J446H; -.
DR PhylomeDB; Q9UH99; -.
DR Reactome; REACT_111183; Meiosis.
DR Reactome; REACT_115566; Cell Cycle.
DR ChiTaRS; SUN2; human.
DR GeneWiki; UNC84B; -.
DR GenomeRNAi; 25777; -.
DR NextBio; 46920; -.
DR PRO; PR:Q9UH99; -.
DR ArrayExpress; Q9UH99; -.
DR Bgee; Q9UH99; -.
DR CleanEx; HS_UNC84B; -.
DR Genevestigator; Q9UH99; -.
DR GO; GO:0000794; C:condensed nuclear chromosome; IEA:Ensembl.
DR GO; GO:0010008; C:endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0016021; C:integral to membrane; IEA:UniProtKB-KW.
DR GO; GO:0000784; C:nuclear chromosome, telomeric region; IEA:Ensembl.
DR GO; GO:0005637; C:nuclear inner membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0031965; C:nuclear membrane; IDA:HPA.
DR GO; GO:0034993; C:SUN-KASH complex; IDA:UniProtKB.
DR GO; GO:0005521; F:lamin binding; IDA:UniProtKB.
DR GO; GO:0008017; F:microtubule binding; TAS:UniProtKB.
DR GO; GO:0051642; P:centrosome localization; ISS:UniProtKB.
DR GO; GO:0090286; P:cytoskeletal anchoring at nuclear membrane; IDA:UniProtKB.
DR GO; GO:0007052; P:mitotic spindle organization; TAS:UniProtKB.
DR GO; GO:0006998; P:nuclear envelope organization; IGI:MGI.
DR GO; GO:0090292; P:nuclear matrix anchoring at nuclear membrane; IDA:UniProtKB.
DR GO; GO:0031022; P:nuclear migration along microfilament; ISS:UniProtKB.
DR GO; GO:0030335; P:positive regulation of cell migration; ISS:UniProtKB.
DR InterPro; IPR012919; Sad1_UNC_C.
DR Pfam; PF07738; Sad1_UNC; 1.
DR PROSITE; PS51469; SUN; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Alternative splicing; Coiled coil; Complete proteome;
KW Endosome; Glycoprotein; Membrane; Nucleus; Phosphoprotein;
KW Polymorphism; Reference proteome; Signal-anchor; Transmembrane;
KW Transmembrane helix.
FT CHAIN 1 717 SUN domain-containing protein 2.
FT /FTId=PRO_0000218913.
FT TOPO_DOM 1 212 Nuclear.
FT TRANSMEM 213 233 Helical.
FT TOPO_DOM 234 717 Perinuclear space.
FT DOMAIN 555 716 SUN.
FT REGION 1 139 LMNA-binding (By similarity).
FT COILED 273 296 Potential.
FT COILED 348 440 Potential.
FT COILED 475 506 Potential.
FT COMPBIAS 2 164 Ser-rich.
FT COMPBIAS 100 105 Poly-Arg.
FT COMPBIAS 316 322 Poly-Gly.
FT COMPBIAS 468 471 Poly-Gly.
FT MOD_RES 12 12 Phosphoserine.
FT MOD_RES 38 38 Phosphoserine.
FT MOD_RES 54 54 Phosphoserine.
FT MOD_RES 116 116 Phosphoserine.
FT CARBOHYD 636 636 N-linked (GlcNAc...).
FT VAR_SEQ 141 141 V -> VEDSEGRGSKVTETEPVSSFPA (in isoform
FT 2).
FT /FTId=VSP_045882.
FT VARIANT 33 33 T -> A (in dbSNP:rs2072799).
FT /FTId=VAR_052282.
FT VARIANT 89 89 L -> R (in dbSNP:rs35496634).
FT /FTId=VAR_052283.
FT VARIANT 348 348 R -> C (in dbSNP:rs138708).
FT /FTId=VAR_052284.
FT VARIANT 671 671 G -> S (in dbSNP:rs2072797).
FT /FTId=VAR_024624.
FT CONFLICT 644 644 K -> R (in Ref. 5; CAD97926).
FT HELIX 525 540
FT TURN 541 544
FT HELIX 552 554
FT STRAND 557 563
FT HELIX 571 574
FT TURN 575 577
FT STRAND 579 584
FT HELIX 588 592
FT STRAND 601 605
FT STRAND 609 627
FT HELIX 631 633
FT HELIX 635 637
FT STRAND 645 655
FT STRAND 660 666
FT STRAND 669 671
FT STRAND 673 678
FT STRAND 687 694
FT STRAND 697 699
FT STRAND 701 706
FT STRAND 708 714
SQ SEQUENCE 717 AA; 80311 MW; CCF43C118E935E84 CRC64;
MSRRSQRLTR YSQGDDDGSS SSGGSSVAGS QSTLFKDSPL RTLKRKSSNM KRLSPAPQLG
PSSDAHTSYY SESLVHESWF PPRSSLEELH GDANWGEDLR VRRRRGTGGS ESSRASGLVG
RKATEDFLGS SSGYSSEDDY VGYSDVDQQS SSSRLRSAVS RAGSLLWMVA TSPGRLFRLL
YWWAGTTWYR LTTAASLLDV FVLTRRFSSL KTFLWFLLPL LLLTCLTYGA WYFYPYGLQT
FHPALVSWWA AKDSRRPDEG WEARDSSPHF QAEQRVMSRV HSLERRLEAL AAEFSSNWQK
EAMRLERLEL RQGAPGQGGG GGLSHEDTLA LLEGLVSRRE AALKEDFRRE TAARIQEELS
ALRAEHQQDS EDLFKKIVRA SQESEARIQQ LKSEWQSMTQ ESFQESSVKE LRRLEDQLAG
LQQELAALAL KQSSVAEEVG LLPQQIQAVR DDVESQFPAW ISQFLARGGG GRVGLLQREE
MQAQLRELES KILTHVAEMQ GKSAREAAAS LSLTLQKEGV IGVTEEQVHH IVKQALQRYS
EDRIGLADYA LESGGASVIS TRCSETYETK TALLSLFGIP LWYHSQSPRV ILQPDVHPGN
CWAFQGPQGF AVVRLSARIR PTAVTLEHVP KALSPNSTIS SAPKDFAIFG FDEDLQQEGT
LLGKFTYDQD GEPIQTFHFQ APTMATYQVV ELRILTNWGH PEYTCIYRFR VHGEPAH
//
MIM
613569
*RECORD*
*FIELD* NO
613569
*FIELD* TI
*613569 SAD1 AND UNC84 DOMAIN-CONTAINING PROTEIN 2; SUN2
;;SUN DOMAIN-CONTAINING PROTEIN 2;;
read moreUNC84, C. ELEGANS, HOMOLOG OF, B; UNC84B;;
KIAA0668
*FIELD* TX
DESCRIPTION
SUN1 (607723) and SUN2 are inner nuclear membrane (INM) proteins that
play a major role in nuclear-cytoplasmic connection by formation of a
'bridge' across the nuclear envelope, known as the LINC complex, via
interaction with the conserved luminal KASH domain of nesprins (e.g.,
SYNE1; 608441) located in the outer nuclear membrane (ONM). The LINC
complex provides a direct connection between the nuclear lamina and the
cytoskeleton, which contributes to nuclear positioning and cellular
rigidity (summary by Haque et al., 2010).
CLONING
By screening for genes capable of encoding large proteins expressed in
brain, Ishikawa et al. (1998) cloned SUN2, which they called KIAA0668.
RT-PCR analysis detected weak expression in all tissues examined.
By searching databases for homologs of C. elegans Unc84, followed by
5-prime RACE of a brain cDNA library, Malone et al. (1999) cloned human
SUN1 and SUN2. The predicted proteins contain 824 and 724 amino acids,
respectively, and their C termini share homology with the C termini of
C. elegans Unc84 and S. pombe Sad1. Both SUN1 and SUN2 contain a
transmembrane region.
Hodzic et al. (2004) predicted that the SUN2 protein contains an
N-terminal signal sequence, followed by 2 coiled-coil domains, 2
transmembrane domains, and a C-terminal SUN domain. Immunofluorescence
microscopy demonstrated nuclear rim-like expression of epitope-tagged or
endogenous SUN2 in HeLa cells. This localization was dependent on amino
acids 26 to 339 of SUN2. Immunoblot and biochemical analyses showed
expression of an 85-kD SUN2 protein. Further analyses revealed that SUN2
is a type II transmembrane protein with the SUN domain protruding in the
periplasmic space between the INM and the ONM.
By RNA arbitrarily primed-PCR, Sun et al. (2002) identified SUN2 as a
gene upregulated in congenital ventricular septal defect compared with
normal heart. Northern blot analysis revealed wide expression of a
4.4-kb SUN2 transcript in human tissues, with strongest expression in
adult heart, lung, and muscle.
GENE FUNCTION
Haque et al. (2010) stated that SUN1 and SUN2 interact with lamin A
(LMNA; 150330) and that LMNA is required for the nuclear envelope
localization of SUN2, but not SUN1. By immunoprecipitation of
transfected human osteosarcoma cells and mouse fibroblasts, followed by
in vitro pull-down assays and immunofluorescence microscopy, Haque et
al. (2010) identified emerin (EMD; 300384) and short isoforms of
nesprin-2 (SYNE2; 608442) as novel nucleoplasmic binding partners of
mouse Sun1 and human SUN2. Emerin and nesprin-2 had overlapping binding
sites, distinct from the LMNA-binding site, in Sun1 and SUN2. LMNA
mutations associated with Emery-Dreifuss muscular dystrophy (EDMD1;
310300) and Hutchinson-Gilford progeria syndrome (HGPS; 176670)
disrupted interaction of LMNA with Sun1 and SUN2. Nuclear localization
of SUN1 and SUN2 was not impaired in EDMD1 or HGPS cell lines.
Expression of SUN1, but not SUN2, at the nuclear envelope was enhanced
in some HGPS cells, likely due to increased interaction of SUN1 with
accumulated prelamin A. Haque et al. (2010) proposed that different
perturbations in LMNA-SUN protein interactions may underlie the opposing
effects of EDMD and HGPS mutations on nuclear and cellular mechanics.
Using immunoblot analysis and immunofluorescence microscopy, Turgay et
al. (2010) demonstrated that the N-terminal nuclear localization signal,
a proximal arg-rich region, and the C-terminal luminal SUN domain all
contributed to nuclear envelope localization of human SUN2. They
concluded that SUN2 represents the first mammalian INM protein relying
on a functional classic nuclear localization signal, a Golgi retrieval
signal, and a perinuclear domain to mediate targeting to the INM.
Luxton et al. (2010) found that linear arrays of the ONM protein
nesprin-2G and the INM protein Sun2 assembled on and moved with
retrogradely moving dorsal actin (see 102560) cables during nuclear
movement in polarizing mouse fibroblasts. Inhibition of nesprin-2G,
Sun2, or actin prevented nuclear movement and centrosome reorientation.
Luxton et al. (2010) concluded that nuclear membrane proteins assemble
into actin-dependent arrays for force transduction.
MAPPING
By radiation hybrid analysis, Ishikawa et al. (1998) mapped the SUN2
gene to chromosome 22. Sun et al. (2002) stated that the SUN2 gene maps
to chromosome 22q12-q13.
ANIMAL MODEL
Lei et al. (2009) found that anchorage of skeletal muscle nuclei at
neuromuscular junctions was partially disrupted in Sun1-null mice, but
not in Sun2-null mice. Anchorage of nonsynaptic nuclei was normal in
both Sun1-null mice and Sun2-null mice. Sun1/Sun2 double-knockout mice
died soon after birth, with enhanced loss of synaptic nuclei, disrupted
organization of nonsynaptic nuclei, and mislocalization of Syne1 at
synaptic junctions. Disruption of 3 or all 4 wildtype Sun1 and Sun2
alleles revealed a gene dosage effect on synaptic nuclear anchorage. Lei
et al. (2009) concluded that SUN1 and SUN2 have partially redundant
functions on synaptic nuclear anchorage in skeletal muscle fibers.
Zhang et al. (2009) showed that Sun1 and Sun2 double-knockout (Sun1/2
DKO) mice and Syne1 and Syne2 double-knockout (Syne1/2 DKO) mice had
similar defects in brain development. Sun1/2 DKO and Syne1/2 DKO brains
were small and showed defective laminary structures in many brain
regions. Examination of neocortex revealed failure of radial neuronal
migration, but not tangential migration of interneurons, in both Sun1/2
DKO and Syne1/2 DKO mice. Intracellular movement of nuclei is a
prerequisite for proper neuron migration and development, and Zhang et
al. (2009) found that Sun1 and Sun2 anchored Syne2 to the nuclear
envelope, while Syne1 and Syne2 connected the nuclear envelope to the
microtubule network, permitting nuclear movement. Zhang et al. (2009)
concluded that a complex made up of SUN1, SUN2, SYNE1, and SYNE2 is
required for neuronal nuclear movement and for neuronal migration and
development.
*FIELD* RF
1. Haque, F.; Mazzeo, D.; Patel, J. T.; Smallwood, D. T.; Ellis, J.
A.; Shanahan, C. M.; Shackleton, S.: Mammalian SUN protein interaction
networks at the inner nuclear membrane and their role in laminopathy
disease processes. J. Biol. Chem. 285: 3487-3498, 2010.
2. Hodzic, D. M.; Yeater, D. B.; Bengtsson, L.; Otto, H.; Stahl, P.
D.: Sun2 is a novel mammalian inner nuclear membrane protein. J.
Biol. Chem. 279: 25805-25812, 2004.
3. Ishikawa, K.; Nagase, T.; Suyama, M.; Miyajima, N.; Tanaka, A.;
Kotani, H.; Nomura, N.; Ohara, O.: Prediction of the coding sequences
of unidentified human genes. X. The complete sequences of 100 new
cDNA clones from brain which can code for large proteins in vitro. DNA
Res. 5: 169-176, 1998.
4. Lei, K.; Zhang, X.; Ding, X.; Guo, X.; Chen, M.; Zhu, B.; Xu, T.;
Zhuang, Y.; Xu, R.; Han, M.: SUN1 and SUN2 play critical but partially
redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc.
Nat. Acad. Sci. 106: 10207-10212, 2009.
5. Luxton, G. W.; Gomes, E. R.; Folker, E. S.; Vintinner, E.; Gundersen,
G. G.: Linear arrays of nuclear envelope proteins harness retrograde
actin flow for nuclear movement. Science 329: 956-959, 2010.
6. Malone, C. J.; Fixsen, W. D.; Horvitz, H. R.; Han, M.: UNC-84
localizes to the nuclear envelope and is required for nuclear migration
and anchoring during C. elegans development. Development 126: 3171-3181,
1999.
7. Sun, G.; Chan, S. Y.; Yuan, Y.; Chan, K. W.; Qiu, G.; Sun, K.;
Leung, M. P.: Isolation of differentially expressed genes in human
heart tissues. Biochim. Biophys. Acta 1588: 241-246, 2002.
8. Turgay, Y.; Ungricht, R.; Rothballer, A.; Kiss, A.; Csucs, G.;
Horvath, P.; Kutay, U.: A classical NLS and the SUN domain contribute
to the targeting of SUN2 to the inner nuclear membrane. EMBO J. 29:
2262-2275, 2010.
9. Zhang, X.; Lei, K.; Yuan, X.; Wu, X.; Zhuang, Y.; Xu, T.; Xu, R.;
Han, M.: SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome
to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:
173-187, 2009.
*FIELD* CN
Patricia A. Hartz - updated: 11/8/2011
Patricia A. Hartz - updated: 12/2/2010
*FIELD* CD
Paul J. Converse: 9/20/2010
*FIELD* ED
mgross: 11/15/2011
terry: 11/8/2011
mgross: 12/7/2010
terry: 12/2/2010
mgross: 9/20/2010
*RECORD*
*FIELD* NO
613569
*FIELD* TI
*613569 SAD1 AND UNC84 DOMAIN-CONTAINING PROTEIN 2; SUN2
;;SUN DOMAIN-CONTAINING PROTEIN 2;;
read moreUNC84, C. ELEGANS, HOMOLOG OF, B; UNC84B;;
KIAA0668
*FIELD* TX
DESCRIPTION
SUN1 (607723) and SUN2 are inner nuclear membrane (INM) proteins that
play a major role in nuclear-cytoplasmic connection by formation of a
'bridge' across the nuclear envelope, known as the LINC complex, via
interaction with the conserved luminal KASH domain of nesprins (e.g.,
SYNE1; 608441) located in the outer nuclear membrane (ONM). The LINC
complex provides a direct connection between the nuclear lamina and the
cytoskeleton, which contributes to nuclear positioning and cellular
rigidity (summary by Haque et al., 2010).
CLONING
By screening for genes capable of encoding large proteins expressed in
brain, Ishikawa et al. (1998) cloned SUN2, which they called KIAA0668.
RT-PCR analysis detected weak expression in all tissues examined.
By searching databases for homologs of C. elegans Unc84, followed by
5-prime RACE of a brain cDNA library, Malone et al. (1999) cloned human
SUN1 and SUN2. The predicted proteins contain 824 and 724 amino acids,
respectively, and their C termini share homology with the C termini of
C. elegans Unc84 and S. pombe Sad1. Both SUN1 and SUN2 contain a
transmembrane region.
Hodzic et al. (2004) predicted that the SUN2 protein contains an
N-terminal signal sequence, followed by 2 coiled-coil domains, 2
transmembrane domains, and a C-terminal SUN domain. Immunofluorescence
microscopy demonstrated nuclear rim-like expression of epitope-tagged or
endogenous SUN2 in HeLa cells. This localization was dependent on amino
acids 26 to 339 of SUN2. Immunoblot and biochemical analyses showed
expression of an 85-kD SUN2 protein. Further analyses revealed that SUN2
is a type II transmembrane protein with the SUN domain protruding in the
periplasmic space between the INM and the ONM.
By RNA arbitrarily primed-PCR, Sun et al. (2002) identified SUN2 as a
gene upregulated in congenital ventricular septal defect compared with
normal heart. Northern blot analysis revealed wide expression of a
4.4-kb SUN2 transcript in human tissues, with strongest expression in
adult heart, lung, and muscle.
GENE FUNCTION
Haque et al. (2010) stated that SUN1 and SUN2 interact with lamin A
(LMNA; 150330) and that LMNA is required for the nuclear envelope
localization of SUN2, but not SUN1. By immunoprecipitation of
transfected human osteosarcoma cells and mouse fibroblasts, followed by
in vitro pull-down assays and immunofluorescence microscopy, Haque et
al. (2010) identified emerin (EMD; 300384) and short isoforms of
nesprin-2 (SYNE2; 608442) as novel nucleoplasmic binding partners of
mouse Sun1 and human SUN2. Emerin and nesprin-2 had overlapping binding
sites, distinct from the LMNA-binding site, in Sun1 and SUN2. LMNA
mutations associated with Emery-Dreifuss muscular dystrophy (EDMD1;
310300) and Hutchinson-Gilford progeria syndrome (HGPS; 176670)
disrupted interaction of LMNA with Sun1 and SUN2. Nuclear localization
of SUN1 and SUN2 was not impaired in EDMD1 or HGPS cell lines.
Expression of SUN1, but not SUN2, at the nuclear envelope was enhanced
in some HGPS cells, likely due to increased interaction of SUN1 with
accumulated prelamin A. Haque et al. (2010) proposed that different
perturbations in LMNA-SUN protein interactions may underlie the opposing
effects of EDMD and HGPS mutations on nuclear and cellular mechanics.
Using immunoblot analysis and immunofluorescence microscopy, Turgay et
al. (2010) demonstrated that the N-terminal nuclear localization signal,
a proximal arg-rich region, and the C-terminal luminal SUN domain all
contributed to nuclear envelope localization of human SUN2. They
concluded that SUN2 represents the first mammalian INM protein relying
on a functional classic nuclear localization signal, a Golgi retrieval
signal, and a perinuclear domain to mediate targeting to the INM.
Luxton et al. (2010) found that linear arrays of the ONM protein
nesprin-2G and the INM protein Sun2 assembled on and moved with
retrogradely moving dorsal actin (see 102560) cables during nuclear
movement in polarizing mouse fibroblasts. Inhibition of nesprin-2G,
Sun2, or actin prevented nuclear movement and centrosome reorientation.
Luxton et al. (2010) concluded that nuclear membrane proteins assemble
into actin-dependent arrays for force transduction.
MAPPING
By radiation hybrid analysis, Ishikawa et al. (1998) mapped the SUN2
gene to chromosome 22. Sun et al. (2002) stated that the SUN2 gene maps
to chromosome 22q12-q13.
ANIMAL MODEL
Lei et al. (2009) found that anchorage of skeletal muscle nuclei at
neuromuscular junctions was partially disrupted in Sun1-null mice, but
not in Sun2-null mice. Anchorage of nonsynaptic nuclei was normal in
both Sun1-null mice and Sun2-null mice. Sun1/Sun2 double-knockout mice
died soon after birth, with enhanced loss of synaptic nuclei, disrupted
organization of nonsynaptic nuclei, and mislocalization of Syne1 at
synaptic junctions. Disruption of 3 or all 4 wildtype Sun1 and Sun2
alleles revealed a gene dosage effect on synaptic nuclear anchorage. Lei
et al. (2009) concluded that SUN1 and SUN2 have partially redundant
functions on synaptic nuclear anchorage in skeletal muscle fibers.
Zhang et al. (2009) showed that Sun1 and Sun2 double-knockout (Sun1/2
DKO) mice and Syne1 and Syne2 double-knockout (Syne1/2 DKO) mice had
similar defects in brain development. Sun1/2 DKO and Syne1/2 DKO brains
were small and showed defective laminary structures in many brain
regions. Examination of neocortex revealed failure of radial neuronal
migration, but not tangential migration of interneurons, in both Sun1/2
DKO and Syne1/2 DKO mice. Intracellular movement of nuclei is a
prerequisite for proper neuron migration and development, and Zhang et
al. (2009) found that Sun1 and Sun2 anchored Syne2 to the nuclear
envelope, while Syne1 and Syne2 connected the nuclear envelope to the
microtubule network, permitting nuclear movement. Zhang et al. (2009)
concluded that a complex made up of SUN1, SUN2, SYNE1, and SYNE2 is
required for neuronal nuclear movement and for neuronal migration and
development.
*FIELD* RF
1. Haque, F.; Mazzeo, D.; Patel, J. T.; Smallwood, D. T.; Ellis, J.
A.; Shanahan, C. M.; Shackleton, S.: Mammalian SUN protein interaction
networks at the inner nuclear membrane and their role in laminopathy
disease processes. J. Biol. Chem. 285: 3487-3498, 2010.
2. Hodzic, D. M.; Yeater, D. B.; Bengtsson, L.; Otto, H.; Stahl, P.
D.: Sun2 is a novel mammalian inner nuclear membrane protein. J.
Biol. Chem. 279: 25805-25812, 2004.
3. Ishikawa, K.; Nagase, T.; Suyama, M.; Miyajima, N.; Tanaka, A.;
Kotani, H.; Nomura, N.; Ohara, O.: Prediction of the coding sequences
of unidentified human genes. X. The complete sequences of 100 new
cDNA clones from brain which can code for large proteins in vitro. DNA
Res. 5: 169-176, 1998.
4. Lei, K.; Zhang, X.; Ding, X.; Guo, X.; Chen, M.; Zhu, B.; Xu, T.;
Zhuang, Y.; Xu, R.; Han, M.: SUN1 and SUN2 play critical but partially
redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc.
Nat. Acad. Sci. 106: 10207-10212, 2009.
5. Luxton, G. W.; Gomes, E. R.; Folker, E. S.; Vintinner, E.; Gundersen,
G. G.: Linear arrays of nuclear envelope proteins harness retrograde
actin flow for nuclear movement. Science 329: 956-959, 2010.
6. Malone, C. J.; Fixsen, W. D.; Horvitz, H. R.; Han, M.: UNC-84
localizes to the nuclear envelope and is required for nuclear migration
and anchoring during C. elegans development. Development 126: 3171-3181,
1999.
7. Sun, G.; Chan, S. Y.; Yuan, Y.; Chan, K. W.; Qiu, G.; Sun, K.;
Leung, M. P.: Isolation of differentially expressed genes in human
heart tissues. Biochim. Biophys. Acta 1588: 241-246, 2002.
8. Turgay, Y.; Ungricht, R.; Rothballer, A.; Kiss, A.; Csucs, G.;
Horvath, P.; Kutay, U.: A classical NLS and the SUN domain contribute
to the targeting of SUN2 to the inner nuclear membrane. EMBO J. 29:
2262-2275, 2010.
9. Zhang, X.; Lei, K.; Yuan, X.; Wu, X.; Zhuang, Y.; Xu, T.; Xu, R.;
Han, M.: SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome
to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:
173-187, 2009.
*FIELD* CN
Patricia A. Hartz - updated: 11/8/2011
Patricia A. Hartz - updated: 12/2/2010
*FIELD* CD
Paul J. Converse: 9/20/2010
*FIELD* ED
mgross: 11/15/2011
terry: 11/8/2011
mgross: 12/7/2010
terry: 12/2/2010
mgross: 9/20/2010