Full text data of TSG101
TSG101
[Confidence: low (only semi-automatic identification from reviews)]
Tumor susceptibility gene 101 protein (ESCRT-I complex subunit TSG101)
Tumor susceptibility gene 101 protein (ESCRT-I complex subunit TSG101)
UniProt
Q99816
ID TS101_HUMAN Reviewed; 390 AA.
AC Q99816; Q9BUM5;
DT 01-DEC-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-AUG-1998, sequence version 2.
DT 22-JAN-2014, entry version 157.
DE RecName: Full=Tumor susceptibility gene 101 protein;
DE AltName: Full=ESCRT-I complex subunit TSG101;
GN Name=TSG101;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Placenta;
RX PubMed=9019400; DOI=10.1016/S0092-8674(00)81866-8;
RA Li L., Li X., Francke U., Cohen S.N.;
RT "The TSG101 tumor susceptibility gene is located in chromosome 11 band
RT p15 and is mutated in human breast cancer.";
RL Cell 88:143-154(1997).
RN [2]
RP ERRATUM, AND RETRACTION.
RX PubMed=9867424; DOI=10.1016/S0092-8674(00)89342-3;
RA Li L., Francke U., Cohen S.N.;
RL Cell 93:661-661(1998).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP ALTERNATIVE SPLICING (ISOFORM 2).
RX PubMed=9366528; DOI=10.1038/sj.onc.1201591;
RA Gayther S.A., Barski P., Batley S.J., Li L., de Foy K.A., Cohen S.N.,
RA Ponder B.A., Caldas C.;
RT "Aberrant splicing of the TSG101 and FHIT genes occurs frequently in
RT multiple malignancies and in normal tissues and mimics alterations
RT previously described in tumours.";
RL Oncogene 15:2119-2126(1997).
RN [5]
RP ALTERNATIVE SPLICING.
RX PubMed=9242438;
RA Lee M.P., Feinberg A.P.;
RT "Aberrant splicing but not mutations of TSG101 in human breast
RT cancer.";
RL Cancer Res. 57:3131-3134(1997).
RN [6]
RP ALTERNATIVE SPLICING.
RX PubMed=9840940; DOI=10.1038/sj.onc.1202529;
RA Wagner K.-U., Dierisseau P., Rucker E.B. III, Robinson G.W.,
RA Hennighausen L.;
RT "Genomic architecture and transcriptional activation of the mouse and
RT human tumor susceptibility gene TSG101: common types of shorter
RT transcripts are true alternative splice variants.";
RL Oncogene 17:2761-2770(1998).
RN [7]
RP INTERACTION WITH DMAP1.
RX PubMed=10888872; DOI=10.1038/77023;
RA Rountree M.R., Bachman K.E., Baylin S.B.;
RT "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at
RT replication foci.";
RL Nat. Genet. 25:269-277(2000).
RN [8]
RP INTERACTION WITH HIV-1 P6 AND UBIQUITIN.
RX PubMed=11595185; DOI=10.1016/S0092-8674(01)00506-2;
RA Garrus J.E., von Schwedler U.K., Pornillos O.W., Morham S.G.,
RA Zavitz K.H., Wang H.E., Wettstein D.A., Stray K.M., Cote M.,
RA Rich R.L., Myszka D.G., Sundquist W.I.;
RT "Tsg101 and the vacuolar protein sorting pathway are essential for
RT HIV-1 budding.";
RL Cell 107:55-65(2001).
RN [9]
RP INTERACTION WITH HIV-1 P6.
RX PubMed=11427703; DOI=10.1073/pnas.131059198;
RA VerPlank L., Bouamr F., LaGrassa T.J., Agresta B., Kikonyogo A.,
RA Leis J., Carter C.A.;
RT "Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the
RT L domain in HIV type 1 Pr55(Gag).";
RL Proc. Natl. Acad. Sci. U.S.A. 98:7724-7729(2001).
RN [10]
RP FUNCTION, AND SUBCELLULAR LOCATION.
RX PubMed=11916981; DOI=10.1083/jcb.200112080;
RA Bishop N., Horman A., Woodman P.;
RT "Mammalian class E vps proteins recognize ubiquitin and act in the
RT removal of endosomal protein-ubiquitin conjugates.";
RL J. Cell Biol. 157:91-101(2002).
RN [11]
RP SELF-ASSOCIATION, INTERACTION WITH PDCD6IP; VPS28; SNF8 AND VPS36, AND
RP MUTAGENESIS OF MET-95.
RX PubMed=14505570; DOI=10.1016/S0092-8674(03)00714-1;
RA von Schwedler U.K., Stuchell M., Mueller B., Ward D.M., Chung H.-Y.,
RA Morita E., Wang H.E., Davis T., He G.P., Cimbora D.M., Scott A.,
RA Kraeusslich H.-G., Kaplan J., Morham S.G., Sundquist W.I.;
RT "The protein network of HIV budding.";
RL Cell 114:701-713(2003).
RN [12]
RP INTERACTION WITH HIV-1 GAG AND HGS, AND SELF-ASSOCIATION.
RX PubMed=12900394; DOI=10.1083/jcb.200302138;
RA Pornillos O., Higginson D.S., Stray K.M., Fisher R.D., Garrus J.E.,
RA Payne M., He G.P., Wang H.E., Morham S.G., Sundquist W.I.;
RT "HIV Gag mimics the Tsg101-recruiting activity of the human Hrs
RT protein.";
RL J. Cell Biol. 162:425-434(2003).
RN [13]
RP INTERACTION WITH EBOLA VIRUS VP40.
RX PubMed=12559917; DOI=10.1016/S0022-2836(02)01406-7;
RA Timmins J., Schoehn G., Ricard-Blum S., Scianimanico S., Vernet T.,
RA Ruigrok R.W., Weissenhorn W.;
RT "Ebola virus matrix protein VP40 interaction with human cellular
RT factors Tsg101 and Nedd4.";
RL J. Mol. Biol. 326:493-502(2003).
RN [14]
RP INTERACTION WITH HTLV-1 GAG.
RX PubMed=14581525; DOI=10.1128/JVI.77.22.11882-11895.2003;
RA Bouamr F., Melillo J.A., Wang M.Q., Nagashima K., de Los Santos M.,
RA Rein A., Goff S.P.;
RT "PPPYVEPTAP motif is the late domain of human T-cell leukemia virus
RT type 1 Gag and mediates its functional interaction with cellular
RT proteins Nedd4 and Tsg101.";
RL J. Virol. 77:11882-11895(2003).
RN [15]
RP MUTAGENESIS OF ASN-45 AND MET-95.
RX PubMed=12802020; DOI=10.1073/pnas.0932599100;
RA Lu Q., Hope L.W., Brasch M., Reinhard C., Cohen S.N.;
RT "TSG101 interaction with HRS mediates endosomal trafficking and
RT receptor down-regulation.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:7626-7631(2003).
RN [16]
RP SELF-ASSOCIATION, AND INTERACTION WITH PDCD6IP AND EIAV P9.
RX PubMed=14519844; DOI=10.1073/pnas.2133846100;
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RT "Divergent retroviral late-budding domains recruit vacuolar protein
RT sorting factors by using alternative adaptor proteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:12414-12419(2003).
RN [17]
RP ERRATUM.
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RL Proc. Natl. Acad. Sci. U.S.A. 100:152845-152845(2003).
RN [18]
RP UBIQUITINATION BY LRSAM1.
RX PubMed=15256501; DOI=10.1101/gad.294904;
RA Amit I., Yakir L., Katz M., Zwang Y., Marmor M.D., Citri A.,
RA Shtiegman K., Alroy I., Tuvia S., Reiss Y., Roubini E., Cohen M.,
RA Wides R., Bacharach E., Schubert U., Yarden Y.;
RT "Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor
RT endocytosis and retrovirus budding.";
RL Genes Dev. 18:1737-1752(2004).
RN [19]
RP INTERACTION WITH VPS37A AND VPS37B, AND MUTAGENESIS OF MET-95.
RX PubMed=15218037; DOI=10.1074/jbc.M405226200;
RA Stuchell M.D., Garrus J.E., Mueller B., Stray K.M., Ghaffarian S.,
RA McKinnon R., Kraeusslich H.-G., Morham S.G., Sundquist W.I.;
RT "The human endosomal sorting complex required for transport (ESCRT-I)
RT and its role in HIV-1 budding.";
RL J. Biol. Chem. 279:36059-36071(2004).
RN [20]
RP INTERACTION WITH GGA1.
RX PubMed=15143060; DOI=10.1074/jbc.M402183200;
RA Mattera R., Puertollano R., Smith W.J., Bonifacino J.S.;
RT "The trihelical bundle subdomain of the GGA proteins interacts with
RT multiple partners through overlapping but distinct sites.";
RL J. Biol. Chem. 279:31409-31418(2004).
RN [21]
RP INTERACTION WITH GGA3.
RX PubMed=15039775; DOI=10.1038/ncb1106;
RA Puertollano R., Bonifacino J.S.;
RT "Interactions of GGA3 with the ubiquitin sorting machinery.";
RL Nat. Cell Biol. 6:244-251(2004).
RN [22]
RP INTERACTION WITH VPS37C, AND MUTAGENESIS OF 368-ARG--PHE-371.
RX PubMed=15509564; DOI=10.1074/jbc.M410384200;
RA Eastman S.W., Martin-Serrano J., Chung W., Zang T., Bieniasz P.D.;
RT "Identification of human VPS37C, a component of endosomal sorting
RT complex required for transport-I important for viral budding.";
RL J. Biol. Chem. 280:628-636(2005).
RN [23]
RP INTERACTION WITH HUMAN SPUMARETROVIRUS GAG.
RX PubMed=15858022; DOI=10.1128/JVI.79.10.6392-6399.2005;
RA Patton G.S., Morris S.A., Chung W., Bieniasz P.D., McClure M.O.;
RT "Identification of domains in gag important for prototypic foamy virus
RT egress.";
RL J. Virol. 79:6392-6399(2005).
RN [24]
RP INTERACTION WITH LASSA VIRUS RING FINGER PROTEIN Z.
RX PubMed=16571837; DOI=10.1128/JVI.80.8.4191-4195.2006;
RA Urata S., Noda T., Kawaoka Y., Yokosawa H., Yasuda J.;
RT "Cellular factors required for Lassa virus budding.";
RL J. Virol. 80:4191-4195(2006).
RN [25]
RP INTERACTION WITH VPS28; VPS37A; VPS37B; VPS37C; VPS37D; MVB12A AND
RP MVB12B, AND RECONSTITUTION OF THE ESCRT-I COMPLEX.
RX PubMed=18005716; DOI=10.1016/j.chom.2007.06.003;
RA Morita E., Sandrin V., Alam S.L., Eckert D.M., Gygi S.P.,
RA Sundquist W.I.;
RT "Identification of human MVB12 proteins as ESCRT-I subunits that
RT function in HIV budding.";
RL Cell Host Microbe 2:41-53(2007).
RN [26]
RP FUNCTION IN CYTOKINESIS, SUBCELLULAR LOCATION, INTERACTION WITH CEP55;
RP CD2AP; IQGAP1 AND ROCK1, AND MUTAGENESIS OF 158-PRO--ASN-160.
RX PubMed=17853893; DOI=10.1038/sj.emboj.7601850;
RA Morita E., Sandrin V., Chung H.Y., Morham S.G., Gygi S.P.,
RA Rodesch C.K., Sundquist W.I.;
RT "Human ESCRT and ALIX proteins interact with proteins of the midbody
RT and function in cytokinesis.";
RL EMBO J. 26:4215-4227(2007).
RN [27]
RP INTERACTION WITH MGRN1, UBIQUITINATION BY MGRN1, SUBCELLULAR LOCATION,
RP AND MUTAGENESIS OF ASN-45 AND MET-95.
RX PubMed=17229889; DOI=10.1091/mbc.E06-09-0787;
RA Kim B.Y., Olzmann J.A., Barsh G.S., Chin L.S., Li L.;
RT "Spongiform neurodegeneration-associated E3 ligase Mahogunin
RT ubiquitylates TSG101 and regulates endosomal trafficking.";
RL Mol. Biol. Cell 18:1129-1142(2007).
RN [28]
RP FUNCTION IN CYTOKINESIS, FUNCTION IN HIV-1 BUDDING, SUBCELLULAR
RP LOCATION, SELF-ASSOCIATION, INTERACTION WITH CEP55; HSG; VPS28;
RP VPS37A; VPS37B; VPS37C; VPS37D; PDCD6IP; LRSAM1; HIV-1 GAG AND EBOLA
RP VIRUS VP40, AND MUTAGENESIS OF 158-PRO--SER-162.
RX PubMed=17556548; DOI=10.1126/science.1143422;
RA Carlton J.G., Martin-Serrano J.;
RT "Parallels between cytokinesis and retroviral budding: a role for the
RT ESCRT machinery.";
RL Science 316:1908-1912(2007).
RN [29]
RP INTERACTION WITH PDCD6.
RX PubMed=18256029; DOI=10.1074/jbc.M800717200;
RA Shibata H., Suzuki H., Kakiuchi T., Inuzuka T., Yoshida H., Mizuno T.,
RA Maki M.;
RT "Identification of Alix-type and non-Alix-type ALG-2-binding sites in
RT human phospholipid scramblase 3: differential binding to an
RT alternatively spliced isoform and amino acid-substituted mutants.";
RL J. Biol. Chem. 283:9623-9632(2008).
RN [30]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, MASS SPECTROMETRY, AND
RP CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [31]
RP INTERACTION WITH PDCD6IP.
RX PubMed=19520058; DOI=10.1016/j.bbrc.2009.06.015;
RA Okumura M., Ichioka F., Kobayashi R., Suzuki H., Yoshida H.,
RA Shibata H., Maki M.;
RT "Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor
RT that bridges Alix and TSG101.";
RL Biochem. Biophys. Res. Commun. 386:237-241(2009).
RN [32]
RP INTERACTION WITH MGRN1, AND UBIQUITINATION BY MGRN1.
RX PubMed=19703557; DOI=10.1016/j.bbadis.2009.08.009;
RA Jiao J., Sun K., Walker W.P., Bagher P., Cota C.D., Gunn T.M.;
RT "Abnormal regulation of TSG101 in mice with spongiform
RT neurodegeneration.";
RL Biochim. Biophys. Acta 1792:1027-1035(2009).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [34]
RP FUNCTION, SUBUNIT, AND IDENTIFICATION IN AN ESCRT-I COMPLEX WITH
RP UBAP1.
RX PubMed=21757351; DOI=10.1016/j.cub.2011.06.028;
RA Stefani F., Zhang L., Taylor S., Donovan J., Rollinson S., Doyotte A.,
RA Brownhill K., Bennion J., Pickering-Brown S., Woodman P.;
RT "UBAP1 is a component of an endosome-specific ESCRT-I complex that is
RT essential for MVB sorting.";
RL Curr. Biol. 21:1245-1250(2011).
RN [35]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [36]
RP STRUCTURE BY NMR OF 1-145, INTERACTION WITH HIV-1 P6 AND UBIQUITIN,
RP AND MUTAGENESIS OF VAL-43; ASN-45; ASP-46; TYR-63; PHE-88; VAL-89;
RP MET-95 AND VAL-141.
RX PubMed=12006492; DOI=10.1093/emboj/21.10.2397;
RA Pornillos O.W., Alam S.L., Rich R.L., Myszka D.G., Davis D.R.,
RA Sundquist W.I.;
RT "Structure and functional interactions of the Tsg101 UEV domain.";
RL EMBO J. 21:2397-2406(2002).
RN [37]
RP STRUCTURE BY NMR OF 1-145.
RX PubMed=12379843; DOI=10.1038/nsb856;
RA Pornillos O., Alam S.L., Davis D.R., Sundquist W.I.;
RT "Structure of the Tsg101 UEV domain in complex with the PTAP motif of
RT the HIV-1 p6 protein.";
RL Nat. Struct. Biol. 9:812-817(2002).
RN [38]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 1-145 IN COMPLEX WITH
RP UBIQUITIN.
RX PubMed=15053872; DOI=10.1016/S1097-2765(04)00129-7;
RA Sundquist W.I., Schubert H.L., Kelly B.N., Hill G.C., Holton J.M.,
RA Hill C.P.;
RT "Ubiquitin recognition by the human TSG101 protein.";
RL Mol. Cell 13:783-789(2004).
RN [39]
RP X-RAY CRYSTALLOGRAPHY (2.26 ANGSTROMS) OF 1-145.
RX PubMed=16552148; DOI=10.1107/S0907444906005221;
RA Palencia A., Martinez J.C., Mateo P.L., Luque I., Camara-Artigas A.;
RT "Structure of human TSG101 UEV domain.";
RL Acta Crystallogr. D 62:458-464(2006).
RN [40]
RP X-RAY CRYSTALLOGRAPHY (1.4 ANGSTROMS) OF 2-145 IN COMPLEX WITH HIV-1
RP GAG P6 PEPTIDE, FUNCTION, AND SUBUNIT.
RX PubMed=21070952; DOI=10.1016/j.str.2010.08.010;
RA Im Y.J., Kuo L., Ren X., Burgos P.V., Zhao X.Z., Liu F.,
RA Burke T.R. Jr., Bonifacino J.S., Freed E.O., Hurley J.H.;
RT "Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag
RT PTAP interaction.";
RL Structure 18:1536-1547(2010).
RN [41]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 2-145 IN COMPLEX WITH HIV-1
RP GAG P6 PEPTIDE, AND SUBUNIT.
RX PubMed=21643473; DOI=10.1021/ml1002579;
RA Kim S.E., Liu F., Im Y.J., Stephen A.G., Fivash M.J., Waheed A.A.,
RA Freed E.O., Fisher R.J., Hurley J.H., Burke T.R. Jr.;
RT "Elucidation of new binding interactions with the tumor susceptibility
RT gene 101 (Tsg101) protein using modified HIV-1 Gag-p6 derived peptide
RT ligands.";
RL ACS Med. Chem. Lett. 2:337-341(2011).
CC -!- FUNCTION: Component of the ESCRT-I complex, a regulator of
CC vesicular trafficking process. Binds to ubiquitinated cargo
CC proteins and is required for the sorting of endocytic
CC ubiquitinated cargos into multivesicular bodies (MVBs). Mediates
CC the association between the ESCRT-0 and ESCRT-I complex. Required
CC for completion of cytokinesis; the function requires CEP55. May be
CC involved in cell growth and differentiation. Acts as a negative
CC growth regulator. Involved in the budding of many viruses through
CC an interaction with viral proteins that contain a late-budding
CC motif P-[ST]-A-P. This interaction is essential for viral particle
CC budding of numerous retroviruses.
CC -!- SUBUNIT: Component of the ESCRT-I complex (endosomal sorting
CC complex required for transport I) which consists of TSG101, VPS28,
CC a VPS37 protein (VPS37A to -D) and MVB12A or MVB12B in a 1:1:1:1
CC stoechiometry. Interacts with VPS37A, VPS37B and VPS37C. Interacts
CC with ubiquitin, stathmin, GMCL, DMAP1 and AATF (By similarity).
CC Component of an ESCRT-I complex (endosomal sorting complex
CC required for transport I) which consists of TSG101, VPS28, VPS37A
CC and UBAP1 in a 1:1:1:1 stoechiometry. Interacts with HGS; the
CC interaction mediates the association with the ESCRT-0 complex.
CC Interacts with GGA1 and GGA3. Interacts (via UEV domain) with
CC PDCD6IP/AIP1. Interacts with VPS28, SNF8 and VPS36. Self-
CC associates. Interacts with MVB12A; the association appears to be
CC mediated by the TSG101-VPS37 binary subcomplex. Interacts with
CC VPS37D. Interacts with LRSAM1. Interacts with CEP55; the
CC interaction is required for cytokinesis but not for viral budding.
CC Interacts with PDCD6. Interacts with HIV-1 p6. Interacts with
CC human spumavirus Gag. Interacts with HTLV-1 Gag. Interacts with
CC Ebola virus VP40. Interacts with EIAV p9; the interaction has been
CC shown in vitro. Interacts with MGRN1.
CC -!- INTERACTION:
CC Q9Y5K6:CD2AP; NbExp=2; IntAct=EBI-346882, EBI-298152;
CC Q53EZ4:CEP55; NbExp=12; IntAct=EBI-346882, EBI-747776;
CC Q9UER7:DAXX; NbExp=4; IntAct=EBI-346882, EBI-77321;
CC P46940:IQGAP1; NbExp=5; IntAct=EBI-346882, EBI-297509;
CC Q99732:LITAF; NbExp=3; IntAct=EBI-346882, EBI-725647;
CC Q9H3S7:PTPN23; NbExp=2; IntAct=EBI-346882, EBI-724478;
CC Q13464:ROCK1; NbExp=4; IntAct=EBI-346882, EBI-876651;
CC Q9UK41:VPS28; NbExp=3; IntAct=EBI-346882, EBI-727424;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Membrane; Peripheral membrane
CC protein. Nucleus. Late endosome membrane; Peripheral membrane
CC protein. Note=Mainly cytoplasmic. Membrane-associated when active
CC and soluble when inactive. Depending on the stage of the cell
CC cycle, detected in the nucleus. Colocalized with CEP55 in the
CC midbody during cytokinesis.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seem to exist. Several shorter
CC isoforms are detected in primary breast cancers and other
CC tumors;
CC Name=1;
CC IsoId=Q99816-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q99816-2; Sequence=VSP_004440;
CC Note=Detected in normal as well as cancer tissues;
CC -!- TISSUE SPECIFICITY: Heart, brain, placenta, lung, liver, skeletal,
CC kidney and pancreas.
CC -!- DOMAIN: The UEV domain is required for the interaction of the
CC complex with ubiquitin. It also mediates the interaction with
CC PTAP/PSAP motifs of HIV-1 P6 protein and human spumaretrovirus Gag
CC protein.
CC -!- DOMAIN: The coiled coil domain may interact with stathmin.
CC -!- DOMAIN: The UEV domain binds ubiquitin and P-[ST]-A-P peptide
CC motif independently.
CC -!- PTM: Monoubiquitinated at multiple sites by LRSAM1 and by MGRN1.
CC Ubiquitination inactivates it, possibly by regulating its
CC shuttling between an active membrane-bound protein and an inactive
CC soluble form. Ubiquitination by MGRN1 requires the presence of
CC UBE2D1.
CC -!- SIMILARITY: Belongs to the ubiquitin-conjugating enzyme family.
CC UEV subfamily.
CC -!- SIMILARITY: Contains 1 SB (steadiness box) domain.
CC -!- SIMILARITY: Contains 1 UEV (ubiquitin E2 variant) domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U82130; AAC52083.1; -; mRNA.
DR EMBL; BC002487; AAH02487.1; -; mRNA.
DR RefSeq; NP_006283.1; NM_006292.3.
DR UniGene; Hs.523512; -.
DR PDB; 1KPP; NMR; -; A=1-145.
DR PDB; 1KPQ; NMR; -; A=1-145.
DR PDB; 1M4P; NMR; -; A=1-145.
DR PDB; 1M4Q; NMR; -; A=1-145.
DR PDB; 1S1Q; X-ray; 2.00 A; A/C=1-145.
DR PDB; 2F0R; X-ray; 2.26 A; A/B=1-145.
DR PDB; 3IV1; X-ray; 2.50 A; A/B/C/D/E/F/G/H=229-304.
DR PDB; 3OBQ; X-ray; 1.40 A; A=2-145.
DR PDB; 3OBS; X-ray; 1.50 A; A=2-145.
DR PDB; 3OBU; X-ray; 1.60 A; A=2-145.
DR PDB; 3OBX; X-ray; 1.60 A; A=2-145.
DR PDB; 3P9G; X-ray; 1.80 A; A=2-145.
DR PDB; 3P9H; X-ray; 1.80 A; A=2-145.
DR PDB; 4EJE; X-ray; 2.20 A; A/B=1-145.
DR PDBsum; 1KPP; -.
DR PDBsum; 1KPQ; -.
DR PDBsum; 1M4P; -.
DR PDBsum; 1M4Q; -.
DR PDBsum; 1S1Q; -.
DR PDBsum; 2F0R; -.
DR PDBsum; 3IV1; -.
DR PDBsum; 3OBQ; -.
DR PDBsum; 3OBS; -.
DR PDBsum; 3OBU; -.
DR PDBsum; 3OBX; -.
DR PDBsum; 3P9G; -.
DR PDBsum; 3P9H; -.
DR PDBsum; 4EJE; -.
DR ProteinModelPortal; Q99816; -.
DR SMR; Q99816; 3-143, 228-379.
DR DIP; DIP-31809N; -.
DR IntAct; Q99816; 75.
DR MINT; MINT-234338; -.
DR STRING; 9606.ENSP00000251968; -.
DR BindingDB; Q99816; -.
DR ChEMBL; CHEMBL6157; -.
DR PhosphoSite; Q99816; -.
DR DMDM; 9789790; -.
DR PaxDb; Q99816; -.
DR PeptideAtlas; Q99816; -.
DR PRIDE; Q99816; -.
DR DNASU; 7251; -.
DR Ensembl; ENST00000251968; ENSP00000251968; ENSG00000074319.
DR Ensembl; ENST00000357193; ENSP00000349721; ENSG00000074319.
DR GeneID; 7251; -.
DR KEGG; hsa:7251; -.
DR UCSC; uc001mor.3; human.
DR CTD; 7251; -.
DR GeneCards; GC11M018501; -.
DR HGNC; HGNC:15971; TSG101.
DR HPA; CAB004283; -.
DR HPA; HPA006161; -.
DR MIM; 601387; gene.
DR neXtProt; NX_Q99816; -.
DR PharmGKB; PA38068; -.
DR eggNOG; NOG317261; -.
DR HOGENOM; HOG000247008; -.
DR HOVERGEN; HBG057450; -.
DR InParanoid; Q99816; -.
DR KO; K12183; -.
DR OMA; ASYMPGM; -.
DR PhylomeDB; Q99816; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; TSG101; human.
DR EvolutionaryTrace; Q99816; -.
DR GeneWiki; TSG101; -.
DR GenomeRNAi; 7251; -.
DR NextBio; 28353; -.
DR PRO; PR:Q99816; -.
DR ArrayExpress; Q99816; -.
DR Bgee; Q99816; -.
DR CleanEx; HS_TSG101; -.
DR Genevestigator; Q99816; -.
DR GO; GO:0005769; C:early endosome; IDA:UniProtKB.
DR GO; GO:0000813; C:ESCRT I complex; IDA:UniProtKB.
DR GO; GO:0031902; C:late endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005771; C:multivesicular body; TAS:HGNC.
DR GO; GO:0005730; C:nucleolus; IDA:HPA.
DR GO; GO:0005886; C:plasma membrane; IDA:HPA.
DR GO; GO:0003677; F:DNA binding; TAS:ProtInc.
DR GO; GO:0003714; F:transcription corepressor activity; TAS:ProtInc.
DR GO; GO:0043130; F:ubiquitin binding; TAS:HGNC.
DR GO; GO:0007050; P:cell cycle arrest; IEA:Ensembl.
DR GO; GO:0051301; P:cell division; IEA:UniProtKB-KW.
DR GO; GO:0006464; P:cellular protein modification process; IEA:InterPro.
DR GO; GO:0016197; P:endosomal transport; TAS:Reactome.
DR GO; GO:0030216; P:keratinocyte differentiation; IEA:Ensembl.
DR GO; GO:0019048; P:modulation by virus of host morphology or physiology; IEA:UniProtKB-KW.
DR GO; GO:0008285; P:negative regulation of cell proliferation; IEA:Ensembl.
DR GO; GO:0045892; P:negative regulation of transcription, DNA-dependent; IEA:Ensembl.
DR GO; GO:0015031; P:protein transport; IEA:UniProtKB-KW.
DR GO; GO:0001558; P:regulation of cell growth; IEA:Ensembl.
DR GO; GO:0043162; P:ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway; IMP:UniProtKB.
DR GO; GO:0046755; P:viral budding; ISS:UniProtKB.
DR GO; GO:0019082; P:viral protein processing; TAS:Reactome.
DR GO; GO:0019068; P:virion assembly; TAS:Reactome.
DR Gene3D; 3.10.110.10; -; 1.
DR InterPro; IPR017916; Steadiness_box.
DR InterPro; IPR016135; UBQ-conjugating_enzyme/RWD.
DR InterPro; IPR008883; UEV_N.
DR Pfam; PF05743; UEV; 1.
DR Pfam; PF09454; Vps23_core; 1.
DR SUPFAM; SSF54495; SSF54495; 1.
DR PROSITE; PS51312; SB; 1.
DR PROSITE; PS00183; UBIQUITIN_CONJUGAT_1; FALSE_NEG.
DR PROSITE; PS50127; UBIQUITIN_CONJUGAT_2; FALSE_NEG.
DR PROSITE; PS51322; UEV; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Cell cycle;
KW Cell division; Coiled coil; Complete proteome; Cytoplasm; Endosome;
KW Growth regulation; Host-virus interaction; Membrane; Nucleus;
KW Polymorphism; Protein transport; Reference proteome; Transport;
KW Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 390 Tumor susceptibility gene 101 protein.
FT /FTId=PRO_0000082606.
FT DOMAIN 2 145 UEV.
FT DOMAIN 322 390 SB.
FT REGION 158 162 Interaction with CEP55.
FT COILED 235 316 Potential.
FT MOTIF 320 323 PTAP motif.
FT MOD_RES 2 2 N-acetylalanine.
FT VAR_SEQ 15 119 Missing (in isoform 2).
FT /FTId=VSP_004440.
FT VARIANT 167 167 M -> I (in dbSNP:rs34385327).
FT /FTId=VAR_034572.
FT MUTAGEN 43 43 V->A: Reduces interaction with ubiquitin;
FT inhibits down-regulation of EGFR.
FT MUTAGEN 45 45 N->A: Reduces interaction with ubiquitin.
FT No effect on MGRN1-binding.
FT MUTAGEN 46 46 D->A: Reduces interaction with ubiquitin.
FT MUTAGEN 63 63 Y->A: Reduces interaction with HIV-1 p6;
FT impairs HIV-1 budding.
FT MUTAGEN 88 88 F->A: Reduces interaction with ubiquitin;
FT no effect on in interaction with HIV-1
FT p6.
FT MUTAGEN 89 89 V->A: No change in interaction with p6;
FT no effect on HIV-1 budding.
FT MUTAGEN 95 95 M->A: Reduces interaction with VPS37B and
FT HIV-1 p6; abolishes interaction with
FT PDCD6IP; impairs HIV-1 budding; inhibits
FT down-regulation of EGFR. Abolishes MGRN1-
FT binding.
FT MUTAGEN 141 141 V->A: Reduces interaction with HIV-1 p6.
FT MUTAGEN 158 162 Missing: Abolishes interaction with CEP55
FT and midbody localization; no effect on
FT interaction with ESCRT-I proteins,
FT PDCD6IP and viral proteins.
FT MUTAGEN 158 160 PPN->AAA: Abolishes interaction with
FT CEP55.
FT MUTAGEN 368 371 RKQF->AAAA: Loss of interaction with
FT VPS28. No effect on interaction with
FT VPS37C.
FT CONFLICT 343 343 F -> L (in Ref. 3; AAH02487).
FT HELIX 5 11
FT TURN 12 14
FT HELIX 18 31
FT STRAND 35 44
FT TURN 47 49
FT STRAND 51 62
FT STRAND 67 75
FT TURN 78 82
FT STRAND 86 89
FT STRAND 95 97
FT STRAND 100 103
FT STRAND 107 109
FT HELIX 112 115
FT TURN 119 121
FT HELIX 124 137
FT STRAND 140 143
FT HELIX 230 299
SQ SEQUENCE 390 AA; 43944 MW; ADD6912FC22DF162 CRC64;
MAVSESQLKK MVSKYKYRDL TVRETVNVIT LYKDLKPVLD SYVFNDGSSR ELMNLTGTIP
VPYRGNTYNI PICLWLLDTY PYNPPICFVK PTSSMTIKTG KHVDANGKIY LPYLHEWKHP
QSDLLGLIQV MIVVFGDEPP VFSRPISASY PPYQATGPPN TSYMPGMPGG ISPYPSGYPP
NPSGYPGCPY PPGGPYPATT SSQYPSQPPV TTVGPSRDGT ISEDTIRASL ISAVSDKLRW
RMKEEMDRAQ AELNALKRTE EDLKKGHQKL EEMVTRLDQE VAEVDKNIEL LKKKDEELSS
ALEKMENQSE NNDIDEVIIP TAPLYKQILN LYAEENAIED TIFYLGEALR RGVIDLDVFL
KHVRLLSRKQ FQLRALMQKA RKTAGLSDLY
//
ID TS101_HUMAN Reviewed; 390 AA.
AC Q99816; Q9BUM5;
DT 01-DEC-2000, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-AUG-1998, sequence version 2.
DT 22-JAN-2014, entry version 157.
DE RecName: Full=Tumor susceptibility gene 101 protein;
DE AltName: Full=ESCRT-I complex subunit TSG101;
GN Name=TSG101;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
RC TISSUE=Placenta;
RX PubMed=9019400; DOI=10.1016/S0092-8674(00)81866-8;
RA Li L., Li X., Francke U., Cohen S.N.;
RT "The TSG101 tumor susceptibility gene is located in chromosome 11 band
RT p15 and is mutated in human breast cancer.";
RL Cell 88:143-154(1997).
RN [2]
RP ERRATUM, AND RETRACTION.
RX PubMed=9867424; DOI=10.1016/S0092-8674(00)89342-3;
RA Li L., Francke U., Cohen S.N.;
RL Cell 93:661-661(1998).
RN [3]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
RC TISSUE=Eye;
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [4]
RP ALTERNATIVE SPLICING (ISOFORM 2).
RX PubMed=9366528; DOI=10.1038/sj.onc.1201591;
RA Gayther S.A., Barski P., Batley S.J., Li L., de Foy K.A., Cohen S.N.,
RA Ponder B.A., Caldas C.;
RT "Aberrant splicing of the TSG101 and FHIT genes occurs frequently in
RT multiple malignancies and in normal tissues and mimics alterations
RT previously described in tumours.";
RL Oncogene 15:2119-2126(1997).
RN [5]
RP ALTERNATIVE SPLICING.
RX PubMed=9242438;
RA Lee M.P., Feinberg A.P.;
RT "Aberrant splicing but not mutations of TSG101 in human breast
RT cancer.";
RL Cancer Res. 57:3131-3134(1997).
RN [6]
RP ALTERNATIVE SPLICING.
RX PubMed=9840940; DOI=10.1038/sj.onc.1202529;
RA Wagner K.-U., Dierisseau P., Rucker E.B. III, Robinson G.W.,
RA Hennighausen L.;
RT "Genomic architecture and transcriptional activation of the mouse and
RT human tumor susceptibility gene TSG101: common types of shorter
RT transcripts are true alternative splice variants.";
RL Oncogene 17:2761-2770(1998).
RN [7]
RP INTERACTION WITH DMAP1.
RX PubMed=10888872; DOI=10.1038/77023;
RA Rountree M.R., Bachman K.E., Baylin S.B.;
RT "DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at
RT replication foci.";
RL Nat. Genet. 25:269-277(2000).
RN [8]
RP INTERACTION WITH HIV-1 P6 AND UBIQUITIN.
RX PubMed=11595185; DOI=10.1016/S0092-8674(01)00506-2;
RA Garrus J.E., von Schwedler U.K., Pornillos O.W., Morham S.G.,
RA Zavitz K.H., Wang H.E., Wettstein D.A., Stray K.M., Cote M.,
RA Rich R.L., Myszka D.G., Sundquist W.I.;
RT "Tsg101 and the vacuolar protein sorting pathway are essential for
RT HIV-1 budding.";
RL Cell 107:55-65(2001).
RN [9]
RP INTERACTION WITH HIV-1 P6.
RX PubMed=11427703; DOI=10.1073/pnas.131059198;
RA VerPlank L., Bouamr F., LaGrassa T.J., Agresta B., Kikonyogo A.,
RA Leis J., Carter C.A.;
RT "Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the
RT L domain in HIV type 1 Pr55(Gag).";
RL Proc. Natl. Acad. Sci. U.S.A. 98:7724-7729(2001).
RN [10]
RP FUNCTION, AND SUBCELLULAR LOCATION.
RX PubMed=11916981; DOI=10.1083/jcb.200112080;
RA Bishop N., Horman A., Woodman P.;
RT "Mammalian class E vps proteins recognize ubiquitin and act in the
RT removal of endosomal protein-ubiquitin conjugates.";
RL J. Cell Biol. 157:91-101(2002).
RN [11]
RP SELF-ASSOCIATION, INTERACTION WITH PDCD6IP; VPS28; SNF8 AND VPS36, AND
RP MUTAGENESIS OF MET-95.
RX PubMed=14505570; DOI=10.1016/S0092-8674(03)00714-1;
RA von Schwedler U.K., Stuchell M., Mueller B., Ward D.M., Chung H.-Y.,
RA Morita E., Wang H.E., Davis T., He G.P., Cimbora D.M., Scott A.,
RA Kraeusslich H.-G., Kaplan J., Morham S.G., Sundquist W.I.;
RT "The protein network of HIV budding.";
RL Cell 114:701-713(2003).
RN [12]
RP INTERACTION WITH HIV-1 GAG AND HGS, AND SELF-ASSOCIATION.
RX PubMed=12900394; DOI=10.1083/jcb.200302138;
RA Pornillos O., Higginson D.S., Stray K.M., Fisher R.D., Garrus J.E.,
RA Payne M., He G.P., Wang H.E., Morham S.G., Sundquist W.I.;
RT "HIV Gag mimics the Tsg101-recruiting activity of the human Hrs
RT protein.";
RL J. Cell Biol. 162:425-434(2003).
RN [13]
RP INTERACTION WITH EBOLA VIRUS VP40.
RX PubMed=12559917; DOI=10.1016/S0022-2836(02)01406-7;
RA Timmins J., Schoehn G., Ricard-Blum S., Scianimanico S., Vernet T.,
RA Ruigrok R.W., Weissenhorn W.;
RT "Ebola virus matrix protein VP40 interaction with human cellular
RT factors Tsg101 and Nedd4.";
RL J. Mol. Biol. 326:493-502(2003).
RN [14]
RP INTERACTION WITH HTLV-1 GAG.
RX PubMed=14581525; DOI=10.1128/JVI.77.22.11882-11895.2003;
RA Bouamr F., Melillo J.A., Wang M.Q., Nagashima K., de Los Santos M.,
RA Rein A., Goff S.P.;
RT "PPPYVEPTAP motif is the late domain of human T-cell leukemia virus
RT type 1 Gag and mediates its functional interaction with cellular
RT proteins Nedd4 and Tsg101.";
RL J. Virol. 77:11882-11895(2003).
RN [15]
RP MUTAGENESIS OF ASN-45 AND MET-95.
RX PubMed=12802020; DOI=10.1073/pnas.0932599100;
RA Lu Q., Hope L.W., Brasch M., Reinhard C., Cohen S.N.;
RT "TSG101 interaction with HRS mediates endosomal trafficking and
RT receptor down-regulation.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:7626-7631(2003).
RN [16]
RP SELF-ASSOCIATION, AND INTERACTION WITH PDCD6IP AND EIAV P9.
RX PubMed=14519844; DOI=10.1073/pnas.2133846100;
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RT "Divergent retroviral late-budding domains recruit vacuolar protein
RT sorting factors by using alternative adaptor proteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:12414-12419(2003).
RN [17]
RP ERRATUM.
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RL Proc. Natl. Acad. Sci. U.S.A. 100:152845-152845(2003).
RN [18]
RP UBIQUITINATION BY LRSAM1.
RX PubMed=15256501; DOI=10.1101/gad.294904;
RA Amit I., Yakir L., Katz M., Zwang Y., Marmor M.D., Citri A.,
RA Shtiegman K., Alroy I., Tuvia S., Reiss Y., Roubini E., Cohen M.,
RA Wides R., Bacharach E., Schubert U., Yarden Y.;
RT "Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor
RT endocytosis and retrovirus budding.";
RL Genes Dev. 18:1737-1752(2004).
RN [19]
RP INTERACTION WITH VPS37A AND VPS37B, AND MUTAGENESIS OF MET-95.
RX PubMed=15218037; DOI=10.1074/jbc.M405226200;
RA Stuchell M.D., Garrus J.E., Mueller B., Stray K.M., Ghaffarian S.,
RA McKinnon R., Kraeusslich H.-G., Morham S.G., Sundquist W.I.;
RT "The human endosomal sorting complex required for transport (ESCRT-I)
RT and its role in HIV-1 budding.";
RL J. Biol. Chem. 279:36059-36071(2004).
RN [20]
RP INTERACTION WITH GGA1.
RX PubMed=15143060; DOI=10.1074/jbc.M402183200;
RA Mattera R., Puertollano R., Smith W.J., Bonifacino J.S.;
RT "The trihelical bundle subdomain of the GGA proteins interacts with
RT multiple partners through overlapping but distinct sites.";
RL J. Biol. Chem. 279:31409-31418(2004).
RN [21]
RP INTERACTION WITH GGA3.
RX PubMed=15039775; DOI=10.1038/ncb1106;
RA Puertollano R., Bonifacino J.S.;
RT "Interactions of GGA3 with the ubiquitin sorting machinery.";
RL Nat. Cell Biol. 6:244-251(2004).
RN [22]
RP INTERACTION WITH VPS37C, AND MUTAGENESIS OF 368-ARG--PHE-371.
RX PubMed=15509564; DOI=10.1074/jbc.M410384200;
RA Eastman S.W., Martin-Serrano J., Chung W., Zang T., Bieniasz P.D.;
RT "Identification of human VPS37C, a component of endosomal sorting
RT complex required for transport-I important for viral budding.";
RL J. Biol. Chem. 280:628-636(2005).
RN [23]
RP INTERACTION WITH HUMAN SPUMARETROVIRUS GAG.
RX PubMed=15858022; DOI=10.1128/JVI.79.10.6392-6399.2005;
RA Patton G.S., Morris S.A., Chung W., Bieniasz P.D., McClure M.O.;
RT "Identification of domains in gag important for prototypic foamy virus
RT egress.";
RL J. Virol. 79:6392-6399(2005).
RN [24]
RP INTERACTION WITH LASSA VIRUS RING FINGER PROTEIN Z.
RX PubMed=16571837; DOI=10.1128/JVI.80.8.4191-4195.2006;
RA Urata S., Noda T., Kawaoka Y., Yokosawa H., Yasuda J.;
RT "Cellular factors required for Lassa virus budding.";
RL J. Virol. 80:4191-4195(2006).
RN [25]
RP INTERACTION WITH VPS28; VPS37A; VPS37B; VPS37C; VPS37D; MVB12A AND
RP MVB12B, AND RECONSTITUTION OF THE ESCRT-I COMPLEX.
RX PubMed=18005716; DOI=10.1016/j.chom.2007.06.003;
RA Morita E., Sandrin V., Alam S.L., Eckert D.M., Gygi S.P.,
RA Sundquist W.I.;
RT "Identification of human MVB12 proteins as ESCRT-I subunits that
RT function in HIV budding.";
RL Cell Host Microbe 2:41-53(2007).
RN [26]
RP FUNCTION IN CYTOKINESIS, SUBCELLULAR LOCATION, INTERACTION WITH CEP55;
RP CD2AP; IQGAP1 AND ROCK1, AND MUTAGENESIS OF 158-PRO--ASN-160.
RX PubMed=17853893; DOI=10.1038/sj.emboj.7601850;
RA Morita E., Sandrin V., Chung H.Y., Morham S.G., Gygi S.P.,
RA Rodesch C.K., Sundquist W.I.;
RT "Human ESCRT and ALIX proteins interact with proteins of the midbody
RT and function in cytokinesis.";
RL EMBO J. 26:4215-4227(2007).
RN [27]
RP INTERACTION WITH MGRN1, UBIQUITINATION BY MGRN1, SUBCELLULAR LOCATION,
RP AND MUTAGENESIS OF ASN-45 AND MET-95.
RX PubMed=17229889; DOI=10.1091/mbc.E06-09-0787;
RA Kim B.Y., Olzmann J.A., Barsh G.S., Chin L.S., Li L.;
RT "Spongiform neurodegeneration-associated E3 ligase Mahogunin
RT ubiquitylates TSG101 and regulates endosomal trafficking.";
RL Mol. Biol. Cell 18:1129-1142(2007).
RN [28]
RP FUNCTION IN CYTOKINESIS, FUNCTION IN HIV-1 BUDDING, SUBCELLULAR
RP LOCATION, SELF-ASSOCIATION, INTERACTION WITH CEP55; HSG; VPS28;
RP VPS37A; VPS37B; VPS37C; VPS37D; PDCD6IP; LRSAM1; HIV-1 GAG AND EBOLA
RP VIRUS VP40, AND MUTAGENESIS OF 158-PRO--SER-162.
RX PubMed=17556548; DOI=10.1126/science.1143422;
RA Carlton J.G., Martin-Serrano J.;
RT "Parallels between cytokinesis and retroviral budding: a role for the
RT ESCRT machinery.";
RL Science 316:1908-1912(2007).
RN [29]
RP INTERACTION WITH PDCD6.
RX PubMed=18256029; DOI=10.1074/jbc.M800717200;
RA Shibata H., Suzuki H., Kakiuchi T., Inuzuka T., Yoshida H., Mizuno T.,
RA Maki M.;
RT "Identification of Alix-type and non-Alix-type ALG-2-binding sites in
RT human phospholipid scramblase 3: differential binding to an
RT alternatively spliced isoform and amino acid-substituted mutants.";
RL J. Biol. Chem. 283:9623-9632(2008).
RN [30]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, MASS SPECTROMETRY, AND
RP CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=19413330; DOI=10.1021/ac9004309;
RA Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J.,
RA Mohammed S.;
RT "Lys-N and trypsin cover complementary parts of the phosphoproteome in
RT a refined SCX-based approach.";
RL Anal. Chem. 81:4493-4501(2009).
RN [31]
RP INTERACTION WITH PDCD6IP.
RX PubMed=19520058; DOI=10.1016/j.bbrc.2009.06.015;
RA Okumura M., Ichioka F., Kobayashi R., Suzuki H., Yoshida H.,
RA Shibata H., Maki M.;
RT "Penta-EF-hand protein ALG-2 functions as a Ca2+-dependent adaptor
RT that bridges Alix and TSG101.";
RL Biochem. Biophys. Res. Commun. 386:237-241(2009).
RN [32]
RP INTERACTION WITH MGRN1, AND UBIQUITINATION BY MGRN1.
RX PubMed=19703557; DOI=10.1016/j.bbadis.2009.08.009;
RA Jiao J., Sun K., Walker W.P., Bagher P., Cota C.D., Gunn T.M.;
RT "Abnormal regulation of TSG101 in mice with spongiform
RT neurodegeneration.";
RL Biochim. Biophys. Acta 1792:1027-1035(2009).
RN [33]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [34]
RP FUNCTION, SUBUNIT, AND IDENTIFICATION IN AN ESCRT-I COMPLEX WITH
RP UBAP1.
RX PubMed=21757351; DOI=10.1016/j.cub.2011.06.028;
RA Stefani F., Zhang L., Taylor S., Donovan J., Rollinson S., Doyotte A.,
RA Brownhill K., Bennion J., Pickering-Brown S., Woodman P.;
RT "UBAP1 is a component of an endosome-specific ESCRT-I complex that is
RT essential for MVB sorting.";
RL Curr. Biol. 21:1245-1250(2011).
RN [35]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, AND MASS SPECTROMETRY.
RX PubMed=22814378; DOI=10.1073/pnas.1210303109;
RA Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A.,
RA Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E.,
RA Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K.,
RA Aldabe R.;
RT "N-terminal acetylome analyses and functional insights of the N-
RT terminal acetyltransferase NatB.";
RL Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012).
RN [36]
RP STRUCTURE BY NMR OF 1-145, INTERACTION WITH HIV-1 P6 AND UBIQUITIN,
RP AND MUTAGENESIS OF VAL-43; ASN-45; ASP-46; TYR-63; PHE-88; VAL-89;
RP MET-95 AND VAL-141.
RX PubMed=12006492; DOI=10.1093/emboj/21.10.2397;
RA Pornillos O.W., Alam S.L., Rich R.L., Myszka D.G., Davis D.R.,
RA Sundquist W.I.;
RT "Structure and functional interactions of the Tsg101 UEV domain.";
RL EMBO J. 21:2397-2406(2002).
RN [37]
RP STRUCTURE BY NMR OF 1-145.
RX PubMed=12379843; DOI=10.1038/nsb856;
RA Pornillos O., Alam S.L., Davis D.R., Sundquist W.I.;
RT "Structure of the Tsg101 UEV domain in complex with the PTAP motif of
RT the HIV-1 p6 protein.";
RL Nat. Struct. Biol. 9:812-817(2002).
RN [38]
RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 1-145 IN COMPLEX WITH
RP UBIQUITIN.
RX PubMed=15053872; DOI=10.1016/S1097-2765(04)00129-7;
RA Sundquist W.I., Schubert H.L., Kelly B.N., Hill G.C., Holton J.M.,
RA Hill C.P.;
RT "Ubiquitin recognition by the human TSG101 protein.";
RL Mol. Cell 13:783-789(2004).
RN [39]
RP X-RAY CRYSTALLOGRAPHY (2.26 ANGSTROMS) OF 1-145.
RX PubMed=16552148; DOI=10.1107/S0907444906005221;
RA Palencia A., Martinez J.C., Mateo P.L., Luque I., Camara-Artigas A.;
RT "Structure of human TSG101 UEV domain.";
RL Acta Crystallogr. D 62:458-464(2006).
RN [40]
RP X-RAY CRYSTALLOGRAPHY (1.4 ANGSTROMS) OF 2-145 IN COMPLEX WITH HIV-1
RP GAG P6 PEPTIDE, FUNCTION, AND SUBUNIT.
RX PubMed=21070952; DOI=10.1016/j.str.2010.08.010;
RA Im Y.J., Kuo L., Ren X., Burgos P.V., Zhao X.Z., Liu F.,
RA Burke T.R. Jr., Bonifacino J.S., Freed E.O., Hurley J.H.;
RT "Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag
RT PTAP interaction.";
RL Structure 18:1536-1547(2010).
RN [41]
RP X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 2-145 IN COMPLEX WITH HIV-1
RP GAG P6 PEPTIDE, AND SUBUNIT.
RX PubMed=21643473; DOI=10.1021/ml1002579;
RA Kim S.E., Liu F., Im Y.J., Stephen A.G., Fivash M.J., Waheed A.A.,
RA Freed E.O., Fisher R.J., Hurley J.H., Burke T.R. Jr.;
RT "Elucidation of new binding interactions with the tumor susceptibility
RT gene 101 (Tsg101) protein using modified HIV-1 Gag-p6 derived peptide
RT ligands.";
RL ACS Med. Chem. Lett. 2:337-341(2011).
CC -!- FUNCTION: Component of the ESCRT-I complex, a regulator of
CC vesicular trafficking process. Binds to ubiquitinated cargo
CC proteins and is required for the sorting of endocytic
CC ubiquitinated cargos into multivesicular bodies (MVBs). Mediates
CC the association between the ESCRT-0 and ESCRT-I complex. Required
CC for completion of cytokinesis; the function requires CEP55. May be
CC involved in cell growth and differentiation. Acts as a negative
CC growth regulator. Involved in the budding of many viruses through
CC an interaction with viral proteins that contain a late-budding
CC motif P-[ST]-A-P. This interaction is essential for viral particle
CC budding of numerous retroviruses.
CC -!- SUBUNIT: Component of the ESCRT-I complex (endosomal sorting
CC complex required for transport I) which consists of TSG101, VPS28,
CC a VPS37 protein (VPS37A to -D) and MVB12A or MVB12B in a 1:1:1:1
CC stoechiometry. Interacts with VPS37A, VPS37B and VPS37C. Interacts
CC with ubiquitin, stathmin, GMCL, DMAP1 and AATF (By similarity).
CC Component of an ESCRT-I complex (endosomal sorting complex
CC required for transport I) which consists of TSG101, VPS28, VPS37A
CC and UBAP1 in a 1:1:1:1 stoechiometry. Interacts with HGS; the
CC interaction mediates the association with the ESCRT-0 complex.
CC Interacts with GGA1 and GGA3. Interacts (via UEV domain) with
CC PDCD6IP/AIP1. Interacts with VPS28, SNF8 and VPS36. Self-
CC associates. Interacts with MVB12A; the association appears to be
CC mediated by the TSG101-VPS37 binary subcomplex. Interacts with
CC VPS37D. Interacts with LRSAM1. Interacts with CEP55; the
CC interaction is required for cytokinesis but not for viral budding.
CC Interacts with PDCD6. Interacts with HIV-1 p6. Interacts with
CC human spumavirus Gag. Interacts with HTLV-1 Gag. Interacts with
CC Ebola virus VP40. Interacts with EIAV p9; the interaction has been
CC shown in vitro. Interacts with MGRN1.
CC -!- INTERACTION:
CC Q9Y5K6:CD2AP; NbExp=2; IntAct=EBI-346882, EBI-298152;
CC Q53EZ4:CEP55; NbExp=12; IntAct=EBI-346882, EBI-747776;
CC Q9UER7:DAXX; NbExp=4; IntAct=EBI-346882, EBI-77321;
CC P46940:IQGAP1; NbExp=5; IntAct=EBI-346882, EBI-297509;
CC Q99732:LITAF; NbExp=3; IntAct=EBI-346882, EBI-725647;
CC Q9H3S7:PTPN23; NbExp=2; IntAct=EBI-346882, EBI-724478;
CC Q13464:ROCK1; NbExp=4; IntAct=EBI-346882, EBI-876651;
CC Q9UK41:VPS28; NbExp=3; IntAct=EBI-346882, EBI-727424;
CC -!- SUBCELLULAR LOCATION: Cytoplasm. Membrane; Peripheral membrane
CC protein. Nucleus. Late endosome membrane; Peripheral membrane
CC protein. Note=Mainly cytoplasmic. Membrane-associated when active
CC and soluble when inactive. Depending on the stage of the cell
CC cycle, detected in the nucleus. Colocalized with CEP55 in the
CC midbody during cytokinesis.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=2;
CC Comment=Additional isoforms seem to exist. Several shorter
CC isoforms are detected in primary breast cancers and other
CC tumors;
CC Name=1;
CC IsoId=Q99816-1; Sequence=Displayed;
CC Name=2;
CC IsoId=Q99816-2; Sequence=VSP_004440;
CC Note=Detected in normal as well as cancer tissues;
CC -!- TISSUE SPECIFICITY: Heart, brain, placenta, lung, liver, skeletal,
CC kidney and pancreas.
CC -!- DOMAIN: The UEV domain is required for the interaction of the
CC complex with ubiquitin. It also mediates the interaction with
CC PTAP/PSAP motifs of HIV-1 P6 protein and human spumaretrovirus Gag
CC protein.
CC -!- DOMAIN: The coiled coil domain may interact with stathmin.
CC -!- DOMAIN: The UEV domain binds ubiquitin and P-[ST]-A-P peptide
CC motif independently.
CC -!- PTM: Monoubiquitinated at multiple sites by LRSAM1 and by MGRN1.
CC Ubiquitination inactivates it, possibly by regulating its
CC shuttling between an active membrane-bound protein and an inactive
CC soluble form. Ubiquitination by MGRN1 requires the presence of
CC UBE2D1.
CC -!- SIMILARITY: Belongs to the ubiquitin-conjugating enzyme family.
CC UEV subfamily.
CC -!- SIMILARITY: Contains 1 SB (steadiness box) domain.
CC -!- SIMILARITY: Contains 1 UEV (ubiquitin E2 variant) domain.
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; U82130; AAC52083.1; -; mRNA.
DR EMBL; BC002487; AAH02487.1; -; mRNA.
DR RefSeq; NP_006283.1; NM_006292.3.
DR UniGene; Hs.523512; -.
DR PDB; 1KPP; NMR; -; A=1-145.
DR PDB; 1KPQ; NMR; -; A=1-145.
DR PDB; 1M4P; NMR; -; A=1-145.
DR PDB; 1M4Q; NMR; -; A=1-145.
DR PDB; 1S1Q; X-ray; 2.00 A; A/C=1-145.
DR PDB; 2F0R; X-ray; 2.26 A; A/B=1-145.
DR PDB; 3IV1; X-ray; 2.50 A; A/B/C/D/E/F/G/H=229-304.
DR PDB; 3OBQ; X-ray; 1.40 A; A=2-145.
DR PDB; 3OBS; X-ray; 1.50 A; A=2-145.
DR PDB; 3OBU; X-ray; 1.60 A; A=2-145.
DR PDB; 3OBX; X-ray; 1.60 A; A=2-145.
DR PDB; 3P9G; X-ray; 1.80 A; A=2-145.
DR PDB; 3P9H; X-ray; 1.80 A; A=2-145.
DR PDB; 4EJE; X-ray; 2.20 A; A/B=1-145.
DR PDBsum; 1KPP; -.
DR PDBsum; 1KPQ; -.
DR PDBsum; 1M4P; -.
DR PDBsum; 1M4Q; -.
DR PDBsum; 1S1Q; -.
DR PDBsum; 2F0R; -.
DR PDBsum; 3IV1; -.
DR PDBsum; 3OBQ; -.
DR PDBsum; 3OBS; -.
DR PDBsum; 3OBU; -.
DR PDBsum; 3OBX; -.
DR PDBsum; 3P9G; -.
DR PDBsum; 3P9H; -.
DR PDBsum; 4EJE; -.
DR ProteinModelPortal; Q99816; -.
DR SMR; Q99816; 3-143, 228-379.
DR DIP; DIP-31809N; -.
DR IntAct; Q99816; 75.
DR MINT; MINT-234338; -.
DR STRING; 9606.ENSP00000251968; -.
DR BindingDB; Q99816; -.
DR ChEMBL; CHEMBL6157; -.
DR PhosphoSite; Q99816; -.
DR DMDM; 9789790; -.
DR PaxDb; Q99816; -.
DR PeptideAtlas; Q99816; -.
DR PRIDE; Q99816; -.
DR DNASU; 7251; -.
DR Ensembl; ENST00000251968; ENSP00000251968; ENSG00000074319.
DR Ensembl; ENST00000357193; ENSP00000349721; ENSG00000074319.
DR GeneID; 7251; -.
DR KEGG; hsa:7251; -.
DR UCSC; uc001mor.3; human.
DR CTD; 7251; -.
DR GeneCards; GC11M018501; -.
DR HGNC; HGNC:15971; TSG101.
DR HPA; CAB004283; -.
DR HPA; HPA006161; -.
DR MIM; 601387; gene.
DR neXtProt; NX_Q99816; -.
DR PharmGKB; PA38068; -.
DR eggNOG; NOG317261; -.
DR HOGENOM; HOG000247008; -.
DR HOVERGEN; HBG057450; -.
DR InParanoid; Q99816; -.
DR KO; K12183; -.
DR OMA; ASYMPGM; -.
DR PhylomeDB; Q99816; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; TSG101; human.
DR EvolutionaryTrace; Q99816; -.
DR GeneWiki; TSG101; -.
DR GenomeRNAi; 7251; -.
DR NextBio; 28353; -.
DR PRO; PR:Q99816; -.
DR ArrayExpress; Q99816; -.
DR Bgee; Q99816; -.
DR CleanEx; HS_TSG101; -.
DR Genevestigator; Q99816; -.
DR GO; GO:0005769; C:early endosome; IDA:UniProtKB.
DR GO; GO:0000813; C:ESCRT I complex; IDA:UniProtKB.
DR GO; GO:0031902; C:late endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0005771; C:multivesicular body; TAS:HGNC.
DR GO; GO:0005730; C:nucleolus; IDA:HPA.
DR GO; GO:0005886; C:plasma membrane; IDA:HPA.
DR GO; GO:0003677; F:DNA binding; TAS:ProtInc.
DR GO; GO:0003714; F:transcription corepressor activity; TAS:ProtInc.
DR GO; GO:0043130; F:ubiquitin binding; TAS:HGNC.
DR GO; GO:0007050; P:cell cycle arrest; IEA:Ensembl.
DR GO; GO:0051301; P:cell division; IEA:UniProtKB-KW.
DR GO; GO:0006464; P:cellular protein modification process; IEA:InterPro.
DR GO; GO:0016197; P:endosomal transport; TAS:Reactome.
DR GO; GO:0030216; P:keratinocyte differentiation; IEA:Ensembl.
DR GO; GO:0019048; P:modulation by virus of host morphology or physiology; IEA:UniProtKB-KW.
DR GO; GO:0008285; P:negative regulation of cell proliferation; IEA:Ensembl.
DR GO; GO:0045892; P:negative regulation of transcription, DNA-dependent; IEA:Ensembl.
DR GO; GO:0015031; P:protein transport; IEA:UniProtKB-KW.
DR GO; GO:0001558; P:regulation of cell growth; IEA:Ensembl.
DR GO; GO:0043162; P:ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway; IMP:UniProtKB.
DR GO; GO:0046755; P:viral budding; ISS:UniProtKB.
DR GO; GO:0019082; P:viral protein processing; TAS:Reactome.
DR GO; GO:0019068; P:virion assembly; TAS:Reactome.
DR Gene3D; 3.10.110.10; -; 1.
DR InterPro; IPR017916; Steadiness_box.
DR InterPro; IPR016135; UBQ-conjugating_enzyme/RWD.
DR InterPro; IPR008883; UEV_N.
DR Pfam; PF05743; UEV; 1.
DR Pfam; PF09454; Vps23_core; 1.
DR SUPFAM; SSF54495; SSF54495; 1.
DR PROSITE; PS51312; SB; 1.
DR PROSITE; PS00183; UBIQUITIN_CONJUGAT_1; FALSE_NEG.
DR PROSITE; PS50127; UBIQUITIN_CONJUGAT_2; FALSE_NEG.
DR PROSITE; PS51322; UEV; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; Alternative splicing; Cell cycle;
KW Cell division; Coiled coil; Complete proteome; Cytoplasm; Endosome;
KW Growth regulation; Host-virus interaction; Membrane; Nucleus;
KW Polymorphism; Protein transport; Reference proteome; Transport;
KW Ubl conjugation.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 390 Tumor susceptibility gene 101 protein.
FT /FTId=PRO_0000082606.
FT DOMAIN 2 145 UEV.
FT DOMAIN 322 390 SB.
FT REGION 158 162 Interaction with CEP55.
FT COILED 235 316 Potential.
FT MOTIF 320 323 PTAP motif.
FT MOD_RES 2 2 N-acetylalanine.
FT VAR_SEQ 15 119 Missing (in isoform 2).
FT /FTId=VSP_004440.
FT VARIANT 167 167 M -> I (in dbSNP:rs34385327).
FT /FTId=VAR_034572.
FT MUTAGEN 43 43 V->A: Reduces interaction with ubiquitin;
FT inhibits down-regulation of EGFR.
FT MUTAGEN 45 45 N->A: Reduces interaction with ubiquitin.
FT No effect on MGRN1-binding.
FT MUTAGEN 46 46 D->A: Reduces interaction with ubiquitin.
FT MUTAGEN 63 63 Y->A: Reduces interaction with HIV-1 p6;
FT impairs HIV-1 budding.
FT MUTAGEN 88 88 F->A: Reduces interaction with ubiquitin;
FT no effect on in interaction with HIV-1
FT p6.
FT MUTAGEN 89 89 V->A: No change in interaction with p6;
FT no effect on HIV-1 budding.
FT MUTAGEN 95 95 M->A: Reduces interaction with VPS37B and
FT HIV-1 p6; abolishes interaction with
FT PDCD6IP; impairs HIV-1 budding; inhibits
FT down-regulation of EGFR. Abolishes MGRN1-
FT binding.
FT MUTAGEN 141 141 V->A: Reduces interaction with HIV-1 p6.
FT MUTAGEN 158 162 Missing: Abolishes interaction with CEP55
FT and midbody localization; no effect on
FT interaction with ESCRT-I proteins,
FT PDCD6IP and viral proteins.
FT MUTAGEN 158 160 PPN->AAA: Abolishes interaction with
FT CEP55.
FT MUTAGEN 368 371 RKQF->AAAA: Loss of interaction with
FT VPS28. No effect on interaction with
FT VPS37C.
FT CONFLICT 343 343 F -> L (in Ref. 3; AAH02487).
FT HELIX 5 11
FT TURN 12 14
FT HELIX 18 31
FT STRAND 35 44
FT TURN 47 49
FT STRAND 51 62
FT STRAND 67 75
FT TURN 78 82
FT STRAND 86 89
FT STRAND 95 97
FT STRAND 100 103
FT STRAND 107 109
FT HELIX 112 115
FT TURN 119 121
FT HELIX 124 137
FT STRAND 140 143
FT HELIX 230 299
SQ SEQUENCE 390 AA; 43944 MW; ADD6912FC22DF162 CRC64;
MAVSESQLKK MVSKYKYRDL TVRETVNVIT LYKDLKPVLD SYVFNDGSSR ELMNLTGTIP
VPYRGNTYNI PICLWLLDTY PYNPPICFVK PTSSMTIKTG KHVDANGKIY LPYLHEWKHP
QSDLLGLIQV MIVVFGDEPP VFSRPISASY PPYQATGPPN TSYMPGMPGG ISPYPSGYPP
NPSGYPGCPY PPGGPYPATT SSQYPSQPPV TTVGPSRDGT ISEDTIRASL ISAVSDKLRW
RMKEEMDRAQ AELNALKRTE EDLKKGHQKL EEMVTRLDQE VAEVDKNIEL LKKKDEELSS
ALEKMENQSE NNDIDEVIIP TAPLYKQILN LYAEENAIED TIFYLGEALR RGVIDLDVFL
KHVRLLSRKQ FQLRALMQKA RKTAGLSDLY
//
MIM
601387
*RECORD*
*FIELD* NO
601387
*FIELD* TI
*601387 TUMOR SUSCEPTIBILITY GENE 101; TSG101
;;VACUOLAR PROTEIN SORTING 23, YEAST, HOMOLOG OF; VPS23
read more*FIELD* TX
CLONING
Using a strategy that enabled the isolation of previously unknown genes
encoding selectable recessive phenotypes, Li and Cohen (1996) identified
in the mouse a gene whose homozygous functional disruption by
insertional mutagenesis and antisense RNA synthesis produced cell
transformation. In their strategy, expression of a selectable marker in
mouse 3T3 cells was dependent upon insertion of a gene search vector
downstream of the promoter of randomly targeted chromosomal genes.
Transactivation of a promoter on the noncoding strand of the search
vector resulted in expression of antisense RNA that was complementary to
the coding strand of the targeted allele, resulting in functional
inactivation of the other allele. They subsequently selected for clonal
colonies that gained the ability to grow in 0.5% agar and formed
metastatic tumors in nude mice. Li and Cohen (1996) isolated such a
clonal colony and designated the inactivated gene Tsg101. Removal of the
transactivator required for antisense RNA expression restored normal
growth, presumably because of subsequent loss of expression of the
antisense transcripts complementary to Tsg101. The protein encoded by
the Tsg101 cDNA contains a coiled-coil domain that interacts with
stathmin (151442), a cytosolic phosphoprotein implicated in
tumorigenesis. Li and Cohen (1996) observed that overexpression of
Tsg101 antisense transcripts in NIH 3T3 cells resulted in cell
transformation and increased stathmin-specific mRNA.
Li et al. (1997) determined that the human TSG101 gene encodes a
381-amino acid polypeptide of 42.8 kD which is 94% identical to the
mouse protein.
By database searching and comparison of the TSG101 proteins of yeast and
other organisms, Koonin and Abagyan (1997) concluded that TSG101 may
belong to a group of apparently inactive homologs of
ubiquitin-conjugating enzymes.
Wagner et al. (2003) stated that many of the TSG101 transcripts
associated with human malignancies are actually alternatively spliced
forms generated by exon skipping.
GENE FUNCTION
Like other enveloped viruses, human immunodeficiency virus (HIV)-1 uses
cellular machinery to bud from infected cells. Garrus et al. (2001)
showed that TSG101, which functions in vacuolar protein sorting (VPS),
is required for HIV-1 budding. The ubiquitin enzyme-2 variant (UEV)
domain of TSG101 binds to an essential tetrapeptide (PTAP) motif within
the p6 domain of the structural Gag protein of HIV-1 and also to
ubiquitin. Depletion of cellular TSG101 by small interfering RNA
arrested HIV-1 budding at a late stage, and budding was rescued by
reintroduction of TSG101. Dominant-negative mutant VPS4 proteins that
inhibit vacuolar protein sorting also arrested HIV-1 and MLV (murine
leukemia virus) budding. These observations suggested that retroviruses
bud by appropriating cellular machinery normally used in the VPS pathway
to form multivesicular bodies.
Amit et al. (2004) showed that LRSAM1 (610933) binds the TSG101 SB
(steadiness box) and UEV regions. LRSAM1 ubiquitylates TSG101 both in
HEK293T cells and in vitro, and multiple monomeric ubiquitylation of
TSG101 results in inactivation of TSG101 sorting function. Studies of
receptor endocytosis and virus budding suggested that LRSAM1 enables
recycling of TSG101-containing sorting complexes and cargo reloading.
In Drosophila cells, Moberg et al. (2005) showed that Tsg101 mutations
activated Notch (see NOTCH1; 190198) signaling and caused overproduction
of a secreted Drosophila mitogen. The authors concluded that alterations
in trafficking through the endocytic pathway can trigger the secretion
of growth factors and cause overproliferation of neighboring cells.
Carlton and Martin-Serrano (2007) found that 2 proteins involved in
HIV-1 budding--TSG101, a subunit of the endosomal sorting complex
required for transport-1 (ESCRT-1), and ALIX (608074), an
ESCRT-associated protein--were recruited to the midbody during
cytokinesis by interaction with centrosome protein 55 (CEP55; 610000), a
centrosome and midbody protein essential for abscission. TSG101, ALIX,
and possibly other components of ESCRT-1 were required for the
completion of cytokinesis. Carlton and Martin-Serrano (2007) concluded
that thus, HIV-1 budding and cytokinesis use a similar subset of
cellular components to carry out topologically similar membrane fission
events.
Using coimmunoprecipitation and crosslinking analysis, Bishop and
Woodman (2001) found that human VPS28 (601387) interacted with the
coiled-coil C-terminal portion of TSG101. Expression of ATPase-defective
VPS4 (609983) shifted a portion of TSG101 and VPS28 from the cytosol to
endosomal vacuoles. Bishop and Woodman (2001) concluded that TSG101 and
VPS28 are directly involved in endosomal sorting.
Philips et al. (2008) showed that the avirulent Mycobacterium smegmatis
species could multiply in Drosophila S2 cells or murine macrophages in
which small interfering RNA had disrupted ESCRT components, including
Tsg101 and Vps28, by modulating the phagosome induced by mycobacteria.
Immunofluorescence and confocal microscopy showed that Tsg101- or
Vps28-depleted cells harbored mycobacteria in a heavily ubiquitinated
vacuolar location. Philips et al. (2008) concluded that ESCRT machinery
is critical for containment of mycobacterial proliferation.
BIOCHEMICAL FEATURES
- Crystal Structure
Lee et al. (2008) solved the crystal structure of the ESCRT- and ALIX
(608074)-binding region (EABR) of CEP55 (610000) bound to an ALIX
peptide at a resolution of 2.0 angstroms. The structure showed that EABR
forms an aberrant dimeric parallel coiled coil. Bulky and charged
residues at the interface of the 2 central heptad repeats create
asymmetry and a single binding site for an ALIX or TSG101 peptide. Both
ALIX and ESCRT-1 are required for cytokinesis, which suggested that
multiple CEP55 dimers are required for function.
MAPPING
By fluorescence in situ hybridization and by analysis of a radiation
hybrid mapping panel, Li et al. (1997) demonstrated that the human
TSG101 gene maps to 11p15.2-p15.1. This region of chromosome 11 has been
found to show loss of heterozygosity (LOH) in a variety of human
malignancies, primarily breast cancers.
MOLECULAR GENETICS
Li et al. (1997) analyzed transcripts from 15 uncultured primary human
breast carcinomas and matched normal breast tissue from the same
patients by RT-PCR, Southern blot analysis, and direct DNA sequencing.
They found that 7 breast cancers had intragenic TSG101 deletions that
physically or functionally disrupted sequences encoding the coiled-coil
domain of the protein. Analysis of genomic DNA, which was available from
6 of the 7 patients showing mutations in TSG101 transcripts, confirmed
the presence of abnormalities at the TSG101 genomic locus in all 6
cancers. Mutations in 2 TSG101 alleles were identified by both genomic
DNA analysis and cDNA analysis in 3 breast cancers and by cDNA analysis
in a fourth tumor (see 601387.0001). No TSG101 abnormalities were
observed in transcripts or genomic DNA of matched normal breast tissue
from these breast cancer patients. The findings of Li et al. (1997)
suggested that TSG101 is mutated at high frequency in human breast
cancer and further suggested that defects in TSG101 occur during breast
cancer tumorigenesis and/or progression. The wildtype gene has the
characteristics of a typical tumor suppressor gene.
The report by Li et al. (1997) of TSG101 intragenic deletions in 7 of 15
primary human breast carcinomas attracted particular interest because
BRCA1 (113705) and BRCA2 (600185), which are involved in familial breast
cancer, had not been found to be associated with a significant number of
sporadic mammary carcinomas, in contrast to the behavior of most
tumor-suppressor genes. Steiner et al. (1997) failed, however, to find
deletions in the TSG101 gene in breast cancer cases and called into
question the assignment of TSG101 to the class of tumor-suppressor
genes. Haber and Harlow (1997) pointed out the increasing vagueness in
the use of the term tumor suppressor gene. They suggested that the
simplest, most inclusive, and cleanest genetic definition should be
used, namely, 'genes that sustain loss-of-function mutations in the
development of cancer.' At the simplest level, mutations associated with
cancer can be informatively split into gain-of-function and
loss-of-function mutations. The definition complements the
well-established and universally recognized gain-of-function mutations
that are used to define the protooncogene-to-oncogene conversion.
ANIMAL MODEL
Wagner et al. (2003) produced mice with a conditional deletion of the
Tsg101 gene. They determined that Tsg101 is essential for cell growth,
cell survival, and normal function of embryonic and adult tissues.
Tsg101-deficient mammary epithelial cells exhibited a defect in cell
cycle regulation and underwent increased cell death. Tsg101 knockout did
not result in accelerated cell growth or cause neoplastic
transformation.
*FIELD* AV
.0001
BREAST CANCER
TSG101, VAL-ALA, 1162T-C
In a breast cancer, Li et al. (1997) identified a T-to-C transition at
nucleotide 1162 in the nondeleted allele of the TSG101 gene. Deletion of
the other allele had been identified by LOH. The mutation eliminates a
BbsI restriction site and generates a val-to-ala substitution at one of
the putative protein kinase C (176960) phosphorylation sites of the
TSG101 protein.
*FIELD* SA
Bishop and Woodman (2001); Philips et al. (2008)
*FIELD* RF
1. Amit, I.; Yakir, L.; Katz, M.; Zwang, Y.; Marmor, M. D.; Citri,
A.; Shtiegman, K.; Alroy, I.; Tuvia, S.; Reiss, Y.; Roubini, E.; Cohen,
M.; Wides, R.; Bacharach, E.; Schubert, U.; Yarden, Y.: Tal, a Tsg101-specific
E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus
budding. Genes Dev. 18: 1737-1752, 2004.
2. Bishop, N.; Woodman, P.: TSG101/mammalian VPS23 and mammalian
VPS28 interact directly and are recruited to VPS4-induced endosomes. J.
Biol. Chem. 276: 11735-11742, 2001.
3. Bishop, N.; Woodman, P.: TSG101/mammalian VPS23 and mammalian
VPS28 interact directly and are recruited to VPS4-induced endosomes. J.
Biol. Chem. 276: 11735-11742, 2001.
4. Carlton, J. G.; Martin-Serrano, J.: Parallels between cytokinesis
and retroviral budding: a role for the ESCRT machinery. Science 316:
1908-1912, 2007.
5. Garrus, J. E.; von Schwedler, U. K.; Pornillos, O. W.; Morham,
S. G.; Zavitz, K. H.; Wang, H. E.; Wettstein, D. A.; Stray, K. M.;
Cote, M.; Rich, R. L.; Myszka, D. G.; Sundquist, W. I.: Tsg101 and
vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:
55-65, 2001.
6. Haber, D.; Harlow, E.: Tumour-suppressor genes: evolving definitions
in the genomic age. Nature Genet. 16: 320-322, 1997.
7. Koonin, E. V.; Abagyan, R. A.: TSG101 may be the prototype of
a class of dominant negative ubiquitin regulators. (Letter) Nature
Genet. 16: 330-331, 1997.
8. Lee, H. H.; Elia, N.; Ghirlando, R.; Lippincott-Schwartz, J.; Hurley,
J. H.: Midbody targeting of the ESCRT machinery by a noncanonical
coiled coil in CEP55. Science 322: 576-580, 2008.
9. Li, L.; Cohen, S. N.: tsg101: a novel tumor susceptibility gene
isolated by controlled homozygous functional knockout of allelic loci
in mammalian cells. Cell 85: 319-329, 1996.
10. Li, L.; Li, X.; Francke, U.; Cohen, S. N.: The TSG101 tumor susceptibility
gene is located in chromosome 11 band p15 and is mutated in human
breast cancer. Cell 88: 143-154, 1997.
11. Moberg, K. H.; Schelble, S.; Burdick, S. K.; Hariharan, I. K.
: Mutations in erupted, the Drosophila ortholog of mammalian tumor
susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev.
Cell 9: 699-710, 2005.
12. Philips, J. A.; Porto, M. C.; Wang, H.; Rubin, E. J.; Perrimon,
N.: ESCRT factors restrict mycobacterial growth. Proc. Nat. Acad.
Sci. 105: 3070-3075, 2008.
13. Philips, J. A.; Porto, M. C.; Wang, H.; Rubin, E. J.; Perrimon,
N.: ESCRT factors restrict mycobacterial growth. Proc. Nat. Acad.
Sci. 105: 3070-3075, 2008.
14. Steiner, P.; Barnes, D. M.; Harris, W. H.; Weinberg, R. A.: Absence
of rearrangements in the tumour susceptibility gene TSG101 in human
breast cancer. (Letter) Nature Genet. 16: 332-333, 1997.
15. Wagner, K.-U.; Krempler, A.; Qi, Y.; Park, K.; Henry, M. D.; Triplett,
A. A.; Riedlinger, G.; Rucker, E. B., III; Hennighausen, L.: Tsg101
is essential for cell growth, proliferation, and cell survival of
embryonic and adult tissues. Molec. Cell. Biol. 23: 150-162, 2003.
*FIELD* CN
Ada Hamosh - updated: 11/12/2008
Paul J. Converse - updated: 4/9/2008
Ada Hamosh - updated: 7/24/2007
Patricia A. Hartz - updated: 12/20/2005
Patricia A. Hartz - updated: 3/10/2003
Stylianos E. Antonarakis - updated: 10/30/2001
Victor A. McKusick - updated: 7/31/1997
Harry C. Dietz - edited: 4/4/1997
Victor A. McKusick - updated: 2/7/1997
*FIELD* CD
Victor A. McKusick: 8/19/1996
*FIELD* ED
alopez: 11/18/2008
terry: 11/12/2008
mgross: 4/14/2008
terry: 4/9/2008
alopez: 7/25/2007
terry: 7/24/2007
wwang: 4/16/2007
mgross: 4/10/2006
wwang: 12/20/2005
mgross: 3/13/2003
terry: 3/10/2003
mgross: 10/30/2001
carol: 7/20/2001
carol: 6/27/2001
terry: 8/4/1997
terry: 7/31/1997
terry: 4/14/1997
mark: 4/4/1997
mark: 4/1/1997
mark: 2/7/1997
terry: 2/4/1997
mark: 8/20/1996
terry: 8/19/1996
mark: 8/19/1996
*RECORD*
*FIELD* NO
601387
*FIELD* TI
*601387 TUMOR SUSCEPTIBILITY GENE 101; TSG101
;;VACUOLAR PROTEIN SORTING 23, YEAST, HOMOLOG OF; VPS23
read more*FIELD* TX
CLONING
Using a strategy that enabled the isolation of previously unknown genes
encoding selectable recessive phenotypes, Li and Cohen (1996) identified
in the mouse a gene whose homozygous functional disruption by
insertional mutagenesis and antisense RNA synthesis produced cell
transformation. In their strategy, expression of a selectable marker in
mouse 3T3 cells was dependent upon insertion of a gene search vector
downstream of the promoter of randomly targeted chromosomal genes.
Transactivation of a promoter on the noncoding strand of the search
vector resulted in expression of antisense RNA that was complementary to
the coding strand of the targeted allele, resulting in functional
inactivation of the other allele. They subsequently selected for clonal
colonies that gained the ability to grow in 0.5% agar and formed
metastatic tumors in nude mice. Li and Cohen (1996) isolated such a
clonal colony and designated the inactivated gene Tsg101. Removal of the
transactivator required for antisense RNA expression restored normal
growth, presumably because of subsequent loss of expression of the
antisense transcripts complementary to Tsg101. The protein encoded by
the Tsg101 cDNA contains a coiled-coil domain that interacts with
stathmin (151442), a cytosolic phosphoprotein implicated in
tumorigenesis. Li and Cohen (1996) observed that overexpression of
Tsg101 antisense transcripts in NIH 3T3 cells resulted in cell
transformation and increased stathmin-specific mRNA.
Li et al. (1997) determined that the human TSG101 gene encodes a
381-amino acid polypeptide of 42.8 kD which is 94% identical to the
mouse protein.
By database searching and comparison of the TSG101 proteins of yeast and
other organisms, Koonin and Abagyan (1997) concluded that TSG101 may
belong to a group of apparently inactive homologs of
ubiquitin-conjugating enzymes.
Wagner et al. (2003) stated that many of the TSG101 transcripts
associated with human malignancies are actually alternatively spliced
forms generated by exon skipping.
GENE FUNCTION
Like other enveloped viruses, human immunodeficiency virus (HIV)-1 uses
cellular machinery to bud from infected cells. Garrus et al. (2001)
showed that TSG101, which functions in vacuolar protein sorting (VPS),
is required for HIV-1 budding. The ubiquitin enzyme-2 variant (UEV)
domain of TSG101 binds to an essential tetrapeptide (PTAP) motif within
the p6 domain of the structural Gag protein of HIV-1 and also to
ubiquitin. Depletion of cellular TSG101 by small interfering RNA
arrested HIV-1 budding at a late stage, and budding was rescued by
reintroduction of TSG101. Dominant-negative mutant VPS4 proteins that
inhibit vacuolar protein sorting also arrested HIV-1 and MLV (murine
leukemia virus) budding. These observations suggested that retroviruses
bud by appropriating cellular machinery normally used in the VPS pathway
to form multivesicular bodies.
Amit et al. (2004) showed that LRSAM1 (610933) binds the TSG101 SB
(steadiness box) and UEV regions. LRSAM1 ubiquitylates TSG101 both in
HEK293T cells and in vitro, and multiple monomeric ubiquitylation of
TSG101 results in inactivation of TSG101 sorting function. Studies of
receptor endocytosis and virus budding suggested that LRSAM1 enables
recycling of TSG101-containing sorting complexes and cargo reloading.
In Drosophila cells, Moberg et al. (2005) showed that Tsg101 mutations
activated Notch (see NOTCH1; 190198) signaling and caused overproduction
of a secreted Drosophila mitogen. The authors concluded that alterations
in trafficking through the endocytic pathway can trigger the secretion
of growth factors and cause overproliferation of neighboring cells.
Carlton and Martin-Serrano (2007) found that 2 proteins involved in
HIV-1 budding--TSG101, a subunit of the endosomal sorting complex
required for transport-1 (ESCRT-1), and ALIX (608074), an
ESCRT-associated protein--were recruited to the midbody during
cytokinesis by interaction with centrosome protein 55 (CEP55; 610000), a
centrosome and midbody protein essential for abscission. TSG101, ALIX,
and possibly other components of ESCRT-1 were required for the
completion of cytokinesis. Carlton and Martin-Serrano (2007) concluded
that thus, HIV-1 budding and cytokinesis use a similar subset of
cellular components to carry out topologically similar membrane fission
events.
Using coimmunoprecipitation and crosslinking analysis, Bishop and
Woodman (2001) found that human VPS28 (601387) interacted with the
coiled-coil C-terminal portion of TSG101. Expression of ATPase-defective
VPS4 (609983) shifted a portion of TSG101 and VPS28 from the cytosol to
endosomal vacuoles. Bishop and Woodman (2001) concluded that TSG101 and
VPS28 are directly involved in endosomal sorting.
Philips et al. (2008) showed that the avirulent Mycobacterium smegmatis
species could multiply in Drosophila S2 cells or murine macrophages in
which small interfering RNA had disrupted ESCRT components, including
Tsg101 and Vps28, by modulating the phagosome induced by mycobacteria.
Immunofluorescence and confocal microscopy showed that Tsg101- or
Vps28-depleted cells harbored mycobacteria in a heavily ubiquitinated
vacuolar location. Philips et al. (2008) concluded that ESCRT machinery
is critical for containment of mycobacterial proliferation.
BIOCHEMICAL FEATURES
- Crystal Structure
Lee et al. (2008) solved the crystal structure of the ESCRT- and ALIX
(608074)-binding region (EABR) of CEP55 (610000) bound to an ALIX
peptide at a resolution of 2.0 angstroms. The structure showed that EABR
forms an aberrant dimeric parallel coiled coil. Bulky and charged
residues at the interface of the 2 central heptad repeats create
asymmetry and a single binding site for an ALIX or TSG101 peptide. Both
ALIX and ESCRT-1 are required for cytokinesis, which suggested that
multiple CEP55 dimers are required for function.
MAPPING
By fluorescence in situ hybridization and by analysis of a radiation
hybrid mapping panel, Li et al. (1997) demonstrated that the human
TSG101 gene maps to 11p15.2-p15.1. This region of chromosome 11 has been
found to show loss of heterozygosity (LOH) in a variety of human
malignancies, primarily breast cancers.
MOLECULAR GENETICS
Li et al. (1997) analyzed transcripts from 15 uncultured primary human
breast carcinomas and matched normal breast tissue from the same
patients by RT-PCR, Southern blot analysis, and direct DNA sequencing.
They found that 7 breast cancers had intragenic TSG101 deletions that
physically or functionally disrupted sequences encoding the coiled-coil
domain of the protein. Analysis of genomic DNA, which was available from
6 of the 7 patients showing mutations in TSG101 transcripts, confirmed
the presence of abnormalities at the TSG101 genomic locus in all 6
cancers. Mutations in 2 TSG101 alleles were identified by both genomic
DNA analysis and cDNA analysis in 3 breast cancers and by cDNA analysis
in a fourth tumor (see 601387.0001). No TSG101 abnormalities were
observed in transcripts or genomic DNA of matched normal breast tissue
from these breast cancer patients. The findings of Li et al. (1997)
suggested that TSG101 is mutated at high frequency in human breast
cancer and further suggested that defects in TSG101 occur during breast
cancer tumorigenesis and/or progression. The wildtype gene has the
characteristics of a typical tumor suppressor gene.
The report by Li et al. (1997) of TSG101 intragenic deletions in 7 of 15
primary human breast carcinomas attracted particular interest because
BRCA1 (113705) and BRCA2 (600185), which are involved in familial breast
cancer, had not been found to be associated with a significant number of
sporadic mammary carcinomas, in contrast to the behavior of most
tumor-suppressor genes. Steiner et al. (1997) failed, however, to find
deletions in the TSG101 gene in breast cancer cases and called into
question the assignment of TSG101 to the class of tumor-suppressor
genes. Haber and Harlow (1997) pointed out the increasing vagueness in
the use of the term tumor suppressor gene. They suggested that the
simplest, most inclusive, and cleanest genetic definition should be
used, namely, 'genes that sustain loss-of-function mutations in the
development of cancer.' At the simplest level, mutations associated with
cancer can be informatively split into gain-of-function and
loss-of-function mutations. The definition complements the
well-established and universally recognized gain-of-function mutations
that are used to define the protooncogene-to-oncogene conversion.
ANIMAL MODEL
Wagner et al. (2003) produced mice with a conditional deletion of the
Tsg101 gene. They determined that Tsg101 is essential for cell growth,
cell survival, and normal function of embryonic and adult tissues.
Tsg101-deficient mammary epithelial cells exhibited a defect in cell
cycle regulation and underwent increased cell death. Tsg101 knockout did
not result in accelerated cell growth or cause neoplastic
transformation.
*FIELD* AV
.0001
BREAST CANCER
TSG101, VAL-ALA, 1162T-C
In a breast cancer, Li et al. (1997) identified a T-to-C transition at
nucleotide 1162 in the nondeleted allele of the TSG101 gene. Deletion of
the other allele had been identified by LOH. The mutation eliminates a
BbsI restriction site and generates a val-to-ala substitution at one of
the putative protein kinase C (176960) phosphorylation sites of the
TSG101 protein.
*FIELD* SA
Bishop and Woodman (2001); Philips et al. (2008)
*FIELD* RF
1. Amit, I.; Yakir, L.; Katz, M.; Zwang, Y.; Marmor, M. D.; Citri,
A.; Shtiegman, K.; Alroy, I.; Tuvia, S.; Reiss, Y.; Roubini, E.; Cohen,
M.; Wides, R.; Bacharach, E.; Schubert, U.; Yarden, Y.: Tal, a Tsg101-specific
E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus
budding. Genes Dev. 18: 1737-1752, 2004.
2. Bishop, N.; Woodman, P.: TSG101/mammalian VPS23 and mammalian
VPS28 interact directly and are recruited to VPS4-induced endosomes. J.
Biol. Chem. 276: 11735-11742, 2001.
3. Bishop, N.; Woodman, P.: TSG101/mammalian VPS23 and mammalian
VPS28 interact directly and are recruited to VPS4-induced endosomes. J.
Biol. Chem. 276: 11735-11742, 2001.
4. Carlton, J. G.; Martin-Serrano, J.: Parallels between cytokinesis
and retroviral budding: a role for the ESCRT machinery. Science 316:
1908-1912, 2007.
5. Garrus, J. E.; von Schwedler, U. K.; Pornillos, O. W.; Morham,
S. G.; Zavitz, K. H.; Wang, H. E.; Wettstein, D. A.; Stray, K. M.;
Cote, M.; Rich, R. L.; Myszka, D. G.; Sundquist, W. I.: Tsg101 and
vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:
55-65, 2001.
6. Haber, D.; Harlow, E.: Tumour-suppressor genes: evolving definitions
in the genomic age. Nature Genet. 16: 320-322, 1997.
7. Koonin, E. V.; Abagyan, R. A.: TSG101 may be the prototype of
a class of dominant negative ubiquitin regulators. (Letter) Nature
Genet. 16: 330-331, 1997.
8. Lee, H. H.; Elia, N.; Ghirlando, R.; Lippincott-Schwartz, J.; Hurley,
J. H.: Midbody targeting of the ESCRT machinery by a noncanonical
coiled coil in CEP55. Science 322: 576-580, 2008.
9. Li, L.; Cohen, S. N.: tsg101: a novel tumor susceptibility gene
isolated by controlled homozygous functional knockout of allelic loci
in mammalian cells. Cell 85: 319-329, 1996.
10. Li, L.; Li, X.; Francke, U.; Cohen, S. N.: The TSG101 tumor susceptibility
gene is located in chromosome 11 band p15 and is mutated in human
breast cancer. Cell 88: 143-154, 1997.
11. Moberg, K. H.; Schelble, S.; Burdick, S. K.; Hariharan, I. K.
: Mutations in erupted, the Drosophila ortholog of mammalian tumor
susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev.
Cell 9: 699-710, 2005.
12. Philips, J. A.; Porto, M. C.; Wang, H.; Rubin, E. J.; Perrimon,
N.: ESCRT factors restrict mycobacterial growth. Proc. Nat. Acad.
Sci. 105: 3070-3075, 2008.
13. Philips, J. A.; Porto, M. C.; Wang, H.; Rubin, E. J.; Perrimon,
N.: ESCRT factors restrict mycobacterial growth. Proc. Nat. Acad.
Sci. 105: 3070-3075, 2008.
14. Steiner, P.; Barnes, D. M.; Harris, W. H.; Weinberg, R. A.: Absence
of rearrangements in the tumour susceptibility gene TSG101 in human
breast cancer. (Letter) Nature Genet. 16: 332-333, 1997.
15. Wagner, K.-U.; Krempler, A.; Qi, Y.; Park, K.; Henry, M. D.; Triplett,
A. A.; Riedlinger, G.; Rucker, E. B., III; Hennighausen, L.: Tsg101
is essential for cell growth, proliferation, and cell survival of
embryonic and adult tissues. Molec. Cell. Biol. 23: 150-162, 2003.
*FIELD* CN
Ada Hamosh - updated: 11/12/2008
Paul J. Converse - updated: 4/9/2008
Ada Hamosh - updated: 7/24/2007
Patricia A. Hartz - updated: 12/20/2005
Patricia A. Hartz - updated: 3/10/2003
Stylianos E. Antonarakis - updated: 10/30/2001
Victor A. McKusick - updated: 7/31/1997
Harry C. Dietz - edited: 4/4/1997
Victor A. McKusick - updated: 2/7/1997
*FIELD* CD
Victor A. McKusick: 8/19/1996
*FIELD* ED
alopez: 11/18/2008
terry: 11/12/2008
mgross: 4/14/2008
terry: 4/9/2008
alopez: 7/25/2007
terry: 7/24/2007
wwang: 4/16/2007
mgross: 4/10/2006
wwang: 12/20/2005
mgross: 3/13/2003
terry: 3/10/2003
mgross: 10/30/2001
carol: 7/20/2001
carol: 6/27/2001
terry: 8/4/1997
terry: 7/31/1997
terry: 4/14/1997
mark: 4/4/1997
mark: 4/1/1997
mark: 2/7/1997
terry: 2/4/1997
mark: 8/20/1996
terry: 8/19/1996
mark: 8/19/1996