Full text data of VPS4A
VPS4A
(VPS4)
[Confidence: low (only semi-automatic identification from reviews)]
Vacuolar protein sorting-associated protein 4A; 3.6.4.6 (Protein SKD2; VPS4-1; hVPS4)
Vacuolar protein sorting-associated protein 4A; 3.6.4.6 (Protein SKD2; VPS4-1; hVPS4)
UniProt
Q9UN37
ID VPS4A_HUMAN Reviewed; 437 AA.
AC Q9UN37; B2RCB7; Q8TF07; Q9UI03; Q9Y582;
DT 12-APR-2005, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-MAY-2000, sequence version 1.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=Vacuolar protein sorting-associated protein 4A;
DE EC=3.6.4.6;
DE AltName: Full=Protein SKD2;
DE AltName: Full=VPS4-1;
DE Short=hVPS4;
GN Name=VPS4A; Synonyms=VPS4;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, INTERACTION WITH VPS4B, AND MUTAGENESIS OF GLU-228.
RC TISSUE=Keratinocyte;
RX PubMed=11563910; DOI=10.1006/jmbi.2001.4917;
RA Scheuring S., Roehricht R.A., Schoening-Burkhardt B., Beyer A.,
RA Mueller S., Abts H.F., Koehrer K.;
RT "Mammalian cells express two VPS4 proteins both of which are involved
RT in intracellular protein trafficking.";
RL J. Mol. Biol. 312:469-480(2001).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=12594041; DOI=10.1016/S0378-1119(02)01205-2;
RA Beyer A., Scheuring S., Mueller S., Mincheva A., Lichter P.,
RA Koehrer K.;
RT "Comparative sequence and expression analyses of four mammalian VPS4
RT genes.";
RL Gene 305:47-59(2003).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RA Ding J.B., Yu L., Zhao S.Y.;
RT "Cloning of a new human cDNA homologous to Homo sapiens SKD1
RT protein.";
RL Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Heart;
RA Patejunas G.;
RT "Isolation of a homolog of SKD1.";
RL Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Hypothalamus;
RX PubMed=10931946; DOI=10.1073/pnas.160270997;
RA Hu R.-M., Han Z.-G., Song H.-D., Peng Y.-D., Huang Q.-H., Ren S.-X.,
RA Gu Y.-J., Huang C.-H., Li Y.-B., Jiang C.-L., Fu G., Zhang Q.-H.,
RA Gu B.-W., Dai M., Mao Y.-F., Gao G.-F., Rong R., Ye M., Zhou J.,
RA Xu S.-H., Gu J., Shi J.-X., Jin W.-R., Zhang C.-K., Wu T.-M.,
RA Huang G.-Y., Chen Z., Chen M.-D., Chen J.-L.;
RT "Gene expression profiling in the human hypothalamus-pituitary-adrenal
RT axis and full-length cDNA cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 97:9543-9548(2000).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Kidney;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-437, SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, AND MUTAGENESIS OF LYS-173 AND GLU-228.
RC TISSUE=Brain;
RX PubMed=10637304; DOI=10.1091/mbc.11.1.227;
RA Bishop N., Woodman P.;
RT "ATPase-defective mammalian VPS4 localizes to aberrant endosomes and
RT impairs cholesterol trafficking.";
RL Mol. Biol. Cell 11:227-239(2000).
RN [10]
RP FUNCTION IN VIRUS RELEASE, AND MUTAGENESIS OF LYS-173 AND GLU-228.
RX PubMed=11595185; DOI=10.1016/S0092-8674(01)00506-2;
RA Garrus J.E., von Schwedler U.K., Pornillos O.W., Morham S.G.,
RA Zavitz K.H., Wang H.E., Wettstein D.A., Stray K.M., Cote M.,
RA Rich R.L., Myszka D.G., Sundquist W.I.;
RT "Tsg101 and the vacuolar protein sorting pathway are essential for
RT HIV-1 budding.";
RL Cell 107:55-65(2001).
RN [11]
RP INTERACTION WITH CHMP1A, AND MUTAGENESIS OF GLU-228.
RX PubMed=11559748;
RA Howard T.L., Stauffer D.R., Degnin C.R., Hollenberg S.M.;
RT "CHMP1 functions as a member of a newly defined family of vesicle
RT trafficking proteins.";
RL J. Cell Sci. 114:2395-2404(2001).
RN [12]
RP INTERACTION WITH CHMP1A; CHMP1B; CHMP2A; CHMP4A; CHMP4B; CHMP4C AND
RP CHMP6.
RX PubMed=14505570; DOI=10.1016/S0092-8674(03)00714-1;
RA von Schwedler U.K., Stuchell M., Mueller B., Ward D.M., Chung H.-Y.,
RA Morita E., Wang H.E., Davis T., He G.P., Cimbora D.M., Scott A.,
RA Kraeusslich H.-G., Kaplan J., Morham S.G., Sundquist W.I.;
RT "The protein network of HIV budding.";
RL Cell 114:701-713(2003).
RN [13]
RP INTERACTION WITH CHMP1A; CHMP1B; CHMP2A; CHMP2B AND CHMP3.
RX PubMed=14519844; DOI=10.1073/pnas.2133846100;
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RT "Divergent retroviral late-budding domains recruit vacuolar protein
RT sorting factors by using alternative adaptor proteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:12414-12419(2003).
RN [14]
RP ERRATUM.
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RL Proc. Natl. Acad. Sci. U.S.A. 100:152845-152845(2003).
RN [15]
RP FUNCTION, AND MUTAGENESIS OF GLU-228.
RX PubMed=15075231; DOI=10.1242/jcs.00998;
RA Sachse M., Strous G.J., Klumperman J.;
RT "ATPase-deficient hVPS4 impairs formation of internal endosomal
RT vesicles and stabilizes bilayered clathrin coats on endosomal
RT vacuoles.";
RL J. Cell Sci. 117:1699-1708(2004).
RN [16]
RP MUTAGENESIS OF 201-TRP-LEU-202 AND GLY-203.
RX PubMed=16193069; DOI=10.1038/sj.emboj.7600818;
RA Scott A., Chung H.Y., Gonciarz-Swiatek M., Hill G.C., Whitby F.G.,
RA Gaspar J., Holton J.M., Viswanathan R., Ghaffarian S., Hill C.P.,
RA Sundquist W.I.;
RT "Structural and mechanistic studies of VPS4 proteins.";
RL EMBO J. 24:3658-3669(2005).
RN [17]
RP SUBCELLULAR LOCATION.
RX PubMed=17853893; DOI=10.1038/sj.emboj.7601850;
RA Morita E., Sandrin V., Chung H.Y., Morham S.G., Gygi S.P.,
RA Rodesch C.K., Sundquist W.I.;
RT "Human ESCRT and ALIX proteins interact with proteins of the midbody
RT and function in cytokinesis.";
RL EMBO J. 26:4215-4227(2007).
RN [18]
RP INTERACTION WITH SPAST.
RX PubMed=18997780; DOI=10.1038/nsmb.1512;
RA Yang D., Rismanchi N., Renvoise B., Lippincott-Schwartz J.,
RA Blackstone C., Hurley J.H.;
RT "Structural basis for midbody targeting of spastin by the ESCRT-III
RT protein CHMP1B.";
RL Nat. Struct. Mol. Biol. 15:1278-1286(2008).
RN [19]
RP INTERACTION WITH IST1, AND MUTAGENESIS OF LEU-64.
RX PubMed=19129480; DOI=10.1091/mbc.E08-05-0474;
RA Agromayor M., Carlton J.G., Phelan J.P., Matthews D.R., Carlin L.M.,
RA Ameer-Beg S., Bowers K., Martin-Serrano J.;
RT "Essential role of hIST1 in cytokinesis.";
RL Mol. Biol. Cell 20:1374-1387(2009).
RN [20]
RP INTERACTION WITH IST1, AND MUTAGENESIS OF VAL-13 AND LEU-64.
RX PubMed=19129479; DOI=10.1091/mbc.E08-05-0475;
RA Bajorek M., Morita E., Skalicky J.J., Morham S.G., Babst M.,
RA Sundquist W.I.;
RT "Biochemical analyses of human IST1 and its function in cytokinesis.";
RL Mol. Biol. Cell 20:1360-1373(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT THR-2 AND LYS-8, MASS
RP SPECTROMETRY, AND CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP INTERACTION WITH CHMP1B; CHMP2A; CHMP3; CHMP4B AND CHMP6.
RX PubMed=21543490; DOI=10.1128/JVI.02610-10;
RA Kuang Z., Seo E.J., Leis J.;
RT "Mechanism of inhibition of retrovirus release from cells by
RT interferon-induced gene ISG15.";
RL J. Virol. 85:7153-7161(2011).
RN [24]
RP STRUCTURE BY NMR OF 1-77, INTERACTION WITH CHMP1B, AND MUTAGENESIS OF
RP LEU-64 AND GLU-68.
RX PubMed=16174732; DOI=10.1073/pnas.0502165102;
RA Scott A., Gaspar J., Stuchell-Brereton M.D., Alam S.L., Skalicky J.J.,
RA Sundquist W.I.;
RT "Structure and ESCRT-III protein interactions of the MIT domain of
RT human VPS4A.";
RL Proc. Natl. Acad. Sci. U.S.A. 102:13813-13818(2005).
RN [25]
RP STRUCTURE BY NMR OF 1-84 IN COMPLEX WITH CHMP1A, INTERACTION WITH
RP CHMP2B, AND MUTAGENESIS OF LEU-64 AND LYS-173.
RX PubMed=17928862; DOI=10.1038/nature06172;
RA Stuchell-Brereton M.D., Skalicky J.J., Kieffer C., Karren M.A.,
RA Ghaffarian S., Sundquist W.I.;
RT "ESCRT-III recognition by VPS4 ATPases.";
RL Nature 449:740-744(2007).
RN [26]
RP STRUCTURE BY NMR OF 1-84 IN COMPLEX WITH CHMP6, INTERACTION WITH
RP CHMP1A, AND MUTAGENESIS OF VAL-13; LEU-64 AND LYS-173.
RX PubMed=18606141; DOI=10.1016/j.devcel.2008.05.014;
RA Kieffer C., Skalicky J.J., Morita E., De Domenico I., Ward D.M.,
RA Kaplan J., Sundquist W.I.;
RT "Two distinct modes of ESCRT-III recognition are required for VPS4
RT functions in lysosomal protein targeting and HIV-1 budding.";
RL Dev. Cell 15:62-73(2008).
CC -!- FUNCTION: Involved in late steps of the endosomal multivesicular
CC bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III
CC assemblies and catalyzes their disassembly, possibly in
CC combination with membrane fission. Redistributes the ESCRT-III
CC components to the cytoplasm for further rounds of MVB sorting.
CC MVBs contain intraluminal vesicles (ILVs) that are generated by
CC invagination and scission from the limiting membrane of the
CC endosome and mostly are delivered to lysosomes enabling
CC degradation of membrane proteins, such as stimulated growth factor
CC receptors, lysosomal enzymes and lipids. In conjunction with the
CC ESCRT machinery also appears to function in topologically
CC equivalent membrane fission events, such as the terminal stages of
CC cytokinesis and enveloped virus budding (HIV-1 and other
CC lentiviruses). Involved in cytokinesis.
CC -!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
CC -!- SUBUNIT: Proposed to be monomeric or homodimeric in nucleotide-
CC free form and to oligomerize upon binding to ATP to form two
CC stacked hexameric or heptameric rings with a central pore through
CC which ESCRT-III substrates are translocated in an ATP-dependent
CC manner (By similarity). Interacts with CHMP1A, CHMP1B, CHMP2A,
CC CHMP2B, CHMP3, CHMP4A, CHMP4B, CHMP4C and CHMP6. Interacts with
CC VPS4B; the interaction suggests a heteromeric assembly with VPS4B.
CC Interacts with SPAST. Interacts with IST1.
CC -!- SUBCELLULAR LOCATION: Prevacuolar compartment membrane; Peripheral
CC membrane protein. Late endosome membrane; Peripheral membrane
CC protein (Probable). Note=Membrane-associated in the prevacuolar
CC endosomal compartment. Localizes to the midbody of dividing cells.
CC Localized in two distinct rings on either side of the Fleming
CC body.
CC -!- TISSUE SPECIFICITY: Ubiquitously expressed.
CC -!- DOMAIN: The MIT domain serves as an adapter for ESCRT-III
CC proteins. It forms an asymmetric three-helix bundle that binds
CC amphipathic MIM (MIT interacting motif) helices along the groove
CC between MIT helices 2 and 3 present in a subset of ESCRT-III
CC proteins thus establishing the canonical MIM-MIT interaction. In
CC an extended conformation along the groove between helices 1 and 3,
CC also binds to a type-2 MIT interacting motif (MIM2).
CC -!- SIMILARITY: Belongs to the AAA ATPase family.
CC -!- SIMILARITY: Contains 1 MIT domain.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAL75948.1; Type=Frameshift; Positions=123, 133, 157, 163;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF255952; AAK52408.1; -; mRNA.
DR EMBL; AF282903; AAG01470.1; -; Genomic_DNA.
DR EMBL; AF132747; AAL75948.1; ALT_FRAME; mRNA.
DR EMBL; AF159063; AAD49227.1; -; mRNA.
DR EMBL; AF112215; AAF17203.1; -; mRNA.
DR EMBL; AK315026; BAG37514.1; -; mRNA.
DR EMBL; CH471092; EAW83263.1; -; Genomic_DNA.
DR EMBL; BC047932; AAH47932.1; -; mRNA.
DR EMBL; AF155740; AAD42971.1; -; mRNA.
DR RefSeq; NP_037377.1; NM_013245.2.
DR UniGene; Hs.128420; -.
DR PDB; 1YXR; NMR; -; A=1-77.
DR PDB; 2JQ9; NMR; -; A=1-84.
DR PDB; 2K3W; NMR; -; A=1-84.
DR PDBsum; 1YXR; -.
DR PDBsum; 2JQ9; -.
DR PDBsum; 2K3W; -.
DR ProteinModelPortal; Q9UN37; -.
DR SMR; Q9UN37; 1-101, 116-436.
DR DIP; DIP-44585N; -.
DR IntAct; Q9UN37; 5.
DR STRING; 9606.ENSP00000254950; -.
DR PhosphoSite; Q9UN37; -.
DR DMDM; 62511240; -.
DR PaxDb; Q9UN37; -.
DR PRIDE; Q9UN37; -.
DR DNASU; 27183; -.
DR Ensembl; ENST00000254950; ENSP00000254950; ENSG00000132612.
DR GeneID; 27183; -.
DR KEGG; hsa:27183; -.
DR UCSC; uc002eww.3; human.
DR CTD; 27183; -.
DR GeneCards; GC16P069335; -.
DR HGNC; HGNC:13488; VPS4A.
DR HPA; CAB018751; -.
DR MIM; 609982; gene.
DR neXtProt; NX_Q9UN37; -.
DR PharmGKB; PA38362; -.
DR eggNOG; COG0464; -.
DR HOGENOM; HOG000225146; -.
DR HOVERGEN; HBG057074; -.
DR InParanoid; Q9UN37; -.
DR KO; K12196; -.
DR OMA; RRTEMYS; -.
DR OrthoDB; EOG74BJS2; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; VPS4A; human.
DR EvolutionaryTrace; Q9UN37; -.
DR GeneWiki; VPS4A; -.
DR GenomeRNAi; 27183; -.
DR NextBio; 50017; -.
DR PRO; PR:Q9UN37; -.
DR ArrayExpress; Q9UN37; -.
DR Bgee; Q9UN37; -.
DR CleanEx; HS_VPS4A; -.
DR Genevestigator; Q9UN37; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0031902; C:late endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0030496; C:midbody; IDA:UniProtKB.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0042623; F:ATPase activity, coupled; NAS:UniProtKB.
DR GO; GO:0000910; P:cytokinesis; IDA:UniProtKB.
DR GO; GO:0016197; P:endosomal transport; IMP:UniProtKB.
DR GO; GO:0015031; P:protein transport; IEA:UniProtKB-KW.
DR GO; GO:0016192; P:vesicle-mediated transport; IDA:UniProtKB.
DR GO; GO:0016032; P:viral process; TAS:Reactome.
DR InterPro; IPR003593; AAA+_ATPase.
DR InterPro; IPR003959; ATPase_AAA_core.
DR InterPro; IPR003960; ATPase_AAA_CS.
DR InterPro; IPR007330; MIT.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR015415; Vps4_C.
DR Pfam; PF00004; AAA; 1.
DR Pfam; PF04212; MIT; 1.
DR Pfam; PF09336; Vps4_C; 1.
DR SMART; SM00382; AAA; 1.
DR SMART; SM00745; MIT; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR PROSITE; PS00674; AAA; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; ATP-binding; Cell cycle; Cell division;
KW Complete proteome; Endosome; Hydrolase; Membrane; Nucleotide-binding;
KW Protein transport; Reference proteome; Transport.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 437 Vacuolar protein sorting-associated
FT protein 4A.
FT /FTId=PRO_0000084765.
FT DOMAIN 2 80 MIT.
FT NP_BIND 167 174 ATP (Potential).
FT REGION 2 84 Interaction with CHMP1B.
FT MOD_RES 2 2 N-acetylthreonine.
FT MOD_RES 8 8 N6-acetyllysine.
FT MUTAGEN 13 13 V->A,D: Diminishes interaction with IST1.
FT MUTAGEN 13 13 V->D: Abolishes interaction with CHMP6,
FT no effect on interaction with CHMP1A.
FT MUTAGEN 13 13 V->D: Greatly diminishes localization to
FT punctate class E compartments; when
FT associated with Q-173.
FT MUTAGEN 64 64 L->A,D: Abolishes interaction with
FT CHMP1B; diminishes interaction with IST1.
FT MUTAGEN 64 64 L->D: Greatly diminishes localization to
FT punctate class E compartments and
FT partially restores HIV-1 release; when
FT associated with Q-173.
FT MUTAGEN 64 64 L->D: Modestly reduces interaction with
FT CHMP6.
FT MUTAGEN 68 68 E->D: Diminishes interaction with CHMP1B.
FT MUTAGEN 173 173 K->Q: Defective in ATP-binding. Causes
FT membrane association. Induces vacuolation
FT of endosomal compartments and impairs
FT cholesterol sorting. Inhibits HIV-1
FT release.
FT MUTAGEN 173 173 K->Q: Greatly diminishes localization to
FT punctate class E compartments and
FT partially restores HIV-1 release; when
FT associated with D-64.
FT MUTAGEN 173 173 K->Q: Greatly diminishes localization to
FT punctate class E compartments; when
FT associated with D-173.
FT MUTAGEN 201 202 WL->AA: Strongly impairs HIV-1 release.
FT MUTAGEN 203 203 G->A: Impairs HIV-1 release.
FT MUTAGEN 228 228 E->Q: Defective in ATP-hydrolysis. Causes
FT membrane association. Induces vacuolation
FT of endosomal compartments and impairs
FT cholesterol and protein sorting. Inhibits
FT HIV-1 release. Increases binding to
FT CHMP1.
FT CONFLICT 79 79 K -> E (in Ref. 3; AAL75948 and 5;
FT AAF17203).
FT CONFLICT 185 185 N -> T (in Ref. 3; AAL75948).
FT CONFLICT 284 284 R -> K (in Ref. 8; AAD42971).
FT HELIX 5 21
FT HELIX 25 45
FT HELIX 50 76
SQ SEQUENCE 437 AA; 48898 MW; C3CC556FB84F105C CRC64;
MTTSTLQKAI DLVTKATEED KAKNYEEALR LYQHAVEYFL HAIKYEAHSD KAKESIRAKC
VQYLDRAEKL KDYLRSKEKH GKKPVKENQS EGKGSDSDSE GDNPEKKKLQ EQLMGAVVME
KPNIRWNDVA GLEGAKEALK EAVILPIKFP HLFTGKRTPW RGILLFGPPG TGKSYLAKAV
ATEANNSTFF SVSSSDLMSK WLGESEKLVK NLFELARQHK PSIIFIDEVD SLCGSRNENE
SEAARRIKTE FLVQMQGVGN NNDGTLVLGA TNIPWVLDSA IRRRFEKRIY IPLPEEAARA
QMFRLHLGST PHNLTDANIH ELARKTEGYS GADISIIVRD SLMQPVRKVQ SATHFKKVCG
PSRTNPSMMI DDLLTPCSPG DPGAMEMTWM DVPGDKLLEP VVCMSDMLRS LATTRPTVNA
DDLLKVKKFS EDFGQES
//
ID VPS4A_HUMAN Reviewed; 437 AA.
AC Q9UN37; B2RCB7; Q8TF07; Q9UI03; Q9Y582;
DT 12-APR-2005, integrated into UniProtKB/Swiss-Prot.
read moreDT 01-MAY-2000, sequence version 1.
DT 22-JAN-2014, entry version 123.
DE RecName: Full=Vacuolar protein sorting-associated protein 4A;
DE EC=3.6.4.6;
DE AltName: Full=Protein SKD2;
DE AltName: Full=VPS4-1;
DE Short=hVPS4;
GN Name=VPS4A; Synonyms=VPS4;
OS Homo sapiens (Human).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC Catarrhini; Hominidae; Homo.
OX NCBI_TaxID=9606;
RN [1]
RP NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, INTERACTION WITH VPS4B, AND MUTAGENESIS OF GLU-228.
RC TISSUE=Keratinocyte;
RX PubMed=11563910; DOI=10.1006/jmbi.2001.4917;
RA Scheuring S., Roehricht R.A., Schoening-Burkhardt B., Beyer A.,
RA Mueller S., Abts H.F., Koehrer K.;
RT "Mammalian cells express two VPS4 proteins both of which are involved
RT in intracellular protein trafficking.";
RL J. Mol. Biol. 312:469-480(2001).
RN [2]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX PubMed=12594041; DOI=10.1016/S0378-1119(02)01205-2;
RA Beyer A., Scheuring S., Mueller S., Mincheva A., Lichter P.,
RA Koehrer K.;
RT "Comparative sequence and expression analyses of four mammalian VPS4
RT genes.";
RL Gene 305:47-59(2003).
RN [3]
RP NUCLEOTIDE SEQUENCE [MRNA].
RA Ding J.B., Yu L., Zhao S.Y.;
RT "Cloning of a new human cDNA homologous to Homo sapiens SKD1
RT protein.";
RL Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases.
RN [4]
RP NUCLEOTIDE SEQUENCE [MRNA].
RC TISSUE=Heart;
RA Patejunas G.;
RT "Isolation of a homolog of SKD1.";
RL Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases.
RN [5]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Hypothalamus;
RX PubMed=10931946; DOI=10.1073/pnas.160270997;
RA Hu R.-M., Han Z.-G., Song H.-D., Peng Y.-D., Huang Q.-H., Ren S.-X.,
RA Gu Y.-J., Huang C.-H., Li Y.-B., Jiang C.-L., Fu G., Zhang Q.-H.,
RA Gu B.-W., Dai M., Mao Y.-F., Gao G.-F., Rong R., Ye M., Zhou J.,
RA Xu S.-H., Gu J., Shi J.-X., Jin W.-R., Zhang C.-K., Wu T.-M.,
RA Huang G.-Y., Chen Z., Chen M.-D., Chen J.-L.;
RT "Gene expression profiling in the human hypothalamus-pituitary-adrenal
RT axis and full-length cDNA cloning.";
RL Proc. Natl. Acad. Sci. U.S.A. 97:9543-9548(2000).
RN [6]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC TISSUE=Kidney;
RX PubMed=14702039; DOI=10.1038/ng1285;
RA Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R.,
RA Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H.,
RA Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S.,
RA Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K.,
RA Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A.,
RA Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M.,
RA Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y.,
RA Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M.,
RA Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K.,
RA Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S.,
RA Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J.,
RA Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y.,
RA Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N.,
RA Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S.,
RA Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S.,
RA Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O.,
RA Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H.,
RA Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B.,
RA Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y.,
RA Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T.,
RA Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y.,
RA Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S.,
RA Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T.,
RA Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M.,
RA Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T.,
RA Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K.,
RA Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R.,
RA Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.;
RT "Complete sequencing and characterization of 21,243 full-length human
RT cDNAs.";
RL Nat. Genet. 36:40-45(2004).
RN [7]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L.,
RA Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R.,
RA Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V.,
RA Hannenhalli S., Turner R., Yooseph S., Lu F., Nusskern D.R.,
RA Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H.,
RA Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G.,
RA Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W.,
RA Venter J.C.;
RL Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.
RN [8]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RX PubMed=15489334; DOI=10.1101/gr.2596504;
RG The MGC Project Team;
RT "The status, quality, and expansion of the NIH full-length cDNA
RT project: the Mammalian Gene Collection (MGC).";
RL Genome Res. 14:2121-2127(2004).
RN [9]
RP NUCLEOTIDE SEQUENCE [MRNA] OF 6-437, SUBCELLULAR LOCATION, TISSUE
RP SPECIFICITY, AND MUTAGENESIS OF LYS-173 AND GLU-228.
RC TISSUE=Brain;
RX PubMed=10637304; DOI=10.1091/mbc.11.1.227;
RA Bishop N., Woodman P.;
RT "ATPase-defective mammalian VPS4 localizes to aberrant endosomes and
RT impairs cholesterol trafficking.";
RL Mol. Biol. Cell 11:227-239(2000).
RN [10]
RP FUNCTION IN VIRUS RELEASE, AND MUTAGENESIS OF LYS-173 AND GLU-228.
RX PubMed=11595185; DOI=10.1016/S0092-8674(01)00506-2;
RA Garrus J.E., von Schwedler U.K., Pornillos O.W., Morham S.G.,
RA Zavitz K.H., Wang H.E., Wettstein D.A., Stray K.M., Cote M.,
RA Rich R.L., Myszka D.G., Sundquist W.I.;
RT "Tsg101 and the vacuolar protein sorting pathway are essential for
RT HIV-1 budding.";
RL Cell 107:55-65(2001).
RN [11]
RP INTERACTION WITH CHMP1A, AND MUTAGENESIS OF GLU-228.
RX PubMed=11559748;
RA Howard T.L., Stauffer D.R., Degnin C.R., Hollenberg S.M.;
RT "CHMP1 functions as a member of a newly defined family of vesicle
RT trafficking proteins.";
RL J. Cell Sci. 114:2395-2404(2001).
RN [12]
RP INTERACTION WITH CHMP1A; CHMP1B; CHMP2A; CHMP4A; CHMP4B; CHMP4C AND
RP CHMP6.
RX PubMed=14505570; DOI=10.1016/S0092-8674(03)00714-1;
RA von Schwedler U.K., Stuchell M., Mueller B., Ward D.M., Chung H.-Y.,
RA Morita E., Wang H.E., Davis T., He G.P., Cimbora D.M., Scott A.,
RA Kraeusslich H.-G., Kaplan J., Morham S.G., Sundquist W.I.;
RT "The protein network of HIV budding.";
RL Cell 114:701-713(2003).
RN [13]
RP INTERACTION WITH CHMP1A; CHMP1B; CHMP2A; CHMP2B AND CHMP3.
RX PubMed=14519844; DOI=10.1073/pnas.2133846100;
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RT "Divergent retroviral late-budding domains recruit vacuolar protein
RT sorting factors by using alternative adaptor proteins.";
RL Proc. Natl. Acad. Sci. U.S.A. 100:12414-12419(2003).
RN [14]
RP ERRATUM.
RA Martin-Serrano J., Yarovoy A., Perez-Caballero D., Bieniasz P.D.;
RL Proc. Natl. Acad. Sci. U.S.A. 100:152845-152845(2003).
RN [15]
RP FUNCTION, AND MUTAGENESIS OF GLU-228.
RX PubMed=15075231; DOI=10.1242/jcs.00998;
RA Sachse M., Strous G.J., Klumperman J.;
RT "ATPase-deficient hVPS4 impairs formation of internal endosomal
RT vesicles and stabilizes bilayered clathrin coats on endosomal
RT vacuoles.";
RL J. Cell Sci. 117:1699-1708(2004).
RN [16]
RP MUTAGENESIS OF 201-TRP-LEU-202 AND GLY-203.
RX PubMed=16193069; DOI=10.1038/sj.emboj.7600818;
RA Scott A., Chung H.Y., Gonciarz-Swiatek M., Hill G.C., Whitby F.G.,
RA Gaspar J., Holton J.M., Viswanathan R., Ghaffarian S., Hill C.P.,
RA Sundquist W.I.;
RT "Structural and mechanistic studies of VPS4 proteins.";
RL EMBO J. 24:3658-3669(2005).
RN [17]
RP SUBCELLULAR LOCATION.
RX PubMed=17853893; DOI=10.1038/sj.emboj.7601850;
RA Morita E., Sandrin V., Chung H.Y., Morham S.G., Gygi S.P.,
RA Rodesch C.K., Sundquist W.I.;
RT "Human ESCRT and ALIX proteins interact with proteins of the midbody
RT and function in cytokinesis.";
RL EMBO J. 26:4215-4227(2007).
RN [18]
RP INTERACTION WITH SPAST.
RX PubMed=18997780; DOI=10.1038/nsmb.1512;
RA Yang D., Rismanchi N., Renvoise B., Lippincott-Schwartz J.,
RA Blackstone C., Hurley J.H.;
RT "Structural basis for midbody targeting of spastin by the ESCRT-III
RT protein CHMP1B.";
RL Nat. Struct. Mol. Biol. 15:1278-1286(2008).
RN [19]
RP INTERACTION WITH IST1, AND MUTAGENESIS OF LEU-64.
RX PubMed=19129480; DOI=10.1091/mbc.E08-05-0474;
RA Agromayor M., Carlton J.G., Phelan J.P., Matthews D.R., Carlin L.M.,
RA Ameer-Beg S., Bowers K., Martin-Serrano J.;
RT "Essential role of hIST1 in cytokinesis.";
RL Mol. Biol. Cell 20:1374-1387(2009).
RN [20]
RP INTERACTION WITH IST1, AND MUTAGENESIS OF VAL-13 AND LEU-64.
RX PubMed=19129479; DOI=10.1091/mbc.E08-05-0475;
RA Bajorek M., Morita E., Skalicky J.J., Morham S.G., Babst M.,
RA Sundquist W.I.;
RT "Biochemical analyses of human IST1 and its function in cytokinesis.";
RL Mol. Biol. Cell 20:1360-1373(2009).
RN [21]
RP ACETYLATION [LARGE SCALE ANALYSIS] AT THR-2 AND LYS-8, MASS
RP SPECTROMETRY, AND CLEAVAGE OF INITIATOR METHIONINE.
RX PubMed=19608861; DOI=10.1126/science.1175371;
RA Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M.,
RA Walther T.C., Olsen J.V., Mann M.;
RT "Lysine acetylation targets protein complexes and co-regulates major
RT cellular functions.";
RL Science 325:834-840(2009).
RN [22]
RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
RX PubMed=21269460; DOI=10.1186/1752-0509-5-17;
RA Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P.,
RA Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.;
RT "Initial characterization of the human central proteome.";
RL BMC Syst. Biol. 5:17-17(2011).
RN [23]
RP INTERACTION WITH CHMP1B; CHMP2A; CHMP3; CHMP4B AND CHMP6.
RX PubMed=21543490; DOI=10.1128/JVI.02610-10;
RA Kuang Z., Seo E.J., Leis J.;
RT "Mechanism of inhibition of retrovirus release from cells by
RT interferon-induced gene ISG15.";
RL J. Virol. 85:7153-7161(2011).
RN [24]
RP STRUCTURE BY NMR OF 1-77, INTERACTION WITH CHMP1B, AND MUTAGENESIS OF
RP LEU-64 AND GLU-68.
RX PubMed=16174732; DOI=10.1073/pnas.0502165102;
RA Scott A., Gaspar J., Stuchell-Brereton M.D., Alam S.L., Skalicky J.J.,
RA Sundquist W.I.;
RT "Structure and ESCRT-III protein interactions of the MIT domain of
RT human VPS4A.";
RL Proc. Natl. Acad. Sci. U.S.A. 102:13813-13818(2005).
RN [25]
RP STRUCTURE BY NMR OF 1-84 IN COMPLEX WITH CHMP1A, INTERACTION WITH
RP CHMP2B, AND MUTAGENESIS OF LEU-64 AND LYS-173.
RX PubMed=17928862; DOI=10.1038/nature06172;
RA Stuchell-Brereton M.D., Skalicky J.J., Kieffer C., Karren M.A.,
RA Ghaffarian S., Sundquist W.I.;
RT "ESCRT-III recognition by VPS4 ATPases.";
RL Nature 449:740-744(2007).
RN [26]
RP STRUCTURE BY NMR OF 1-84 IN COMPLEX WITH CHMP6, INTERACTION WITH
RP CHMP1A, AND MUTAGENESIS OF VAL-13; LEU-64 AND LYS-173.
RX PubMed=18606141; DOI=10.1016/j.devcel.2008.05.014;
RA Kieffer C., Skalicky J.J., Morita E., De Domenico I., Ward D.M.,
RA Kaplan J., Sundquist W.I.;
RT "Two distinct modes of ESCRT-III recognition are required for VPS4
RT functions in lysosomal protein targeting and HIV-1 budding.";
RL Dev. Cell 15:62-73(2008).
CC -!- FUNCTION: Involved in late steps of the endosomal multivesicular
CC bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III
CC assemblies and catalyzes their disassembly, possibly in
CC combination with membrane fission. Redistributes the ESCRT-III
CC components to the cytoplasm for further rounds of MVB sorting.
CC MVBs contain intraluminal vesicles (ILVs) that are generated by
CC invagination and scission from the limiting membrane of the
CC endosome and mostly are delivered to lysosomes enabling
CC degradation of membrane proteins, such as stimulated growth factor
CC receptors, lysosomal enzymes and lipids. In conjunction with the
CC ESCRT machinery also appears to function in topologically
CC equivalent membrane fission events, such as the terminal stages of
CC cytokinesis and enveloped virus budding (HIV-1 and other
CC lentiviruses). Involved in cytokinesis.
CC -!- CATALYTIC ACTIVITY: ATP + H(2)O = ADP + phosphate.
CC -!- SUBUNIT: Proposed to be monomeric or homodimeric in nucleotide-
CC free form and to oligomerize upon binding to ATP to form two
CC stacked hexameric or heptameric rings with a central pore through
CC which ESCRT-III substrates are translocated in an ATP-dependent
CC manner (By similarity). Interacts with CHMP1A, CHMP1B, CHMP2A,
CC CHMP2B, CHMP3, CHMP4A, CHMP4B, CHMP4C and CHMP6. Interacts with
CC VPS4B; the interaction suggests a heteromeric assembly with VPS4B.
CC Interacts with SPAST. Interacts with IST1.
CC -!- SUBCELLULAR LOCATION: Prevacuolar compartment membrane; Peripheral
CC membrane protein. Late endosome membrane; Peripheral membrane
CC protein (Probable). Note=Membrane-associated in the prevacuolar
CC endosomal compartment. Localizes to the midbody of dividing cells.
CC Localized in two distinct rings on either side of the Fleming
CC body.
CC -!- TISSUE SPECIFICITY: Ubiquitously expressed.
CC -!- DOMAIN: The MIT domain serves as an adapter for ESCRT-III
CC proteins. It forms an asymmetric three-helix bundle that binds
CC amphipathic MIM (MIT interacting motif) helices along the groove
CC between MIT helices 2 and 3 present in a subset of ESCRT-III
CC proteins thus establishing the canonical MIM-MIT interaction. In
CC an extended conformation along the groove between helices 1 and 3,
CC also binds to a type-2 MIT interacting motif (MIM2).
CC -!- SIMILARITY: Belongs to the AAA ATPase family.
CC -!- SIMILARITY: Contains 1 MIT domain.
CC -!- SEQUENCE CAUTION:
CC Sequence=AAL75948.1; Type=Frameshift; Positions=123, 133, 157, 163;
CC -----------------------------------------------------------------------
CC Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms
CC Distributed under the Creative Commons Attribution-NoDerivs License
CC -----------------------------------------------------------------------
DR EMBL; AF255952; AAK52408.1; -; mRNA.
DR EMBL; AF282903; AAG01470.1; -; Genomic_DNA.
DR EMBL; AF132747; AAL75948.1; ALT_FRAME; mRNA.
DR EMBL; AF159063; AAD49227.1; -; mRNA.
DR EMBL; AF112215; AAF17203.1; -; mRNA.
DR EMBL; AK315026; BAG37514.1; -; mRNA.
DR EMBL; CH471092; EAW83263.1; -; Genomic_DNA.
DR EMBL; BC047932; AAH47932.1; -; mRNA.
DR EMBL; AF155740; AAD42971.1; -; mRNA.
DR RefSeq; NP_037377.1; NM_013245.2.
DR UniGene; Hs.128420; -.
DR PDB; 1YXR; NMR; -; A=1-77.
DR PDB; 2JQ9; NMR; -; A=1-84.
DR PDB; 2K3W; NMR; -; A=1-84.
DR PDBsum; 1YXR; -.
DR PDBsum; 2JQ9; -.
DR PDBsum; 2K3W; -.
DR ProteinModelPortal; Q9UN37; -.
DR SMR; Q9UN37; 1-101, 116-436.
DR DIP; DIP-44585N; -.
DR IntAct; Q9UN37; 5.
DR STRING; 9606.ENSP00000254950; -.
DR PhosphoSite; Q9UN37; -.
DR DMDM; 62511240; -.
DR PaxDb; Q9UN37; -.
DR PRIDE; Q9UN37; -.
DR DNASU; 27183; -.
DR Ensembl; ENST00000254950; ENSP00000254950; ENSG00000132612.
DR GeneID; 27183; -.
DR KEGG; hsa:27183; -.
DR UCSC; uc002eww.3; human.
DR CTD; 27183; -.
DR GeneCards; GC16P069335; -.
DR HGNC; HGNC:13488; VPS4A.
DR HPA; CAB018751; -.
DR MIM; 609982; gene.
DR neXtProt; NX_Q9UN37; -.
DR PharmGKB; PA38362; -.
DR eggNOG; COG0464; -.
DR HOGENOM; HOG000225146; -.
DR HOVERGEN; HBG057074; -.
DR InParanoid; Q9UN37; -.
DR KO; K12196; -.
DR OMA; RRTEMYS; -.
DR OrthoDB; EOG74BJS2; -.
DR Reactome; REACT_11123; Membrane Trafficking.
DR Reactome; REACT_116125; Disease.
DR ChiTaRS; VPS4A; human.
DR EvolutionaryTrace; Q9UN37; -.
DR GeneWiki; VPS4A; -.
DR GenomeRNAi; 27183; -.
DR NextBio; 50017; -.
DR PRO; PR:Q9UN37; -.
DR ArrayExpress; Q9UN37; -.
DR Bgee; Q9UN37; -.
DR CleanEx; HS_VPS4A; -.
DR Genevestigator; Q9UN37; -.
DR GO; GO:0005829; C:cytosol; TAS:Reactome.
DR GO; GO:0031902; C:late endosome membrane; IEA:UniProtKB-SubCell.
DR GO; GO:0030496; C:midbody; IDA:UniProtKB.
DR GO; GO:0048471; C:perinuclear region of cytoplasm; IDA:UniProtKB.
DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW.
DR GO; GO:0042623; F:ATPase activity, coupled; NAS:UniProtKB.
DR GO; GO:0000910; P:cytokinesis; IDA:UniProtKB.
DR GO; GO:0016197; P:endosomal transport; IMP:UniProtKB.
DR GO; GO:0015031; P:protein transport; IEA:UniProtKB-KW.
DR GO; GO:0016192; P:vesicle-mediated transport; IDA:UniProtKB.
DR GO; GO:0016032; P:viral process; TAS:Reactome.
DR InterPro; IPR003593; AAA+_ATPase.
DR InterPro; IPR003959; ATPase_AAA_core.
DR InterPro; IPR003960; ATPase_AAA_CS.
DR InterPro; IPR007330; MIT.
DR InterPro; IPR027417; P-loop_NTPase.
DR InterPro; IPR015415; Vps4_C.
DR Pfam; PF00004; AAA; 1.
DR Pfam; PF04212; MIT; 1.
DR Pfam; PF09336; Vps4_C; 1.
DR SMART; SM00382; AAA; 1.
DR SMART; SM00745; MIT; 1.
DR SUPFAM; SSF52540; SSF52540; 1.
DR PROSITE; PS00674; AAA; 1.
PE 1: Evidence at protein level;
KW 3D-structure; Acetylation; ATP-binding; Cell cycle; Cell division;
KW Complete proteome; Endosome; Hydrolase; Membrane; Nucleotide-binding;
KW Protein transport; Reference proteome; Transport.
FT INIT_MET 1 1 Removed.
FT CHAIN 2 437 Vacuolar protein sorting-associated
FT protein 4A.
FT /FTId=PRO_0000084765.
FT DOMAIN 2 80 MIT.
FT NP_BIND 167 174 ATP (Potential).
FT REGION 2 84 Interaction with CHMP1B.
FT MOD_RES 2 2 N-acetylthreonine.
FT MOD_RES 8 8 N6-acetyllysine.
FT MUTAGEN 13 13 V->A,D: Diminishes interaction with IST1.
FT MUTAGEN 13 13 V->D: Abolishes interaction with CHMP6,
FT no effect on interaction with CHMP1A.
FT MUTAGEN 13 13 V->D: Greatly diminishes localization to
FT punctate class E compartments; when
FT associated with Q-173.
FT MUTAGEN 64 64 L->A,D: Abolishes interaction with
FT CHMP1B; diminishes interaction with IST1.
FT MUTAGEN 64 64 L->D: Greatly diminishes localization to
FT punctate class E compartments and
FT partially restores HIV-1 release; when
FT associated with Q-173.
FT MUTAGEN 64 64 L->D: Modestly reduces interaction with
FT CHMP6.
FT MUTAGEN 68 68 E->D: Diminishes interaction with CHMP1B.
FT MUTAGEN 173 173 K->Q: Defective in ATP-binding. Causes
FT membrane association. Induces vacuolation
FT of endosomal compartments and impairs
FT cholesterol sorting. Inhibits HIV-1
FT release.
FT MUTAGEN 173 173 K->Q: Greatly diminishes localization to
FT punctate class E compartments and
FT partially restores HIV-1 release; when
FT associated with D-64.
FT MUTAGEN 173 173 K->Q: Greatly diminishes localization to
FT punctate class E compartments; when
FT associated with D-173.
FT MUTAGEN 201 202 WL->AA: Strongly impairs HIV-1 release.
FT MUTAGEN 203 203 G->A: Impairs HIV-1 release.
FT MUTAGEN 228 228 E->Q: Defective in ATP-hydrolysis. Causes
FT membrane association. Induces vacuolation
FT of endosomal compartments and impairs
FT cholesterol and protein sorting. Inhibits
FT HIV-1 release. Increases binding to
FT CHMP1.
FT CONFLICT 79 79 K -> E (in Ref. 3; AAL75948 and 5;
FT AAF17203).
FT CONFLICT 185 185 N -> T (in Ref. 3; AAL75948).
FT CONFLICT 284 284 R -> K (in Ref. 8; AAD42971).
FT HELIX 5 21
FT HELIX 25 45
FT HELIX 50 76
SQ SEQUENCE 437 AA; 48898 MW; C3CC556FB84F105C CRC64;
MTTSTLQKAI DLVTKATEED KAKNYEEALR LYQHAVEYFL HAIKYEAHSD KAKESIRAKC
VQYLDRAEKL KDYLRSKEKH GKKPVKENQS EGKGSDSDSE GDNPEKKKLQ EQLMGAVVME
KPNIRWNDVA GLEGAKEALK EAVILPIKFP HLFTGKRTPW RGILLFGPPG TGKSYLAKAV
ATEANNSTFF SVSSSDLMSK WLGESEKLVK NLFELARQHK PSIIFIDEVD SLCGSRNENE
SEAARRIKTE FLVQMQGVGN NNDGTLVLGA TNIPWVLDSA IRRRFEKRIY IPLPEEAARA
QMFRLHLGST PHNLTDANIH ELARKTEGYS GADISIIVRD SLMQPVRKVQ SATHFKKVCG
PSRTNPSMMI DDLLTPCSPG DPGAMEMTWM DVPGDKLLEP VVCMSDMLRS LATTRPTVNA
DDLLKVKKFS EDFGQES
//
MIM
609982
*RECORD*
*FIELD* NO
609982
*FIELD* TI
*609982 VACUOLAR PROTEIN SORTING 4, YEAST, HOMOLOG OF, A; VPS4A
;;VPS4
*FIELD* TX
read moreDESCRIPTION
VPS4A belongs to the AAA (ATPases associated with diverse cellular
activities) protein family and is involved in lysosomal/endosomal
membrane trafficking (Beyer et al., 2003).
CLONING
By searching databases for proteins similar to yeast Vps4, Bishop and
Woodman (2000) identified an EST for VPS4A, which they called VPS4, that
had been isolated from a human brain cDNA library. The deduced 432-amino
acid protein contains an N-terminal coiled-coil domain and a central AAA
domain. Fluorescence-tagged VPS4 was expressed in the cytosol of
transfected rat kidney cells.
By searching for ESTs similar to yeast Vps4, followed by screening a
human keratinocyte cell line cDNA library, Scheuring et al. (2001)
cloned VPS4A. The deduced 437-amino acid protein has 5 additional
N-terminal amino acids compared with the VPS4A protein reported by
Bishop and Woodman (2000). VPS4A shares 80% amino acid identity with
VPS4B (609983) and 59% identity with yeast Vps4. Northern blot analysis
detected a ubiquitously expressed 2.3-kb transcript.
Using Northern blot analysis, Beyer et al. (2003) found that mouse Vps4a
and Vps4b were variably expressed in all tissues examined. Most tissues
showed a strong bias for one or the other Vps4, but some expressed both
equally.
GENE FUNCTION
By transient expression in rodent kidney cells, Bishop and Woodman
(2000) found that ATPase-defective mutants of human VPS4 localized to
membranes, including those of endocytic vacuoles, and induced endosomal
vacuolation. Many endosomal vacuoles induced by VPS4 mutants were
substantially enriched in cholesterol relative to the endosomal
compartments of untransfected cells. Mutant VPS4 did not associate with
Golgi or endoplasmic reticulum membranes or with cell surface membranes
recycling to the trans-Golgi, nor did it alter their function. Bishop
and Woodman (2000) concluded that VPS4 is involved in postendosomal
cholesterol sorting.
Scheuring et al. (2001) found that heterologous expression of human
VPS4A in Vps4-null yeast partially suppressed the temperature-sensitive
growth defect and partly complemented the vacuolar protein sorting
defect. VPS4A distributed throughout the cytosol of transfected wildtype
yeast and occasionally concentrated in small dots close to vacuoles.
VPS4A with a glu228-to-gln (E228Q) mutation within the AAA domain
induced dominant-negative vacuolar protein sorting defects in wildtype
yeast cells. Two-hybrid experiments suggested that VPS4A and VPS4B could
form heteromeric complexes, and the interaction was stronger if
dominant-negative mutants were involved. Neither protein formed
homomeric complexes.
Lata et al. (2008) found that the ESCRT-III proteins CHMP2A (610893) and
CHMP3 (610052) (charged multivesicular body proteins 2A and 3) could
assemble in vitro into helical tubular structures that expose their
membrane-interaction sites on the outside of the tubule, whereas the
AAA-type adenosine triphosphatase VPS4 could bind on the inside of the
tubule and disassemble the tubes upon adenosine triphosphate hydrolysis.
CHMP2A and CHMP3 copolymerized in solution, and their membrane targeting
was cooperatively enhanced on planar lipid bilayers. Lata et al. (2008)
concluded that such helical CHMP structures could thus assemble within
the neck of an inwardly budding vesicle, catalyzing late steps in
budding under the control of VPS4.
GENE STRUCTURE
Beyer et al. (2003) determined that the VPS4A gene contains 11 exons and
spans 13.64 kb. The promoter region lacks TATA or CAAT boxes, but it
contains CpG islands.
BIOCHEMICAL FEATURES
The N-terminal coiled-coil region of VPS4A is a microtubule-interacting
and transport (MIT) domain involved in substrate recognition. Scott et
al. (2005) reported the solution structure of the VPS4A MIT domain and
identified CHMP1B (606486), an endosomal sorting complex protein, as a
binding partner. They found that VPS4A MIT forms an antiparallel 3-helix
bundle and that a conserved leucine (L64) on the third helix binds the
C-terminal half of CHMP1B.
The AAA ATPase Vps4 is central to endosomal traffic to lysosomes,
retroviral budding, and cytokinesis, and dissociates ESCRT complexes
from membranes. Obita et al. (2007) showed that of the 6
ESCRT-III-related subunits in yeast, only Vps2 (CHMP2A; 610893) and Did2
bind the MIT (microtubule interacting and transport) domain of Vps4, and
that the C-terminal 30 residues of the subunits are both necessary and
sufficient for interaction. Obita et al. (2007) determined the crystal
structure of the Vps2 C terminus in a complex with the Vps4 MIT domain,
explaining the basis for selective ESCRT-III recognition. MIT helices
alpha-2 and alpha-3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and
mutations within this motif cause sorting defects in yeast. Obita et al.
(2007) concluded that the crystal structure of the N-terminal domain of
an archaeal AAA ATPase shows that is closely related to the MIT domain
of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like
protein even though these organisms have no endomembrane system,
suggesting that the Vps4/ESCRT-III partnership is a relic of a function
that predates the divergence of eukaryotes and archaea.
Stuchell-Brereton et al. (2007) independently showed that the MIT
domains of human VPS4A and VPS4B (609983) bind conserved sequence motifs
located at the C termini of the CHMP1-3 class of ESCRT-III proteins.
Structures of VPS4A MIT-CHMP1A (164010) and VPS4B MIT-CHMP2B (609512)
complexes revealed that the C-terminal CHMP motif forms an amphipathic
helix that binds in a groove between the last 2 helices of the
tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the
opposite orientation to that of a canonic TPR interaction. Distinct
pockets in the MIT domain bound 3 conserved leucine residues of the CHMP
motif, and mutations that inhibited these interactions blocked VPS4
recruitment, impaired endosomal protein sorting, and relieved
dominant-negative VPS4 inhibition of HIV budding. Thus,
Stuchell-Brereton et al. (2007) concluded that their studies revealed
how the VPS4 ATPases recognize their CHMP substrates to facilitate the
membrane fission events required for the release of viruses, endosomal
vesicles, and daughter cells.
MAPPING
By FISH and genomic sequence analysis, Beyer et al. (2003) mapped the
VPS4A gene to chromosome 16q22. They mapped the mouse Vps4a gene to a
region of chromosome 8D that shares homology of synteny with human
chromosome 16q22.
*FIELD* RF
1. Beyer, A.; Scheuring, S.; Muller, S.; Mincheva, A.; Lichter, P.;
Kohrer, K.: Comparative sequence and expression analyses of four
mammalian VPS4 genes. Gene 305: 47-59, 2003.
2. Bishop, N.; Woodman, P.: ATPase-defective mammalian VPS4 localizes
to aberrant endosomes and impairs cholesterol trafficking. Molec.
Biol. Cell 11: 227-239, 2000.
3. Lata, S.; Schoehn, G.; Jain, A.; Pires, R.; Piehler, J.; Gottlinger,
H. G.; Weissenhorn, W.: Helical structures of ESCRT-III are disassembled
by VPS4. Science 321: 1354-1357, 2008.
4. Obita, T.; Saksena, S.; Ghazi-Tabatabai, S.; Gill, D. J.; Perisic,
O.; Emr, S. D.; Williams, R. L.: Structural basis for selective recognition
of ESCRT-III by the AAA ATPase Vps4. Nature 449: 735-739, 2007.
5. Scheuring, S.; Rohricht, R. A.; Schoning-Burkhardt, B.; Beyer,
A.; Muller, S.; Abts, H. F.; Kohrer, K.: Mammalian cells express
two VPS4 proteins both of which are involved in intracellular protein
trafficking. J. Molec. Biol. 312: 469-480, 2001.
6. Scott, A.; Gaspar, J.; Stuchell-Brereton, M. D.; Alam, S. L.; Skalicky,
J. J.; Sundquist, W. I.: Structure and ESCRT-III protein interactions
of the MIT domain of human VPS4A. Proc. Nat. Acad. Sci. 13813-13818,
2005.
7. Stuchell-Brereton, M. D.; Skalicky, J. J.; Kieffer, C.; Karren,
M. A.; Ghaffarian, S.; Sundquist, W. I.: ESCRT-III recognition by
VPS4 ATPases. Nature 449: 740-744, 2007.
*FIELD* CN
Ada Hamosh - updated: 10/1/2008
Ada Hamosh - updated: 10/26/2007
*FIELD* CD
Patricia A. Hartz: 3/20/2006
*FIELD* ED
alopez: 10/03/2008
terry: 10/1/2008
alopez: 11/2/2007
terry: 10/26/2007
mgross: 3/21/2006
mgross: 3/20/2006
*RECORD*
*FIELD* NO
609982
*FIELD* TI
*609982 VACUOLAR PROTEIN SORTING 4, YEAST, HOMOLOG OF, A; VPS4A
;;VPS4
*FIELD* TX
read moreDESCRIPTION
VPS4A belongs to the AAA (ATPases associated with diverse cellular
activities) protein family and is involved in lysosomal/endosomal
membrane trafficking (Beyer et al., 2003).
CLONING
By searching databases for proteins similar to yeast Vps4, Bishop and
Woodman (2000) identified an EST for VPS4A, which they called VPS4, that
had been isolated from a human brain cDNA library. The deduced 432-amino
acid protein contains an N-terminal coiled-coil domain and a central AAA
domain. Fluorescence-tagged VPS4 was expressed in the cytosol of
transfected rat kidney cells.
By searching for ESTs similar to yeast Vps4, followed by screening a
human keratinocyte cell line cDNA library, Scheuring et al. (2001)
cloned VPS4A. The deduced 437-amino acid protein has 5 additional
N-terminal amino acids compared with the VPS4A protein reported by
Bishop and Woodman (2000). VPS4A shares 80% amino acid identity with
VPS4B (609983) and 59% identity with yeast Vps4. Northern blot analysis
detected a ubiquitously expressed 2.3-kb transcript.
Using Northern blot analysis, Beyer et al. (2003) found that mouse Vps4a
and Vps4b were variably expressed in all tissues examined. Most tissues
showed a strong bias for one or the other Vps4, but some expressed both
equally.
GENE FUNCTION
By transient expression in rodent kidney cells, Bishop and Woodman
(2000) found that ATPase-defective mutants of human VPS4 localized to
membranes, including those of endocytic vacuoles, and induced endosomal
vacuolation. Many endosomal vacuoles induced by VPS4 mutants were
substantially enriched in cholesterol relative to the endosomal
compartments of untransfected cells. Mutant VPS4 did not associate with
Golgi or endoplasmic reticulum membranes or with cell surface membranes
recycling to the trans-Golgi, nor did it alter their function. Bishop
and Woodman (2000) concluded that VPS4 is involved in postendosomal
cholesterol sorting.
Scheuring et al. (2001) found that heterologous expression of human
VPS4A in Vps4-null yeast partially suppressed the temperature-sensitive
growth defect and partly complemented the vacuolar protein sorting
defect. VPS4A distributed throughout the cytosol of transfected wildtype
yeast and occasionally concentrated in small dots close to vacuoles.
VPS4A with a glu228-to-gln (E228Q) mutation within the AAA domain
induced dominant-negative vacuolar protein sorting defects in wildtype
yeast cells. Two-hybrid experiments suggested that VPS4A and VPS4B could
form heteromeric complexes, and the interaction was stronger if
dominant-negative mutants were involved. Neither protein formed
homomeric complexes.
Lata et al. (2008) found that the ESCRT-III proteins CHMP2A (610893) and
CHMP3 (610052) (charged multivesicular body proteins 2A and 3) could
assemble in vitro into helical tubular structures that expose their
membrane-interaction sites on the outside of the tubule, whereas the
AAA-type adenosine triphosphatase VPS4 could bind on the inside of the
tubule and disassemble the tubes upon adenosine triphosphate hydrolysis.
CHMP2A and CHMP3 copolymerized in solution, and their membrane targeting
was cooperatively enhanced on planar lipid bilayers. Lata et al. (2008)
concluded that such helical CHMP structures could thus assemble within
the neck of an inwardly budding vesicle, catalyzing late steps in
budding under the control of VPS4.
GENE STRUCTURE
Beyer et al. (2003) determined that the VPS4A gene contains 11 exons and
spans 13.64 kb. The promoter region lacks TATA or CAAT boxes, but it
contains CpG islands.
BIOCHEMICAL FEATURES
The N-terminal coiled-coil region of VPS4A is a microtubule-interacting
and transport (MIT) domain involved in substrate recognition. Scott et
al. (2005) reported the solution structure of the VPS4A MIT domain and
identified CHMP1B (606486), an endosomal sorting complex protein, as a
binding partner. They found that VPS4A MIT forms an antiparallel 3-helix
bundle and that a conserved leucine (L64) on the third helix binds the
C-terminal half of CHMP1B.
The AAA ATPase Vps4 is central to endosomal traffic to lysosomes,
retroviral budding, and cytokinesis, and dissociates ESCRT complexes
from membranes. Obita et al. (2007) showed that of the 6
ESCRT-III-related subunits in yeast, only Vps2 (CHMP2A; 610893) and Did2
bind the MIT (microtubule interacting and transport) domain of Vps4, and
that the C-terminal 30 residues of the subunits are both necessary and
sufficient for interaction. Obita et al. (2007) determined the crystal
structure of the Vps2 C terminus in a complex with the Vps4 MIT domain,
explaining the basis for selective ESCRT-III recognition. MIT helices
alpha-2 and alpha-3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and
mutations within this motif cause sorting defects in yeast. Obita et al.
(2007) concluded that the crystal structure of the N-terminal domain of
an archaeal AAA ATPase shows that is closely related to the MIT domain
of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like
protein even though these organisms have no endomembrane system,
suggesting that the Vps4/ESCRT-III partnership is a relic of a function
that predates the divergence of eukaryotes and archaea.
Stuchell-Brereton et al. (2007) independently showed that the MIT
domains of human VPS4A and VPS4B (609983) bind conserved sequence motifs
located at the C termini of the CHMP1-3 class of ESCRT-III proteins.
Structures of VPS4A MIT-CHMP1A (164010) and VPS4B MIT-CHMP2B (609512)
complexes revealed that the C-terminal CHMP motif forms an amphipathic
helix that binds in a groove between the last 2 helices of the
tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the
opposite orientation to that of a canonic TPR interaction. Distinct
pockets in the MIT domain bound 3 conserved leucine residues of the CHMP
motif, and mutations that inhibited these interactions blocked VPS4
recruitment, impaired endosomal protein sorting, and relieved
dominant-negative VPS4 inhibition of HIV budding. Thus,
Stuchell-Brereton et al. (2007) concluded that their studies revealed
how the VPS4 ATPases recognize their CHMP substrates to facilitate the
membrane fission events required for the release of viruses, endosomal
vesicles, and daughter cells.
MAPPING
By FISH and genomic sequence analysis, Beyer et al. (2003) mapped the
VPS4A gene to chromosome 16q22. They mapped the mouse Vps4a gene to a
region of chromosome 8D that shares homology of synteny with human
chromosome 16q22.
*FIELD* RF
1. Beyer, A.; Scheuring, S.; Muller, S.; Mincheva, A.; Lichter, P.;
Kohrer, K.: Comparative sequence and expression analyses of four
mammalian VPS4 genes. Gene 305: 47-59, 2003.
2. Bishop, N.; Woodman, P.: ATPase-defective mammalian VPS4 localizes
to aberrant endosomes and impairs cholesterol trafficking. Molec.
Biol. Cell 11: 227-239, 2000.
3. Lata, S.; Schoehn, G.; Jain, A.; Pires, R.; Piehler, J.; Gottlinger,
H. G.; Weissenhorn, W.: Helical structures of ESCRT-III are disassembled
by VPS4. Science 321: 1354-1357, 2008.
4. Obita, T.; Saksena, S.; Ghazi-Tabatabai, S.; Gill, D. J.; Perisic,
O.; Emr, S. D.; Williams, R. L.: Structural basis for selective recognition
of ESCRT-III by the AAA ATPase Vps4. Nature 449: 735-739, 2007.
5. Scheuring, S.; Rohricht, R. A.; Schoning-Burkhardt, B.; Beyer,
A.; Muller, S.; Abts, H. F.; Kohrer, K.: Mammalian cells express
two VPS4 proteins both of which are involved in intracellular protein
trafficking. J. Molec. Biol. 312: 469-480, 2001.
6. Scott, A.; Gaspar, J.; Stuchell-Brereton, M. D.; Alam, S. L.; Skalicky,
J. J.; Sundquist, W. I.: Structure and ESCRT-III protein interactions
of the MIT domain of human VPS4A. Proc. Nat. Acad. Sci. 13813-13818,
2005.
7. Stuchell-Brereton, M. D.; Skalicky, J. J.; Kieffer, C.; Karren,
M. A.; Ghaffarian, S.; Sundquist, W. I.: ESCRT-III recognition by
VPS4 ATPases. Nature 449: 740-744, 2007.
*FIELD* CN
Ada Hamosh - updated: 10/1/2008
Ada Hamosh - updated: 10/26/2007
*FIELD* CD
Patricia A. Hartz: 3/20/2006
*FIELD* ED
alopez: 10/03/2008
terry: 10/1/2008
alopez: 11/2/2007
terry: 10/26/2007
mgross: 3/21/2006
mgross: 3/20/2006